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Shear zones are important phenomena in the Earth’s middle and lower crust and are of great interest to
structural geologists. Models involving rigid boundaries moving parallel to themselves are extended here
to include the case where (i) walls are deformable and (ii) mobile rigid walls approach each other. These
models are combined with Couette and Poiseuille flow to define a broad range of kinematic possibilities.
Deformable wall models lead to smooth transitions from deformed to undeformed materials as well as
with the zone transitions to gentler and more spread out deformation. Mobile walls, on the other hand,
lead to shear zones where shear sense can change along a shear zone boundary.
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1. Introduction

Ductile shear zones at different scales of observa-
tion are intensely studied by structural geologists
because, in addition to theoretical reasons (Fossen
and Cavalcante 2017), these zones define major
plate boundaries and are the loci of seismicity
(Regenauer-Lieb and Yuen 2003). Taking the
simplest case of a shear zone with parallel rigid
boundaries, several kinds of ductile shear have
been recognised: (i) simple shear/Couette flow:
where one or both the boundaries move parallel to
themselves (figure 1a; Ramsay 1980); (ii) pure
shear/cream-cake model: the boundaries move
perpendicular to themselves (figure 1b; Mukherjee
submitted), (iii) general shear/sub-simple shear:
the boundaries move in a way that have both
simple- and pure shear components (figure 1c;
Vannay and Grasemann (2001) in a tectonic

context); (iv) Poiseuille flow: the boundaries of the
shear zone remain static and an along zone pres-
sure difference causes flow along the shear zone
(figure 1d; Beaumont et al. 2001); and (v) com-
bined simple shear and Poiseuille flow: the
boundaries shear past each other along with a
pressure gradient-induced fluid flow inside the zone
(figure 1e; Mukherjee and Koyi 2010). Recently,
these different ductile shear mechanisms have been
discussed and debated vigorously in the context of
extrusion of portions of large, hot orogens, such as
the Greater Himalayan Crystallines (Appendix of
Mukherjee 2013a). At a much smaller scale, flow of
partially molten material through brittle planes
can follow a Poiseuille flow mechanism during the
ductile shear process. Assuming an incompressible
Newtonian rheology for material inside the shear
zone, velocity profiles for simple shear through a
horizontal shear zone are linear, and for all other
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ductile shear types referred above they look
parabolic. For non-Newtonian rheology, Couette
flow profile is non-specific (Hobbs 1972), and for a
purely Poiseuille flow bell-shaped (figure 1f; Tur-
cotte and Schubert 2014).
Besides, these common ductile shear patterns,

Mandal et al. (2002) analogue modelled flow kine-
matics for tapering ductile shear zones with rigid
walls (figure 1h). Mukherjee et al. (2012) mechan-
ically modelled ductile extrusion through a shear
zone that converges at depth (figure 1i). Mukherjee
and Biswas (2014, 2015) analytically modelled
simple shear flow profile through circular horizon-
tal shear zones (figure 1j). Mulchrone and
Mukherjee (2016) investigated the simple shear
with or without Poiseuille flow for slipping
boundary cases (figure 1g).

The possibility of shear zones with deformable or
mobile boundaries has been recognised for some
time (Bailey et al. 2004 and references therein) but
their kinematic details are not well known. For
example, Lisle (2014) analysed the kinematics of
ductile deformation assuming the rigid boundaries.
Flattening/pure shear of a zone with deformable
walls was analysed only by Mandal et al. (2001).
Their kinematic analysis involves a parameter that
defines the competency contrast between the shear
zone rock and its wall rock. Ductile sheared mig-
matites can be characterised by leucosome layers
defining the primary shear planes near which
alternate layers of leucosomes and melanosomes
swerve defining S-fabrics (Mukherjee 2010). The
occurrence of leucosome layers along C-planes
indicates the syntectonic/syn-shear migmatisation

