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A B S T R A C T

This work generates thermal and tectonic data from the mylonitized rocks of the Main Boundary Thrust (MBT).
South and north to this major thrust, the Siwalik range and the Lesser Himalaya, respectively have been re-
ceiving a renewed interest amongst the petroleum geoscientists. Understanding temperature, flow stress and
strain rates related to a major thrust is crucial in thermal-mechanical modelling of the terrains adjacent to it.
Strongly sheared Proterozoic Chandpur phyllites and abundant syntectonic quartz veins occur along the MBT
zone (one of the major foreland verging thrusts in the Himalayan orogen) near the Sahenshahi temple at
Dehradun, Uttarakhand state, India. Microstructure analyses show intense ductile top-to-S shear in terms of S-C
fabric and XRD analyses indicate presence of clays e.g., illite and clinochlore. These clays not only bear the
signatures of the intense fluid activity, but also enhance the fault movement by reducing the mechanical strength
of the fault zone rocks. Thermometry based on qualitative quartz grain boundary mobility (~300–550 °C) and
quantitative Laser Raman Spectroscopy for carbonaceous materials (340–370 °C) reveal the maximum estimates
of the deformation temperature and metamorphic temperature, respectively. The higher temperature micro-
structures can be found in lower temperature domains under the presence of fluids. Hence the quartz thermo-
metry estimates a broader temperature range than the Raman thermometry. Previous works report that, the
phyllites present at the base of a thrust sheet, experiences deformation at < 500 °C. The thermometric estimates
in this study indicate a higher temperature at the base than that at further north known from previous studies,
possibly by shear heating. A flow stress of ~6–49 MPa has been calculated from recrystallised quartz grain
piezometry. This broad range of flow stress value indicates temporally variable tectonic stress responsible in the
evolution of the MBT. Using these magnitudes, ~10−15-10−16 s−1 of strain rate has been estimated. Such a
range can also indicate seismic cycles in the tectonically active Himalaya.

1. Introduction

In 1960s the Oil and Natural Gas Commission (ONGC) attempted
hydrocarbon exploration in the Himalaya, a collisional orogen, which is
also described as a fold-thrust-belt. A limited success was achieved
mainly in terms of gas discovery from the Siwalik range, especially from
Himachal Pradesh (review in Mishra and Mukhopadhyay, 2012). Not-
withstanding, ONGC (e.g., Rao, 1986) and other research bodies (e.g.,
Mukherjee and Chakrabarti, 1996) continued independent petroleum
geological studies in other sectors of the Himalaya.

The Eocene limestones that crop out near the Main Boundary Thrust
(MBT) and also from the Lesser Himalayan sequence (LHS) have given
few oil and gas shows (Acharyya and Ray, 1982). Based on

palaeontological studies, Ediacara in particular, Tewari (2012) predicts
the presence of hydrocarbon source rock from the Neo-Proterozoic
terrain of the LHS in the Garhwal sector. Interestingly, Neoproterozoic-
Cambrian hydrocarbon reserves started receiving attention amongst the
geoscientists worldwide, a few study areas exist in western India itself
e.g., the Bikaner Nagaur basin (Bhat et al., 2012; Ojha, 2012). Within
the Himalaya, the Proterozoic rocks of the Jammu region (NW Hima-
laya, India) is presently under study for hydrocarbon (Hakhoo et al.,
2016). The line of comparison between the western Indian basin and
the Lesser Himalayan region is the age of the rocks. The detail tectonic
set up however differ. The reason of comparison is that it will be unwise
to think that the very old rock in the Lesser Himalaya cannot be pet-
roliferous.
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As the easy to discover oil fields get depleted, the oil industry has
been revising its plan to make a more intense study on the Himalaya.
For example, ONGC has been targeting the Krol unit of rocks from the
LHS that lies close to the MBT (Bhattacharya, Internet Reference). This
is because previous workers have categorized the Krol and Tal units of
the LHS as a potential reservoir of moderate quality (reviewed in table 1
of Mishra and Mukhopadhyay, 2012). Besides those two stratigraphic
units of the LHS, the Blaini unit has also been considered to be im-
portant (Craig et al., 2018). While a detail sequence stratigraphic study
have been undertaken by Jiang et al. (2002) in these areas, recent detail
structural studies is missing, except Bose and Mukherjee (2019a) which
was but on a different perspective.

Regional anticlines within the Siwalik range, the southernmost unit
of the Himalaya, exist adjacent to the MBT, e.g., the Santaugarh anti-
cline (a fault propagation fold: Thakur et al., 2007a, b) in the Garhwal
Himalaya, where a reconnaissance survey can be undertaken. Since
structural geology within fold thrust belts fundamentally controls the
spatial occurrence of the hydrocarbon reserves (Cooper, 2007), this
work aims to deduce fundamental thermal and tectonic parameters
from the MBT region that will be useful in future thermal-mechanical
modelling of the adjoining terrains.

Quantification of deformation temperature (Cavalcante et al., 2018;
Mazza et al., 2018), flow stress (Christie and Ord, 1980; Gueydan et al.,
2005) and strain rate (Handy, 1994; Sassier et al., 2009) are pre-
requisite to understand the deformation mechanisms of rocks. This
would enable interpretation of tectonics of the terrain under study.
Factors such as fluid-pressure, grain-size and composition greatly in-
fluence the development of shear zones (e.g., Schmid, 1982; Arch et al.,
1988; Wojtal and Mitra, 1988) and their impacts should be understood
properly in studying shear zones (e.g., Law, 1990; Newman and Mitra,
1994; Bhattacharyya and Mitra, 2011, 2014; Bose et al., 2018). At one
side, research groups (e.g., Kali et al., 2010; Long et al., 2011;
Yakymchuk and Godin, 2012; Law et al., 2013) have deduced the
temperature a shear zone can attain. On the other hand, other research
communities have modelled the shear-related heating (e.g., Nabelek
et al., 2001; Whittington et al., 2009; Mulchrone and Mukherjee, 2016;
Mukherjee, 2017a). With the help of such thermometric studies, at
some point geoscientists might predict shear zone temperatures (e.g.,
Wolfowicz, 2012) from models. Then they would be able to check how
far they match with the estimated value from the natural deformations.
Closer the match, better will be the understanding of the shear zone
kinematics. Factors like temperature, flow stress and strain rate provide
the details of the deformation process. These factors also control the
switch between the elastic and plastic deformational regimes, which
link with the seismic-aseismic cycles (e.g., Handy, 1989; Kruhl et al.,
2007; Rogowitz et al., 2014). Earthquake frequencies are very closely
related to strain rates (Shen et al., 2007).

Following this trend, this work uses a few widely used techniques
(e.g., Goscinak, 2014; Farrell, 2017) to estimate the deformation tem-
perature, flow stress and strain rate.

2. Geology and tectonics

Around 11 Ma years back (Meigs et al., 1995), the MBT zone placed
the hangingwall block of the Proterozoic Lesser Himalayan Sequence
(LHS) at N/NE over the footwall of the Cenozoic Sub-Himalayan Si-
walik Supergroup at S/SW (review in Yin, 2006) (Fig. 1a–c). Some
authors consider the MBT as a basement thrust (Raina, 1978). The MBT
usually dips 30–50° but at few places is sub-vertical (Thakur et al.,
2007a, b). The LHS, situated between the MBT and the Main Central
Thrust (MCT), is subdivided into two tectono-stratigraphic units – the
northern Paleoproterozoic Inner LHS, and the southern Neoproterozoic-
Cambrian Outer LHS (lithotectonic units of the Garhwal Lesser Hima-
laya in Repository Table 1). These are separated by a ~ NE-SW trending
Tons thrust in the Garhwal Himalaya (Célérier et al., 2009a,b and re-
ferences therein). The LHS in the Garhwal Himalaya (Bose and

Mukherjee, 2019a) and elsewhere (Bose and Mukherjee, 2019b) un-
derwent top-to-N/NE back-thrusting of unconstrained timing. By GPS
study in the Kumaun Lesser Himalaya, Ponraj et al. (2010) deduce
15 mm yr−1 present day convergence rate. The active nature of MBT is
also reflected through various other signatures, such as landslides
(Panikkar and Subramanyan, 1996; Joshi et al., 2011), semsmicity
(Pathak et al., 2015) and radon emissions (0.04 ± 0.01 to
0.58 ± 0.04 pCi/ml) near Dehradun, Uttarakhand (Ramola et al.,
1988). Since Ramola et al. (1988) find radon emission from the MBT
fault zone itself, they do not faour any reason for this emission other
than the MBT activity. However, in other parts of the Garhwal Hiu-
malaya, the MBT is presently inactive (Jayangondaperumal et al.,
2018).

This study was conducted in the litho-units of the MBT hangingwall
rocks, i.e., the Chandpur Formation of the Outer LHS in the Garhwal
Himalaya. The Chandpur Formation mainly comprises of shales, phyl-
lites, siltstones and sandstones. The mineral assemblage (e.g., epidote
micas, such as chloritized recrystallised biotite) suggests a greenschist
facies metamorphism (Islam et al., 2011). Following the U-Pb dating
method, an age of 8239.5 Ma was deduced from the magmatic zircons
of the Lesser Himalayan Chor Granitoids (Singh et al., 2002). The black
Chandpur phyllites expose along the MBT zone near Dehradun where
the Mussourie hills start. Here, the MBT trends NW-SE. Based on the
Raman Spectroscopy of Carbonaceous Material (RCSM), Célérier et al.
(2009a,b) calculate < 330 °C temperature for the various low-grade
meta-sedimentary rocks from the Kumaun and the Garhwal Lesser Hi-
malaya. Mineralization of Pb, Zn, U, gypsum and barite have been re-
ported north to the MBT, within the LHS (review in Ghose, 2006).

3. Methods

3.1. Sampling

Fieldwork was carried out around the Sahenshahi Ashram (N 30°
24/19.4//, E 78° 05/42.9//) Dehradun, close to the MBT. Here the MBT
zone has thrust the black pelitic rocks of Chandpur Formation over the
Siwalik conglomerates (Fig. 2a). Intensely top-to-S sheared black
Chandpur phyllites along with abundant quartz veins crop out along the
MBT zone that trend N-S (Fig. 2b–d). Two phyllite and two quartz-vein
samples were collected from this spot. Quartz vein samples were col-
lected from a single vein.

Naturally deformed samples were collected for these purposes from
the low-grade outer Lesser Himalayan Sequence, exposed along the
Main Boundary Thrust (MBT) zone near Dehradun, Uttarakhand, India,
western Himalaya. The data generated for the MBT in this work would
act in better understanding of thermal and dynamic behaviour of the
natural shear zone: the MBT.

3.2. Microstructures & clay mineralogy/XRD analysis

Thin-sections of the phyllite and the quartz vein were prepared that
orient perpendicular to the N-dipping main foliation and parallel to the
dip direction of those foliation planes. For clay-separated XRD analyses,
the samples were powdered (< 75 μm) at first. This was followed by the
usual processing through decantation and centrifuge to extract clays.
The air-dried samples were studied in the PANalytical Empyrean
(PANalytical B.V., Almelo, The Netherlands) set up at the Department
of Earth Sciences, IIT Bombay. Final results were obtained through the
HighScore Plus software v. 4.6a (Degen et al., 2014) and the Inorganic
Crystal Structure Database. The fundamentals of the XRD analyses can
be found elsewhere (e.g., Moore and Reynolds 1989; Poppe et al.,
2001).

3.3. Quartz deformation thermometry

Thin-sections made from samples of Chandpur phyllites as well as
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quartz veins were studied for micro-structural and thermometric ana-
lyses. Experimental studies (Rutter, 1974; Tullis and Yund, 1985; Stipp
et al., 2002; review in Passchier and Trouw, 2005) show that quartz
develops characteristic microstructures. These microstructures are
governed dominantly by increasing temperature. Repository Table 2
summarises such observations of previous workers. Other factors such
as pressure, strain rate, presence of water also play roles. For example,
the higher temperature microstructures can be present in the lower
temperature condition, if either the strain rate is low or the water
content is high (Griggs, 1967; Law, 2014; Stünitz et al., 2017).