Figure 1. Ductile shear kinematics. Parallel boundary cases: (a) Simple shear; (b) Pure shear; (c) General shear, (d) Poiseuille
flow of a Newtonian fluid; (e) Combined simple shear and Poiseuille flow; (f) Poiseuille flow of a non-Newtonian fluid. Non-
parallel boundary cases: (g) Slipping boundary; (h) Simple shear with tapering boundaries; (i) Jeffery Hamel flow of Newtonian
fluid. (j) Simple shear within a circular zone. Refer to section 1: Introduction.
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(Marchildon and Brown 2003). While undergoing
migmatisation, the leucosome was in a fluid stage.
We, therefore, interpret the common observations
that such C-planes are not perfectly planar
(figure 2a, b), as an indication of internal ductile
deformation of the soft fluid layer. Lloyd et al.
(1992) reported the deformed shear zone margins at
the grain scale from mylonites in Scotland. Zhang
et al. (2012) document the deformed footwall of a
shear zone from Yiwulushan (China), both having
similar kinematic indicators. Roy Choudhury et al.
(2016) documented the deformation in the footwall
of a mylonitised shear zone (Rajasthan, India).
It will be important not to compare the present

model with cases where the shear zone boundary
deformed after the ductile deformation e.g., a
brittle deformed margin in a metamorphic core
complex (Davis 1983).
Shear zone boundaries act rigidly when the ratio

of viscosity between the shear zone and the sur-
rounding rocks is � 10-7 (Mancktelow 2008). How-
ever, inside such rigid ‘‘� � �boundaries, the softer
rock would produce primary shear planes parallel to
the boundaries of the shear zones’’ (Passchier and
Trouw 2005). Note that we do not mean those C-
planes to act as shear zone boundaries in this paper.
Such C-planes to are locally found to be warped

(Mukherjee 2013b). In phyllites, the ratio of
viscosity between mica-poor and mica-rich layers
ranges 1–2 (Bayly 1970). Except for a single esti-

mate of viscosity (1021–1022 Pa s) for a feldspar-rich
rock at high temperatures (Rybacki et al. 2002),
viscosity magnitudes of ductile deforming micas,
quartz and feldspar are largely unknown. In the
ductile regime, below 8–15 km depth, there is no
guarantee that the shear zone material deforms in a
ductile manner while simultaneously the surround-
ing rocks behave rigidly.
Mica-rich layers defining narrow shear zones

inside a quartzofeldspathic matrix are common in
many rock types (e.g., Mukherjee 2013b), where
the shear zone boundaries are defined by preferred
alignment of micas that are recognised also as C- or
primary shear planes (Passchier and Trouw 2005).
We presently neither have viscosity magnitudes
nor ratios of such micas and quartzofeldspathic
minerals to compare whether theoretically such
mica layers can act rigidly during the shear. A
common observation, however, is that such mica
layers are not always perfectly straight in meso-
(figure 2a–d) and micro-scales (figure 3a–d), pos-
sibly indicating that mica layers acted as deform-
able boundaries of such shear zones. A similar
conclusion can be drawn from ductile shear zones
recognised on mega-scales using the remote sensing
images (Pour and Hashim 2016). C-planes are
readily recognised based on sharp termination/
swerving of S-fabrics and are clearly curving in
exposures and therefore must also be curvi-planar
in 3D.
Note that at smaller scales step-overs (of mica

fish trails denoting the mylonitic foliation/C-plane:
Lister and Snoke 1984) and possibly intrafolial
folded C-planes indicate ductile shear of the C-
plane themselves. Thus, there is a need to extend
the kinematic theory of ductile shear zones to
include the case of deformable and mobile bound-
aries in structural geology.
All analogue and most numerical models of shear

zones in structural geology and tectonics tend to
consider the rigid boundaries. Curviplanar margins
of shear zones were implicitly presumed to be pre-
deformational. Curved primary ductile shear
planes in meso-scales (Coward 1976) and in hand
specimens (Gapais et al. 1987) are well known.
Hyperbolic- and linear flow paths for pure and
simple shear zones (Schlichting 1960) have also
been well established. However, the velocity pro-
les for shear zones with deformable boundaries
have not been explored.