3.4. Thermometric study using laser Raman Spectroscopy for carbonaceous
materials (LRSCM)

See Appendix-1 for a glimpse of fundamental principles of LRSCM.
Beyssac et al. (2002) applies the LRSCM technique on a variety of rocks
(black shale, mica schist, marble, anthracite, granulite) collected from
Schistes Lustre's unit, W. Alps and from the Sanbagawa metamorphic
belt, Japan. They come up with the following empirical equation to
estimate the peak metamorphic temperature, which has been widely

followed by the subsequent workers (e.g., Nagy and Toth, 2012):

° = × +T C 445 R2 641 (1)

Here, R2 = D1⁄ (G + D1 + D2) peak area under the curve ratio
(Repository Fig. 1). With an error limit of ± 50 °C, eqn. (1) estimates
the deformation temperature within the range 330–650 °C. The equa-
tion does not depend on the metamorphic grade of the rock nor the
source of the carbonaceous materials. Eqn (1) was modified in few cases
by researchers but even then nearly the same results were obtained
(Nagy and Toth, 2012).

Rahl et al.’s (2005) LRSCM studies on low-grade (< 300 °C) meta-
sedimentary rock samples collected from Crete (Greece), South Island
(New Zealand) and Olympics Mountains (USA) lead to formulate an-
other empirical equation using the R1 and the R2 ratios. The R1 ratio is
given by D1/G peak height (intensity) ratio (Repository Fig. 1). The
formula is:

° = + × × ×T C 737.3 320.9 R1 – 1067 R2 – 80.638 R12 (2)

This formula has been tested successfully by those authors, for
100–700 °C with an error of ± 50 °C.

Fig. 1. a. Simplified geo-tectonic divisions of the Himalaya (reproduced from Fig. 1 of Mukherjee et al., 2015). Study location plotted. b. Geological map of the
Garhwal Inner Lesser Himalaya (redrawn after Fig. 1 of Jayangondaperumal and Dubey, 2001), superposed on the Google Earth satellite imagery. S: study location,
Sahensahi Ashram (N 30° 24/19.4//, E 78° 05/42.9//). Data for the earthquake epicentres is presented in the following table. Data source: United States Geological
Survey website (https://earthquake.usgs.gov/earthquakes/search/), accessed on 27-May-2019.

c. Geological cross-section through the Garhwal Sub-Himalaya. Reproduced from Fig. 2 of Dutta et al. (2019), originally drawn by Thakur and Pandey (2004).

Fig. 2. (a) MBT zone characterized by extremely deformed black pelites on hanging wall block. Conglomerates crop out at the footwall block. (b–d) Nature of black
pelitic rock along with quartz veins exposed at MBT zone. Studied samples were collected from these exposures. (d) The angle between Y- and P-planes is 41°.
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Eqns. (1) and (2) have been widely applied on a variety of rock
types and tectonic situations (e.g., Kouketsu et al., 2014; Hu et al.,
2015). Petrographic thin-sections are feasible since they allow the in-
situ measurements of the Laser Raman spectra, the relationship be-
tween carbonaceous material (CM) and mineral matrix can be observed.
Due to its anisotropic structure (i.e., deformation varies with crystal-
lographic orientation), orientation of the CM affects the generated
spectra. The use of thin sections also aids in the removal of the laser-
generated heat by the mineral matrix (Beysssac et al., 2002). According
to Beyssac et al. (2003), the CM being opaque, the laser can pene-
trate ~ 10–100 nm of the CM. This thin zone of CM can get affected
during sample preparation procedure. To overcome this, a minimum
polishing was done on the thin-sections and a CM grain lying beneath a
transparent grain (e.g., quartz) was preferred during the LRSCM. Again
the structural-order of the CM structure, hence the obtained results,
depends on the precursor and metamorphic conditions (Quirico et al.,
2009). This bias does not influence the results of this study as samples
were taken from a single spot location.

The LRSCM was performed through a Laser Raman WD Almega XR
spectrometer (manufactured by Thermo-Nicolet) equipped with a con-
focal optics and CCD detectors. A 50× objective with 25 μm pinhole
was used to focus the 12.5 Mw (50%) 532 Ar green laser beams on the
sample and the acquisition time was 30 s for each of the total 18 sample
points belonging to 4 thin-sections of the black phyllonitic rock. After
the acquisition of spectra, baseline correction and curve fitting were
done using the software OriginPro (v. 8, Origin Lab, 2007) and the data
were used for further calculations.

3.5. Flow stress estimation by piezometry using recrystallised quartz grain
size

Tectonic stresses result in creep of rocks causing a displacement of
the dislocations that increases crystal defects. During creep, the dis-
locations in a grain accumulate and eventually become the subgrain
boundary. The number of such subgrain boundaries increase with in-
creasing flow stress. Hence the increase in flow stress (measured as
differential stress) reduces sizes of the individual subgrains (White,
1977; Twiss and Moores, 2007). When a subgrain attains a different
crystallographic orientation than its parent grain, it becomes a re-
crystallised grain. The recrystallised grain size, which is a better pa-
laeopiezometric tool than the sub-grain size/dislocation density (Ord
and Christie, 1984), can be correlated with the flow stress using the
following equation (Ludwigson, 1971):

=Yf Ken (3)

Yf: flow stress (in MPa), equivalent to deviatoric stress; K: strength
coefficient (in MPa), a material property denoted by a constant value; e:
strain (unitless); n: strain hardening exponent (unitless), a material
constant. A uniform plastic behaviour of the material has been pre-
sumed in Eqn. (3). This equation works for metals and alloys. The
magnitude of K for quartz is not known, to the knowledge of the au-
thors.

Following this relationship, Twiss (1977) propose the following
theoretical and global piezometer:

= Bd 0.68 (4)

Here σ: differential stress in MPa; B: 5.5 MPa μm−1 for quartz; d:
recrystallised grain size given as the diameter of circle with equal area
of the grain. The parameter B in Eqn. (4) is a constant in the empirical
formula.

Stipp and Tullis (2003) propose another empirical piezometer based
on the axial compression experiments on Black hill quartzite carried out
in a Griggs apparatus using molten salt cell:

= ×± ±D 103.56 0.27 1.26 0.13 (5)

Here D: recrystallised grain size in μm, given as the diameter of

circle with equal area; σ: flow stress. For a large number of grains, it is
better to use the median value of the grain size distribution, than the
mean value (Ranalli, 1984). Stipp and Tullis (2003) check the applic-
ability of this piezometer for dynamically crystallised rocks with
3–45 μm grain size.

However, Stipp et al. (2010) apply this piezometer on quartz my-
lonites with 3 μm - 3 mm grain-sizes. They plotted the BLG-SGR and
SGR-GBM domain boundaries at ~35 μm and 120 μm, respectively. This
scheme has been globally used by the subsequent workers (e.g. Hunter
et al., 2018) as well as in the current study. Finding a more accurate
flow law is underway (Lu and Jiang, 2019). Flow laws derived from lab
experiments well suits naturally deformed mylonites (Lu and Jiang,
2019). On both the mono-mineralic and polymineralic rocks, the flow
laws work (Ji and Xia, 2002). Previous workers also tried to formulate
an equation for strain-rate calculations (e.g. Poirier, 1985; Tsenn and
Carter, 1987). However, Hirth et al. (2001) provided a more accurate
empirical equation to estimate the strain-rate of natural samples.
Hence, the later equation has been used in the current study. This is
explained in detail in the Appendix-2.

Although not considered in this work, other factors like temperature
and presence of fluid influence this process. While experimenting on the
olivine aggregates with low water content, Drury (2005) presumes the
recrystallised grain size to be independent of temperature. However,
during lab experiments with polycrystalline halites, ter Heege et al.
(2005) conclude that the temperature plays a significant role in pa-
laeostress estimation and the temperature independent piezometers
underestimate the flow stress. Lab experiments on quartzites by Stipp
et al. (2006) do not find any influence of water on the flow stress es-
timations. However, these piezometers (eqns. (4) and (5)) have been
widely used to study natural shear zones (e.g. Austin, 2011; Singleton
et al., 2018), including phyllonites (e.g. Krabbendam et al., 2003;
Menant et al., 2018).

3.6. How to estimate strain rate

There are different types of structural analysis to determine stress-
strain relationships and associated deformation features in field. Mohr
diagram (e.g., Mukherjee et al., 2019) can be one of them. The strain
rate indicates the rate at which the material deforms. The parameter
also gives an idea about the rate of strain accumulation (Prescott et al.,
1979; Fossen, 2016).

There is a power law relation amongst flow stress, deformation
temperature and strain rate for a quartz vein deforming through dis-
location creep. Studying the quartzite samples from the Ruby Gap du-
plex, Australia, Hirth et al. (2001) present the following empirical
equation to estimate strain rate in natural samples:

= × × ×A f eH O
m n Q RT( / )

2 (6)

Here
: strain rate (per second); A: a material

parameter = 10–11.2 MPa-n s−1 (for quartz); ƒH2O: water fugacity; m:
water fugacity exponent = 1; σ: flow stress; n: stress exponent = 4; Q:
activation energy = 135 kJ mol−1; R: molar gas constant = 8.3145 J/
mol-K; T: deformation temperature in Kelvin scale. Due to its very low
impact on (Stipp, per. comm.; Francsis, 2012), ƒH2O not measured in
the present study is justified. Eqn. (6) has been widely used to deduce
strain rates (e.g., Boutonnet et al., 2013). See Appendix-3: Table- 1 for
detail. Modification of the constituent terms in eqn (6) and its applic-
ability on naturally deformed quartz bearing samples makes the equa-
tion the best choice in the current study. Mazzotti and Gueydan (2018)
use this equation to model crust and mantle rocks. Samples of quartz
veins are used in this study for strain-rate estimation for the MBT-re-
lated shear. While conducting experimental studies on wet quartzite,
Tokle et al. (2019) utilize the dynamic recrystallised grains for stress
estimation. Besides finding the similarities between natural and
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experimental deformation patterns, they also suggested two flow laws
with different stress exponents: n ≈ 4 and 3 for lower and higher
stresses, respectively.

Takahashi et al (1998) provide the following empirical formula to
calculate strain rate:

= + +D log
T

1.08 (7)

Here, D = fractal dimension = slope of the least-square linear fit in
the diameter-perimeter log-log graph of the grains, ϕ = 9.34 * 10−2

[log(s−1)]−1, = strain rate, ρ = 6.44 * 102 K, T = temperature (in
K). However, Mamtani and Greiling (2010) report that this method is
not useful to calculate strain rate at high temperatures. Therefore, eqn
(7) has not been used to calculate the strain rates in this study. The
strain rate in a simple shear zone depends on the average slip rate and
width of the strain accumulation zone (Boncio, 2008). Again, being a
single spot study, this bias does not influence our results.

4. Results

4.1. Microstructural observations and clay minerals

Microstructural observations from phyllite (Figs. 3 and 4) show
several deformation features, e.g.: (i) ductile shear (Fig. 3a and b) and
brittle shear (Fig. 3d); (ii) contractional (Fig. 3a) and extensional fea-
tures (Fig. 3a,c); (iii) brittle (Fig. 3c) and ductile (Fig. 4a,d) behaviour
of quartz grains etc. Clay-separated XRD analyses indicate the presence
of clinochlore (Mg-rich chlorite) and illite (Fig. 5).

4.2. Quartz deformation thermometry

The sheared quartz veins were studied for this part. The quartz grain
boundary mobility features (Repository Table 2; Figs. 6 and 7) re-
present approximately the following deformation temperatures (Hirth
and Tullis, 1992; Stipp and Tullis, 2003): (i) The fragmentation induced
grain size reduction (Fig. 6a) and the intra- and inter granular fractures

(Fig. 6b,d) indicate cataclasis (< 300 °C). Note that during cataclastic
flow, intragranular fractures can also generate by minor plastic de-
formation (Evans, 1990); (ii) bulging in grain boundary (Fig. 6b), strain
lamellae (Fig. 6c), sweeping extinction (Fig. 6d) and neocrystallisation
along grain boundary (Fig. 7a and b) connote a Bulging Recrystallisa-
tion (BLG; 300–400 °C); and finally (iii) static recrystallisation indicated
by polygonal quartz grains (Fig. 7c) and elongated quartz grains
(Fig. 7d) imply a Subgrain Rotation (SGR; 400–500 °C). Note that
samples from which Figs. 3 and 4 come have not been used in ther-
mometric study here.