Figure 2. Ductile shear zones in meso-scale, with non-planar
C-plane. Reproduced from figures 1.4, 1.5, 1.49 and 2.7,
respectively, of Mukherjee and Biswas (2014). Blue full arrow:
curved C-plane. (a, b) S-fabric defined by thicker leucosome
and thinner and close-spaced melanosome layers C-plane
traces white line. Top-to-S (top-to-right) shear. Greater
Himalayan Crystallines, Sutlej river section, Himachal Pra-
desh state, India. (c) A delta structure of quartz clast. Top-to-
S (top-to-left up) sheared. Bhagirathi section of Greater
Himalayan Crystallines, India. (d) A train of intrafolial fold
(Mukherjee and Biswas 2015) bound by C-planes. Top-to-NE
down (top-to-left down) sheared. Near Karcham, Himachal
Pradesh, Sutlej river section, Greater Himalayan Crystallines,
India.

J. Earth Syst. Sci.         (2019) 128 218 Page 3 of 11   218 



This work investigates the kinematics of ductile
shear zones using relatively simple mathematical
models that consider the case of (i) deformable
walls and Couette flow, (ii) deformable walls and
Poiseuille flow, (iii) mobile walls and Couette flow
and finally (iv) mobile walls and Poiseuille flow.
Linear stability analyses for Newtonian (Gkains

and Kumar 2006) and non-Newtonian fluid flow
(Roberts and Kumar 2006) through deformable
tube/media have already been performed in fluid
mechanics, but its geological implications and the
relevant velocity profile studies have not been
explored so far.

2. Mathematical models

2.1 Introduction

Two classes of mathematical models are introduced
for shear zones at any scale with deforming walls

and those with rigid but mobile walls. In each case,
the shear zone may also experience either Couette
or Poiseuille flow or both. The ductile material is
modelled by an incompressible Newtonian rheol-
ogy. Equations are derived for the velocity fields
inside and outside the shear zone, wherever
appropriate. The chosen 1D pipe flow equation
does not explain all of the deformation features in
natural shear zones such as secondary shears. The
models consider active velocity ‘‘u’’ as a function of
the ‘‘y-direction’’, which is perpendicular to the
length of the shear zone. This is because compres-
sion acts along that direction. The models also
consider the movement of shear zone material
along the length of the shear zone.

2.2 Deformable walls

A sketch of the situation considered is shown in
figure 4 where the walls deform synkinematically.

Figure 3. Ductile shear zone within mylonitized gneiss in micro-scale, with non-planar C-plane, all photomicrographs lengths are
0.24 mm. Tso Morari Crystallines, Ladakh, Jammu & Kashmir state, India. Blue full arrows points out non-planar C-plane,
(a) Top-to-left sheared ‘‘muscovite fish’’ (Mukherjee 2011). The quartz layer above the fish is warped. Top-to-SW (top-to-left)
sheared. Cross-polar. Sample location: latitude: 33.230 78.320, longitude: 78.320; *2 km E of Puga. (b) The muscovite fish is
rather irregular-shaped. Top-to-W down (top-to-left down) sheared. Plane polarized light. Location: latitude-33.240, longitude-
78.210. (c) Top-to-W (top-to-right) sheared muscovite fish. Plane polarized light. Location: latitude-33.240, longitude-78.210.
(d) Top-to-SW (top-to-left) sheared muscovite fish. Plane polarized light. Location: latitude-33.240, longitude-78.210.
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The shear zone is the regionbetween the dashed lines
and in the case of Couette flow the upper and lower
walls move parallel to each other as shown
(figure 4(a)). Several ductile shear zones have been
interpreted to have a dominant simple shear com-
ponent (e.g., Lloyd 2004). For this reason, the simple
shear zones have been modelled under various con-
straints over the last few decades (e.g., Ramsay
1980). However, the simple sheared ductile material
must also compress in order to avoid a space con-
servationproblem,whichhas not been consideredby
the previous modellers or in this study. The entire
region is simultaneously subject to a pure shear, as
indicated by the black arrows, which deforms both
the materials outside the walls and inside the shear
zone. The width of the shear zone does not change
over time, which means that the material is pro-
gressively moved into the shear zone. In the case of