The deformation in the studied MBT zone started when it was in the
ductile regime. It is presently exposed at the surface possibly due to slip
along the MBT and subsequent erosions. Hence, the higher temperature
older textures in the MBT zone rocks are likely to be overprinted by
younger lower temperature deformation features (e.g. Wojtal and
Mitra, 1988; Srivastava and Mitra, 1996; Bhattacharyya and Mitra,
2014). In this study, the lower temperature (cataclastic flow; < 300 °C)
features discussed above (Section 4.2) indicate that during the later
successive deformations, the temperature of deformation fell down
to < 300 °C. According to Passchier and Trouw (2005), during de-
formation, structures overprint first by higher temperature signatures
(up to the peak metamorphic condition). This is followed by the lower
temperature features. They also suggest that the features preserved in
thin-sections get ‘frozen in’ just before the temperature as well as strain
rate go below a critical value during the final stages of the competing
processes. In the studied thin sections, such features are indicated by
the co-existence of elastic-plastic signatures (Figs. 6 and 7). As a result,
signatures of deformations at lower and higher temperatures are pre-
sent in the studied thin sections. However, presence of clays and
pressure solutions indicate intense fluid activity. This might have in-
duced hydrolytic weakening (Griggs, 1967; Snoke, 1998) of the studied
rock. Hence, the quantifications made here are the maximum estimates.

Fig. 3. (a) Quartz veins (marked as 1, 2, 3)
show three types of deformations. The
upper one (1) is folded and represents a
contraction. The middle vein (2) is more or
less parallel with the foliation in the matrix.
Here a step fracture (red broken ellipse)
indicates an anti-clockwise (top-to-SW)
brittle shear. The lower vein (3) shows
shear boudins, which indicate an extension
in a brittle regime. Black host rock with
quartz veins, plane polarised light. (b) The
central (red broken ellipse)S-C fabric gives
an anti-clockwise (top-to-SW) shear. Trans-
granular truncation of fractures (high angle
with the S-C zone) and their folding are
observed. Black country rock, plane po-
larised light. (c) Pinching in quartz vein
resulting fracture in quartz vein & neck
folds of foliations in host rock were ob-
served. The pattern of foliations in one side
of the host rock is opposite to the pattern in
other side. Black rock with quartz vein,
plane polarised light. (d) Quartz veins
truncate a brittle shear fracture plane made
up of Riedel shears (Passchier and Trouw,
2005 and references therein). A rootless
fold of quartz, bending of quartz veins near
the fracture plane is noticeable. Black rock,
plane polarised light. (For interpretation of
the references to colour in this figure le-
gend, the reader is referred to the Web
version of this article.)

N. Bose and S. Mukherjee Marine and Petroleum Geology 112 (2020) 104094

6



4.3. Laser Raman Spectroscopy for carbonaceous materials (LRSCM)

After the decomposition of the laser Raman spectra of the carbo-
naceous materials present in the MBT zone Chandpur phyllites
(Repository Figs. 1 and 2), parameters such as the band position, the
peak width, the peak height and the area under the peak were calcu-
lated to determine the temperature of deformation (Figs. 8 and 9). The
peak metamorphic temperature values calculated using eqn. (1) ranges

307–456 °C, with 374 °C as the mean value. Similarly, eqn. (2) gives a
data set between 200 and 500 °C yielding a mean value of ~356 °C.
Both the estimates involve ± 50 °C error.

4.4. Piezometry

Areas of recrystallised quartz grains were measured from the pho-
tomicrographs of two thin-sections of quartz veins present in the

Fig. 4. (a) One quartz grain overrides the
other, surrounded by clay minerals
(brownish yellow - black). Elongated grains,
bulged boundaries with triple junction and
polygonal contacts are noticed. Quartz vein,
crossed polarized light. (b) Extension re-
lated thinning in the lower (thickest) quartz
vein and neck fold in the middle vein.
Whereas, the upper (thinnest) vein is
folded. Black host rock with quartz vein,
plane polarised light. (c) Younger quartz
vein cuts across the older one. Black host
rock with quartz vein, plane polarised light.
(d) Pattern of shear foliations in black pe-
litic rock. Clockwise shear is shown by S-C
fabrics and en-echelon stacks. Here, the
angle between S- and C- fabric is 39°. Black
pelitic rock, plane polarised light. (For in-
terpretation of the references to colour in
this figure legend, the reader is referred to
the Web version of this article.)

Fig. 5. (a–c) Clays present in the sample(examples indicated by arrows). (d) Result of clay-separated XRD analyses.
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phyllitic rock of the MBT zone. The software ‘J-microvision’ (v. 1.2.5 by
Nicolas Roduit, 2007) was used. Total 200 grains of recrystalllised
quartz were measured from all the thin sections (e.g., Fig. 7c). Ac-
cording to the method followed by Stipp et al. (2010), the grouping of

the grains were done based on their grain diameters, i.e. < 40 μm for
Bulging Recrystallisation (BLG), 40–120 μm for Sub-grain Rotation
(SGR), and > 120 μm for Grain Boundary Migration (GBM). Amongst
those 154 grains come under the SGR deformation zone, 45 grains

Fig. 6. (a) Breakage by brittle fracture,
zone of small new grains, angular fragments
ofquartz etc. indicate a cataclastic flow
condition (< 300 °C). Micro-faulting of the
central yellow grain is noticeable. Quartz
vein, plane polarised light. (b) Parallel sets
of fractures show abating relation with a
central fracture plane. Quartz vein, plane
polarised light, width of view~ 3.5 mm.
Various types of brittle fractures indicate
that the quartz vein deformed in brittle re-
gime at a temperature < 300 °C. Various
types of brittle fractures indicate that the
quartz vein deformed in brittle regime at a
temperature < 300 °C. Bulging at triple
junction and deformation lamellae (top
black grain) indicate a bulging re-
crystallisation condition (300–400 °C).
Formation of very fine new grains along
boundaries is identified by light grey
colour. Although highly sutured boundary
indicates that the deformation took place at
a higher temperature (> 500 °C). Quartz
vein, plane polarised light. (c) Strain in-
duced deformation lamellae, deformation
banding, sweeping extinction along with
sutured and serrated grain boundaries
indicate bulging recrystallisation
(300–400 °C). Quartz vein, plane polarised
light. Arrow indicates clays. (d) Inter-fin-

gered grain boundary, wavy extinction, recrystallisation along subgrain boundaries indicates BLG condition (300–400 °C). Quartz vein, plane polarised light. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. (a) Strain induced dynamic re-
crystallisation in quartz vein. Larger quartz
grains. With undulose extinction form
elongated subgrains. Recrystallisation (or,
subgrain to recrystallisation transition)
around elongated subgrains indicates BLG
as the dominating recrystallising process
(300–400 °C). Intra-granular microcrack
(bottom left), aligned trails of inclusion
(right centre) are also noticed as these in-
dicate deformation at lower temperature
(< 300 °C). Quartz vein, plane polarised
light. (b) Elongated subgrains of quartz
(central and upper part) along with very
small recrystallised grains (abundant in the
top right segment) surrounding them in-
dicate a BLG to SGR transitional condition
(~400 °C). Whereas recrystallisation along
grain boundaries, sutured/bulged grain
boundaries in porphyroclasts indicate BLG
(300–400 °C). A parallel trail of inclusions
in the central grain indicates healing of
micro-cracks at lower temperature
(< 300 °C). Quartz vein, plane polarised
light. (c) Straightening of boundary and
polygonisation of recrystallised quartz
grains indicate abrupt recovery and static
recrystallisation in a strain free condition
(400–500 °C). It is also evident from the
random orientation in the grains. Minor