Poiseuille flow (figure 4(b)) a pressure gradient is
present inside the shear zone (between the dashed
lines), again the shear zonewidth is constant and the
entire region is subject to pure shear. If the pure
shear did not affect the entire region, e.g., stopped at
the shear zone boundary, then a discontinuitywould
be present and the model would be invalid. It is not
proposed that this description conforms exactly to
actual physical situations; however, it is a reason-
able first-order approximation in some cases. The
models are inherently non-linear and cannot be
readily solved analytically. Here they are solved
numerically usingMathematica to generate velocity
fields and movement patterns.
Along the shear zone pressure gradients are a

requirement for the Poiseuille flow to occur
(Mukherjee and Mulchrone 2013). This gradient
may be due in part to density differences between
the material inside and outside the shear zone, in
particular if the shear zone is inclined with respect
to the horizontal. For example, if the shear zone is
inclined at an angle a and density of the material
inside the shear zone is qc and outside the zone it is
qb then the gradient G ¼ qb � qcð Þ sin a.
Consider a shear zone parallel to the x-axis of

width 2h and let the velocity in the x-direction be u
and that in the y-direction be v. Suppose there is a
pressure gradient acting along the channel such
that dp=dx ¼ �G. Additionally, there are bound-
ary conditions (on the shear zone boundary):
u x; hð Þ ¼ Us and uðx;�hÞ ¼ �Us. Then the gov-
erning equation for the flow the inside the shear
zone is (Turcotte and Schubert 2002, pp. 227–228):

l
d2u

dy2
¼ dp

dx
¼ �G ð1Þ

with the solution:

uðx; yÞ ¼ Us

h
y þG h2 � y2ð Þ

2l
: ð2Þ

However, taking into account the pure shear
ocurring on both inside and outside the shear
zone the full expression for the velocity field is:

u x; yð Þ ¼
_�x þUs

h
y þG h2 � y2ð Þ

2l
; � h� y� h

_�x þ Us; y[ h

_�x � Us; y\� h

8>>><
>>>:

ð3Þ

v x; yð Þ ¼ � _�y; ð4Þ

a

b

2h

2h

x

y

Figure 4. (a) Depiction of mathematical model for deformable
walls and Couette (shear) flow. The shear zone is the region
between the dashed lines and the sense of shear is indicated by
the half arrows. The zone is of total width 2h. Pure shear
affects the whole region and is indicated by the black arrows.
The pure shear is shown such that the extension direction
parallels the long direction of the shear zone. In the more
general situation considered in the text, the pure shear may be
rotated through an angle /. (b) This is identical to the the
situation in (a) except that there is no shearing motion of the
walls and a pressure gradient depicted by the open arrow is
present. The width between the dashed lines in each case is
2h and this does not change as a function of time.
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where _� is the strain rate of the pure shear
component. Positive _� means stretching along the
axis of the shear zone and negative _� implies com-
pression along the axis of the shear zone. These
equations can be solved to determine the position
of any point as a function of time.
The most general case is the one in which the

principal extension direction pure shear component
does not necessarily parallel the long direction of
the shear zone. This can be accommodated by
applying a rotation of / to the pure shear. Fur-
thermore, the above expression can be written
more succinctly in terms of the Heaviside or unit
step function defined as follows:

Uðy � aÞ ¼ 1; y� a

0; y\a

�
ð5Þ

Therefore, the general expressions governing the
position of material particles inside and outside the
shear zone are:

u x; yð Þ ¼ dx

dt

¼ aþUs

h
y þG h2 � y2ð Þ

2l

� �
U y þ hð Þ �U ðy � hÞð Þ

þðaþUsÞU y � hð Þ þ ða�UsÞ 1�U y þ hÞð Þð Þ

2
4

3
5

ð6Þ

v x; yð Þ ¼ dy

dt
¼ 2 _� cos/ sin/ð Þx

þ _� sin2 /� cos2 /
� �

y;
ð7Þ

where

a ¼ _� cos2 /� sin2 /
� �

x þ 2 _� cos/ sin/ð Þx: ð8Þ
The pair of the differential equations above can be
solved for the position of points in the system
studied as a function of time. This is a non-linear
system of equations due to the presence of quad-
ratic terms and also because the Heaviside function
is highly non-linear.