bending in some grain boundaries may be due to incomplete recovery or bulging recrystallisation at lower temperature (300–400 °C) during later deformational
phases. Black country rock with quartz vein, crossed polarized light. (d) Elongated quartz grains and bent grain boundaries indicate ductile deformation of the quartz
grains These features along with brittle step-fractures (left) suggest a ductile-brittle phase. Black host rock with quartz vein, plane polarised light.
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belong to GBM recrystallisation, and only a single grain is of BLG re-
crystallisation (Fig. 11). The data (Repository Table 3) related to the
area of the grains, diameter of equal area circles, and flow stresses
(Fig. 10) have been calculated using both eqns. (4) and (5).

Flow stress values calculated according eqn. (4) show a maximum
frequency in the 25–30 μm domain (55 values, 27.5% of total popula-
tion). Whereas, the mean flow stress values calculated as per eqn. (5)
show maximum frequency in the 15–20 μm domain (68 values, 34.0%
of total population).

4.5. Strain rate estimation

The deformed quartz veins present in the MBT zone phyllite has
been used here. A flow stress of 10.68–49.18 MPa was calculated from
the given data set using eqn. (4). On the other hand, eqn. (5) gives
6.04 ± 1.05 to 35.88 ± 4.45 MPa for the same data set. From these
values, a strain rate of 10−15 - 10−16 s−1 has been calculated (Table 1)
using Eqn. (6).

5. Discussions

5.1. Veins

Synkinematic quartz veins, generally present at the base of the
thrust sheet, bears the signatures of the corresponding fault activity
(e.g. Coli and Sani, 1990; Henderson and McCaig, 1996; Cox, 1998;
Blenkinsop, 2008; Wiltschko et al., 2009) and indicate elevated pore-
fluid pressure (e.g. Boulton et al., 2009). As the synkinematic quartz

veins bear the signatures of younger dynamic recrystalliastion de-
formations, these veins act as a very reliable tool to estimate the tem-
perature, flow stress and strain rate related to the deformation phases
(Haertel et al., 2013). Similarly, in the studied case the abundance of
veins restricted at the base of the footwall block suggests their syn-
kinematic nature. Additionally, the shear senses shown by the veins
(Fig. 2c and d) matches with the foreland-vergent top-to-S shear sense
of the MBT deduced from other kinematic indicators in the field in this
work, and also by other researchers from different Himalayan sections
(Yin, 2006), indicating that these veins are certainly not pre-Hima-
layan.

Further, nobody has reported conclusively any pre-Himalayan de-
formation from the MBT zone or from such regional main thrust zones
from the Himalaya. The pre-/eo-Himalayan signatures such as angular
unconformity, SW-verging folds in mega-scale, rootless tight to isoclinal
folds with metamorphic banding along the axial plane foliation, sand-
stone dykes etc. (Garzanti et al., 1995 from Spiti, NW Himalaya;
Wiesmayr and Grasemann, 2002 from NW Tethyan Himalaya; Jain
et al., 2002 from the western Himalaya; Draganits et al., 2005 from Pin
Valley, NW Himalaya) have not been reported from the study area.
Paucity of Pre-Himalayan deformation signatures could be due to ob-
literation of such features, if any, by intense Himalayan deformation
along such major thrusts in the Himalaya. In another example,
Bhargava et al. (2011) document pre-Tethyan deformation based on
field observations along the Dharagad Thrust in the Tons valley, Lesser
Himalaya in Himachal Pradesh, India. Top-to-S/SW shear has been
proved conclusively to be the Himalayan or collision induced de-
formation signature based on sigmoidal-/lensoidal foliations, S-C fab-
rics, asymmetric porphyroclasts, sheared quartz veins, mineral fish,
intrafolial folds etc. (e.g., Brunel, 1986; Herren, 1987; Grasemann et al.,
1999; Jain et al., 2002; Mukherjee and Koyi, 2010). Hence, the analyses
made with the chosen vein samples reflect the MBT-related related-
order deformations. Veins not giving shear sense have been avoided in
this study (Repository Fig. 3). Cross-fractures and boudin necks (as in
Fig. 3c) indicate the syntectonic nature of the veins (such as Fig. 3 of
Beach and Jack, 1982), and we utilized them in the present analyses.
The studied veins are not the products of hydro-fracturing since they
lack the typical network of vein as in Fig. 7b of Bons et al. (2012).
Further, these veins are not the post-tectonic fill ups, since the typical
tooth-like individual geometries of grains (Fig. 1a of Bons et al., 2012)
are never encountered. Due to lack of crystal preferred orientation/
growth direction of the grains inside the veins, the syntaxial/anataxial/
epitaxial nature (Okamoto and Sekine, 2011; Bons et al., 2012) of the
studied veins cannot be deciphered, but is neither relevant in this study.

Fig. 8. Temperature calculated from the equation given by Beyssac et al.
(2002).

Fig. 9. Temperature calculated from the equation given by Rahl et al. (2005).
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5.2. Clays and phyllonitization

Clay and phyllosilicate-rich shear zones have been reported from
various geologic settings, such as clay-filled fractures, lithospheric de-
tachments, accretionary prisms, subduction zones, continental shelves,
fold-thrust belts and along several extensional and strike slip regimes
(Warr and Cox, 2001 and references therein; Buatier et. al. 2012;
Lacroix et al., 2012). In fault zones, clay precipitates from fluids flowing
fractures (Warr and Cox, 2001; Lacroix et al., 2012, 2013). The petro-
physical properties of fault planes are affected by syn-deformational
growth of clay minerals, viz., clinochlore and illite (Lacroix et al., 2013;
Bose and Bhattacharya, 2013). There are three possible geneses of clay
minerals in fault zones (Warr and Cox, 2001): (i) anhydrous cataclasis
and frictional melting, (ii) hydrous chloritisation of mafic minerals, and
(iii) growth of swelling clay in the matrix.