2.3 Mobile walls

An alternative model concerns the case where the
walls are rigid but mobile, i.e., they move towards
or apart from each other. The model is a specific
ideal case where the thickness of the shear zone
varies with progressive deformation and the shear
zone possesses rigid mobile walls. This is the
‘‘cream-cake’’ model described by Jaeger (1969, pp.

140–143) and Ramsay and Lisle (2000, pp.
998–999). In this section, a model is developed,
which combines the cream-cake model and both
Couette and Poiseuille flow.
For Couette flow this simply amounts to con-

sidering different boundary conditions (see
figure 5):

uðx;�hÞ ¼ �Us; � l � x� l

v x;�hð Þ ¼ �V0; � l � x� l:
ð9Þ

By following a similar approach of Jager (1969, pp.
140–143), the velocity field is given by

u x; yð Þ ¼ 3V0x h2 � y2ð Þ
2h3

þ Us

h
y ð10Þ

v x; yð Þ ¼V0y y2 � 3h2ð Þ
2h3

: ð11Þ

It is important to remember that h is a function of
time t due to the boundary condition that the
velocity is V0 at y ¼ h. Therefore h tð Þ ¼ V0t þ h0,
where h0 is the initial shear zone half-width.

a

b

V0

-V0

V0

-V0

2h

2h

x

y

Figure 5. This is a depiction of the cream-cake model
combined with (a) Couette flow and (b) Poiseuille flow. The
grey regions are rigid and are outside the shear zone region
between the dashed line. The rigid walls come together with
speed V0 at y ¼ h and �V0 at y ¼ �h.
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In the case of Poiseuille flow there is a pressure
(p) gradient along the shear zone (Mulchrone and
Mukherjee 2016) given by

dp

dx
¼ �G: ð12Þ

Using this condition along with the form of the
pressure term used by Jaeger (1969, pp. 140–143),
the velocity field is given by

u x; yð Þ ¼ G

2l
þ 3Vox

2h3

� �
h2 � y2
� � ð13Þ

v x; yð Þ ¼V0y y2 � 3h2ð Þ
2h3

ð14Þ

and note that h is a function of time. For shear
zones on much smaller scales, where the Poiseuille
flow component does not exist, the pressure gra-
dient component (G) is taken to be zero.

3. Solutions and implications

3.1 Deformable walls

In the deformable wall model there is a fixed width
zone of active shearing within which Couette and/
or Poiseuille flow occurs. At the same time the pure
shear is also active across the entire region. Dis-
placement fields for four situations were calculated
and are displayed in figures 6 and 7. A general
feature of note across all cases is the presence of a
smooth, curved transition zone between regions
experiencing shear and those regions outside. This
is because the pure shear component tends to move
material into or out of the zone of active shearing.
Curved transition zones are commonly observed in
natural examples (see, e.g., figure 2a and b).
Figure 6(a) is the Couette flow with pure shear

such that the extension is along the length of the
zone of active shearing. This corresponds to a
transpressive regime. The maximum extent of the
material experiencing the Couette flow is 2h as the
kinematics dictates that the material is entering
the shear zone and is subjected to a simple shear.
On the other hand, in figure 6(b) the extension
direction is normal to the direction of the long axis
to the zone of active shearing and corresponds to
transtension. In this case the zone of sheared
material progressively widens the material, which
was previously subjected to Couette flow, is moved
outside the zone of active shearing due to the pure
shear component.

In figure 7(a) pure shear is directed such that the
direction of extension makes an angle of 45� with
the zone of shearing. In this case, the extent of
sheared material widens away from the centre of
the shear zone. This may correspond to natural
examples where shear zones widen as they taper
away along their length (see, e.g., Simpson 1983;
Ingles 1986). The result of Combined Couette and
Poiseuille flow with transpressive pure shear is
illustrated in figure 7(b). Here the smooth curving
boundaries as well as the extrusive nature of the
flow are in evidence. The most intense deformation
is present towards the base of the flow.