Clays significantly decrease the shear strength of fault zones. For
example-the shear strength of schists or slates are ~0.38 MPa, whereas
it reduces drastically to 0–0.18 MPa for clay-filled shear planes at the
Alpine Fault zone (Warr and Cox, 2001). It can happen dominantly by
the two following ways (Warr and Cox, 2001; Buatier et al. 2012). (i)
Due to micro-pores and considerable amount of void spaces in their
crystal structures, clays can either absorb or release voluminous fluids,
various cations, organic matters held in them during hydration-dehy-
dration reactions and seismic events. This phenomenon greatly affects
the fluid pressure of the fault zone. Increased fluid pressure in the fault
zone decreases its strength. (ii) Compared to other rock forming mi-
nerals, clays deform more easily by dislocation glide along cleavages.
Low frictional coefficient along such weak slip surfaces leads to
aseismic creep.

The clay minerals present in the studied samples (clinochlore and
illite) plausibly play similar roles in the deformation. But, providing
further proof to that is beyond the scope of current study. However,
presence of clays and intense shear indicate phyllonitisation (Knopf,
1931; review in White, 2010) of the Chandpur phyllites in the studied
part of the MBT zone. Such low-grade phyllonites have been reported
ubiquitously at the base of thrust sheets (e.g., Gray, 1995; Corfu and
Heim, 2013; Bhattacharyya and Mitra, 2014) and experience
a < 500 °C peak metamorphic temperature (Foster et al., 2009). These
information match well with the current study, as the phyllonite is
present at the base of MBT sheet and shows a peak metamorphic tem-
perature of ~500 °C.

Fig. 10. Experimental results plotted in a grain size vs. flow stress diagram. Division of BLG, SGR, GBM zones has been done according to Stipp et al. (2010).

Fig. 11. Frequency distribution of experimental data in various classes of flow-stress.

Table 1
Results of piezometric experiments and strain-rates calculated from them.

Nature of Deformation Temperature (K) Pressure (MPa)
(experimental results)

Strain rate
(s-1)

BLG-SGR transition
(grain size ~ 40
μm)

673 49.18a 1.23E-15
35.88 ± 4.45b 3.48E-16

SGR-GBM transition
(grain size ~ 120
μm)

773 23.32a 1.40E-15
15.02 ± 3.20b 2.43E-16

a Measured as per Twiss (1977).
b Measured as per Stipp and Tullis (2003).
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5.3. Thermometry

In this study both the host phyllite and the quartz veins present in
them underwent the same MBT-related deformations indicated by the
common top-to-S shear (Fig. 2). The quartz microstructure thermo-
metry indicates the deformation temperature, whereas the LRSCM
thermometry done on the carbonaceous material present in the phyl-
lites connotes peak metamorphic temperature. According to Stipp et al.
(2002) and Passchier and Trouw (2005), for quartz the transitions:
cataclastic flow to BLG, BLG to SGR, and SGR to GBM takes
place ~ 300, 400, and 500 °C, respectively. Hence, the mean of peak
metamorphic temperatures obtained by LRSCM, i.e.,~374 °C and
~356 °C show a good correlation with the thermometric data obtained
by the quartz deformation thermometry.

The Pelling-Munsiari thrust in the Sikkim Lesser Himalaya, which
formed at a much higher structural level had only 360 °C recorded at its
leading edge and 410 °C at its at its trailing edge (Bhattacharyya and
Mitra, 2014). However, a direct comparison between this known in-
formation in eastern Himalaya with what we derive in western Hima-
laya is implausible since several other tectonic parameters such as slip
rate of major thrusts and exhumation rates of the mountain chain vary
significantly along the Himalayan trend (review in Mukherjee, 2013).
Célérier et al. (2009b) measure a peak metamorphic temperature <
300 °C from the LRSCM study of the nearby MBT hanging wall rocks of
Outer-LHS in the Garhwal Himalaya. Studying the quartz-feldspar mi-
crostructures, Long et al. (2011) calculate a 250–310 °C deformation
temperature for the Lesser Himalayan rocks in Bhutan. The LRSCM
method revealed that the Nepalese Lesser Himalaya experienced 540-
330 °C metamorphic temperature (Beyssac et al., 2004). Using the
LRSCM technique, Mathew et al. (2013) estimated deformation tem-
perature of 240–300 °C for the MBT zone rocks of the Arunachal Hi-
malaya, India. A conclusive comparison between the known tempera-
ture data from LHS from different locations of the Himalaya with the
present data would not be possible.

5.4. Piezometry

The flow stress depends on the sizes of the recrystallised quartz
grains (Stipp and Tullis, 2003). After nucleation, the size of the re-
crystallised quartz grains remains unchanged and does not depend on
temperature (Xia and PlattJ, 2018). Geologically active thrust zones,
such as the study area in current study, experiences temporally variable
differential stress/flow stress (10–500 MPa) during its evolution
through multiple seismic-aseismic cycles (e.g., Hawemann et al., 2018).
The 39.89–376.82 μm range of grain sizes measured in this study also
indicates a variable flow stress condition in the study area.

The final steady state product of any incremental dynamic de-
formation is preserved in thin sections. Thus, this measurement of flow
stress gives an idea about the final products only, and not the whole
dynamic deformation procedure. The steady state recrystallised grain
sizes increase presumably by later deformations, otherwise the mea-
surement will underestimate the original value (Stipp and Tullis, 2003).
To overcome this problem, Twiss (1977) points out that the re-
crystallised grain sizes can be preserved by three mechanisms, one of
which is the constant tectonic plate-induced stress accompanied by
slow cooling rate. We consider such a condition to prevail in the study
region since the MBT activated (e.g., Burbank et al., 2003). Hence,
Twiss' idea would apply in the present study. Stipp et al. (2010)'s pie-
zometer (Eqns. (4) and (5) in Section 3.4) gives a satisfactory range of
deformation temperature for the SGR range. But for high temperature
ranges like the GBM, it underestimates the flow stress magnitude,
which can be considered as the minimum stress estimate for these
zones. Although numerous grains below the measured range were
found, it was difficult to measure their areas properly for their sub-
microscopic sizes. The numerous small BLG recrystallised grains pre-
sent in the sample were not measured. From these points of views, the

flow stress measured for the SGR recrystallisation deformation appears
to be most reliable and is adopted in this study.

5.5. Strain rate estimation

The grain sizes related to the transition zones amongst the BLG, the
SGR and the GBM domains were empirically given by Stipp et al.
(2010). Related temperature values can be found from Passchier and
Trouw (2005). Using the experimentally derived flow stress data, the
strain rate values were calculated for the SGR recrystallisation zone.

In this study, the flow stress magnitudes calculated from the equa-
tions of Twiss (1977) and Stipp and Tullis (2003) (eqns. (4) and (5) in
Section 3.4) yield strain rates 10−15to 10−16 s−1. In general, the strain
rates in natural shear zones range 10−13-10−15 s−1 (Pfiffner and
Ramsay, 1982; Ragan, 2009; review in Fagereng and Biggs, 2019).
Strain rate in collisional orogens range 10−12 to 10−18 s−1 (Hobbs
et al., 1976 and references therein). A different estimate from GPS
studies provides a range of 10−13 to 10−11 s−1 (review in Lu and Jiang,
2019). Strain rates ~10−15 s−1 or lower matches well with the results
of viscous sheet models for various continents (references in table 1 of
Fagereng and Biggs, 2019). In a tectonically active region, multiple
earthquake cycles, as expected in the collisional orogens such as the
Himalaya, produce an average strain rate of ≤ 10−15 s−1 (Fagereng
and Biggs, 2019). A low strain rate an indicate seismicity (Campbell
et al., 2015; Christophersen et al., 2017). The current study deduces
such a value, however one should note that the deduced strain rate
need not be the present day strain rate along the MBT. GPS-derived
strain rate from the MBT, Garhwal or the Mussourie region in particular
in our study area is sparse. Only Khandelwal et al. (2014) report the
present day annual variation of strain to be ± 4 mm on horizontal
component. Sharma and Lindholm (2012) modelled seismicity in MBT
in the Dehradun region as Poisson earthquake distribution. Monalisa
and Khwja (2005) commented that the MBT in the NW Indian (and also
in Pakistan) is overall seismic. On the other hand, the seismic zonation
map of India shows a high to very high chance of earthquake in the
north part of Uttarakhand state that includes our study area (see Fig. 5
of Verma and Bansal, 2013). More specifically, Fig. 1 of Joshi and
Kumar (2010) shows earthquakes of M < 4 plots at some parts of MBT
in the Uttarakhand state. The GPS data indicates that the present day
strain rate in the Indian subcontinent is < 10−14 s−1 (Ader et al.,
2012). Studying the zoning in garnets from Lesser Himalaya of central
Nepal, Kohn et al. (2004) decipher that the strain rates along the local
faults varies in the geological time range (103–106 years). From quartz
dislocation creep, Francsis (2012) documents 10−12-10−14 s−1 of strain
rate near the Main Central Thrust (MCT) in the Sutlej valley, India.
Hence, the strain rate values generated in this study matches with
previous studies. It can also be inferred that, deformation (or, strain
accumulation) along the MBT for some time period was less than the
deformation (or, strain accumulation) along the MCT. Because of sparse
data, it is implausible to comment whether strain rate varies system-
atically towards the foreland side of the Himalayan collisional orogen.

6. Conclusions

I. Clay minerals like chlinochlore and illite are the evidences of en-
hanced fluid activity in this fault zone. Those minerals are likely to
influence the strength of fault zones and play a key role in con-
trolling the fluid pressure.

II. Brittle deformed quartz as well as all the three dynamically re-
crystallised zones (i.e., the BLG, the SGR and the GBM recrystallised
zones) co-exist the thin-section samples. Hence, the maximum es-
timates of the deformation temperature, from < 300 °C to > 500 °C,
is predicted from the quartz deformation thermometry. During
dynamic recrystallisation, presence of fluid indulges grain boundary
microstructures to be present at temperatures lower than the ex-
pected. Previous works indicate that phyllites are common at the

N. Bose and S. Mukherjee Marine and Petroleum Geology 112 (2020) 104094

11



base of a thrust sheet and deforms at < 500 °C.
III. Laser Raman spectroscopy of carbonaceous materials esti-

mates~356–374 ( ± 50) °C of peak metamorphic temperature.
When compared with the previously obtained results from the
Lesser Himalaya, this study plausibly indicates shear heating at the
base of the MBT thrust sheet.

IV. Recrystallised quartz grain size-based piezometry estimates the flow
stress range ~6–49 MPa indicating a temporally variable range of
tectonic stress conditions through geological time.

V. Based on available data and experimental results, this study esti-
mates a strain rate of the order 10−15 or 10−16 s−1, which is nearly
matching with the strain rate values obtained from other
Himalayan thrusts as well as natural shear zones.
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Appendix 1

The fundamentals of Laser Raman Spectroscopy have been described elsewhere (Beyssac et al., 2002, 2003; Bradley, 2007; Chipara et al., 2011
etc). The Laser Raman Spectroscopy of the carbonaceous materials generates characteristic peaks D1, D2 and G, plotted in a 2D graph the Raman
shift (cm−1) along the X-axis and absolute counts of intensity along the Y-axis. The positions and intensity of these D1, D2 and G peaks represent the
order in the structure of the carbonaceous material and hence provides clue to estimate the peak metamorphic temperature (e.g., Nibourel et al.,
2018).

Appendix 2

Poirier’s (1985) experiments on monophase and polyphaser aggregates give the following equation:

= Ad Q
RT

expm n
(8)

Here : steady-state strain rate, A: pre-exponential factor, : differential flow stress, n: stress exponent, Q: apparent activation energy, R: gas
constant, T : absolute temperature (K), d: grain size, m: grain size exponent.

Experimenting with olivine-pyroxene rich rocks, Tsenn and Carter (1987) present the following formula:

= A Q
RT

exp exp( )
(9)

Here : steady-state strain rate, Q: apparent activation energy, R: gas constant, T : absolute temperature (K), : empirical constant, : differential
flow stress.

Neither eqn (1) nor eqn (2) incorporate various natural parameters (e.g. water fugacity), resulting in oversimplification of the models (Kirby and
Kronenberg, 1987; Kohlstedt et al., 1995; Blenkinsop, 2007).

Appendix 3. Table 1 (Submitted as a Repository File since it is of a slightly different format and is not coming in this place)

.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.marpetgeo.2019.104094.
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