3.2 Mobile walls

In these models the cream-cake model is combined
with the Couette and/or Poiseuille flow. In the
well-established cream-cake model, it is assumed
that the walls are rigid but mobile, and the

a

b

Figure 6. (a) Displacement field for deformable walls with
dextral simple shear combined with pure shear with its
direction of extension along the length of the shear zone.
(b) Displacement field for deformable walls with dextral
simple shear combined with pure shear with its extension
direction normal to the shear zone length.
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material between them is behaving in a ductile
manner. Although the walls may simply move
closer to each other by moving perpendicular to the
shear zone length, they may also move in mutually
opposite directions along the length of the shear
zone. Thus, we consider a ‘‘cream-cake’’ model
combined with the standard simple shearing. Fur-
thermore, by allowing a pressure gradient along
with the length of the shear zone, mobile walls,
simple shearing and Poiseuille flow are combined.
The velocity patterns are studied here in terms of
the kinematic vorticity number (Ghosh 1987).
Vorticity patterns are illustrated in figure 8 and
blue hues indicate the sinistral shear whereas yel-
lows and reds indicate the dextral shear. When the
walls are mobile in the absence of either Couette or
Poiseuille flow, then it is the cream-cake model
alone (see figure 8a). In this case the vorticity
distribution is perfectly symmetrical and consists
of alternating quadrants of sinistral and dextral

dominated flow. When the dextral simple shear
flow is combined with the cream-cake model
(figure 8b), then the dextral shear tends to domi-
nate and forms an axisymmetric pattern. The
effect of the Poiseuille flow in combination with
cream-cake flow (figure 8c) is to displace the vor-
ticity pattern of the cream-cake model alone
(compare with figure 8a). In figure 8c the pressure
gradient G is positive resulting in extrusion to the
right. Finally, when all three are combined
(figure 8d) an axisymmetric pattern is displaced
(compare with figure 8b).

4. Model limitations and discussion

The models presented here are approximate to first
order for several reasons. The model of deformable
walls (see figure 4) involves a zone of active
shearing which maintains a constant width and
spatial configuration (i.e., the region between the
dashed lines in figure 4) during its lifetime. This
type of behaviour may be expected if there was a
change in material properties between inside and
outside the zone of active shearing, which is not
incorporated into the simple model here. On the
other hand, the mobile wall model requires a rigid
material outside the actively deforming interior, a
feature rarely if ever observed in nature. Further-
more, new minerals typically crystallise during
shearing (e.g., Price and Cosgrove 1990) and are
likely to modify material properties, whereas con-
stant viscosity is assumed here. Additionally, the
presence of melt in a shear zone can also imply a
switch from Newtonian to non-Newtonian rheology
(Mancktelow 2006). Finally, the volume loss dur-
ing the shear is another natural phenomenon (Ring
1999), which is not considered here.
Many interesting features are present in the

models developed. Having a relatively steady zone
of active shearing combined with a larger-scale
pure shear deformation can result in smooth tran-
sition from high to low strain. If the zone of active
shearing and the direction of pure shear is oblique,
then inentsity of the deformation tends to decease
and widen along the length of the shear zone. These
features are typical of natural shear zones. More
rigorous cross-checking of these features could be
done from natural samples based on the rock
samples collected from them in order to check the
model sensitivity. If an element of the cream-cake
or mobile wall model is a significant factor in the
history of a shear zone then a key indicator is a

a

b

Figure 7. (a) Displacement field for deformable walls with
dextral shear and pure shear with extension direction at 45� to
the shear zone. (b) Displacement field for dextral shear
combined with Poiseuille flow (positive pressure gradient) and
pure shear with extension along the length of the shear zone.
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change of shear sense along the shear zone
boundary (e.g., see, figure 8b). If it operates in
conjunction with a sinistral (dextral) shear flow,
then the shear inside the shear is dominated by
sinistral (dextral) shear senses. However, the
opposing senses are likely and will be axisymmet-
rically opposite to each other.
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