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Abstract
Matching curves to represent diverse fold morphologies is an active research field in structural geology that can have far-
reaching implication in resource studies and in engineering geology. Further, some of the recent literatures show that 2D and 
3D restoration and best fit of folds have been researched actively in petroleum geosciences. The significant advantage of the 
method presented here using cubic Bézier curve is that the profile of a fold could be represented in terms of four “controlling 
points”, which can be re-synthesized in 2D graphical plot using the spreadsheet programme such as Microsoft Excel, Apache 
Open Office Spreadsheet etc. by simply developing a tabular spreadsheet based on the equation of cubic Bézier curve. The 
method is simple and has been tested successfully to synthesize a few fold profiles by changing the values of coordinates of 
the controlling points and on photographs of two natural examples of folds. Bézier curves of different order have been used 
along with multi-paradigm programming/numerical computing software such as MATLAB, mathematical symbolic computa-
tion program: Wolfram Mathematica, and vector graphics designing. However, it is not easy for all learners or researchers to 
rapidly use or develop such programmes. On the other hand, spreadsheets programmes, both commercial and open-source, 
well known to the majority of the population having a general knowledge in computers.
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Introduction

Since fold morphologies can indicate rock rheology (Fletcher 
1979) and bulk shortening (Ghassemi et al. 2010), categori-
zation and analyses of fold shapes constitute important exer-
cises in structural geology (e.g., Hjlle et al. 2013; partial 
review in Mukherjee 2014; also see Gogoi and Mukherjee 
2019). Morphologic representation of structures in terms 
of ideal curves and graphic tools has gained popularity in 
petroleum geology, engineering geology and in modeling 
complicated structures in geology (e.g., Zhong et al. 2004; 

de Cemp 1999). Some of the techniques involve harmonic 
coefficient of the Fourier series (Stabler 1968), power func-
tions (Bastida et al. 1999), quadratic Bézier curves through 
‘Bézier Fold Profiler’ (e.g., Liu et al. 2009a, b), static Hamil-
ton–Jacobi equation (Hjlle et al. 2013), NURB curve (Gogoi 
et al. 2017; Biswas and Mukherjee submitted), cubic Bezier 
curves, conic sections, power functions and super-ellipses in 
FOLD PROFILER, MATLAB (Lisle et al. 2006 and refer-
ences therein) etc. Bézier curves (Bézier 1966, 1967) are 
widely used in Computer-Aided Design (CAD) (De Paor 
1996). Following this trend, the present work utilizes cubic 
Bézier (Bernstein-Bézier) equations to simulate a range of 
fold profiles. Masood and Ejaz (2010) have already elabo-
rated use of such curves in a wide range of graphic applica-
tions. Cubic Bézier curve more appropriately can approxi-
mate shapes in 2D than quadratic Bézier curves (Gueziec 
1996; Chun et al. 2009). Venkataraman (2009) presents 
standard properties of the cubic Bézier equations/curves. 
An alternative technique has been presented in this work 
to synthesize fold profiles using spreadsheet programmes.

To construct the Bézier curve (Bézier 1966, 1967), this 
work first time utilizes a spreadsheet in Microsoft Excel, 
which allows tabular mathematical calculations and plotting 
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of data in different forms of graphs. With slight adjustments 
of coordinates of the ‘controlling points’ of the cubic Bézier 
curves plotted in the Spreadsheet, best-fit curve could be 
traced over a photograph of the fold and imported directly 
into the Graph Plot Area. This curve could be exported in 
raster format or could be recorded by noting the coordinates 
obtained after fitting, which could later be used for re-syn-
thesis of the same fold profile.

The fundamental equation of Bézier curve is (Biswas and 
Lovell 2008; Vince 2010; Janke 2015; Sederberg 2016):

Here, value of parameter (variable) t varies between 0 
and 1. Pi is the location of controlling or handling points, n 
is the degree of curve. A set of (n + 1) numbers of control 
points P0, P1,…,Pn exist for the curve. Bi,nis called the blend-
ing functions, and Bi,n(t) is called the Bernstein polynomials 
function, which can be represented as (Agoston 2005; Vince 
2010):

Here, 
(

n

i

)

 : binomial coefficient, i.e. n!

i!(n−i)!
 . If n = 2, 

B0,2 = (1 – t)2, B1,2 = 2t (1 – t) and B2,2 = t2. Substituting the 
values of B0,2, B1,2 and B2,2, Eq. (1) gives a quadratic Bézier 
equation of second degree. Liu et al. (2009) (a,b) used quad-
ratic Bézier curves in their work to simulate folds:

Here, the points P0, P1 and P2: controlling points. The 
curve is tangent to P1 – P0 and Pn – Pn − 1 at the end points.

A cubic Bézier curve (Fig. 1) may be derived from Eq. (1) 
(Marsh 2005; Agoston 2005; Lisle et al. 2006; Biswas and 
Lovell 2008):

Coordinates correspond to controlling points P0, P1, P2 
and P3. Here, P0 and P3 are (xi,yi): x0, y0, x1, y1, x2, y2 and 
x3, y3, respectively. P0 and P3 are called the beginning- and 
the ending points, and here the other two (P1 and P2) are 
intermediate points that control the shape of the curve (Par-
ent 2012).

Equation (4) can be split into two equations substituting 
coordinates of controlling points (Davies et al. 1986; Vince 
2010):

(1)C(t) =

n
∑

i=0

PiBi,n(t), t ∈ [0, 1].

(2)Bi, n(t) =
(

n

i

)

(1 − t)n−iti, i = 0, 1,… , n.

(3)C(t) = (1 − t)2P0 + 2(1 − t)(t)P1 + t2P2 t ∈ [0, 1].

(4)
C(t) = (1 − t)3P0 + 3(1 − t)2(t)P1 + 3(1 − t)t2P2 + t3P3 t ∈ [0, 1].

(5)X(t) = (1− t)3x0 + 3(1− t)2(t)x1 + 3(1− t)t2x2 + t3x3,

Figure  1 represents a Bézier Curve produced from 
Eqs. (5) and (6) with controlling points Po (x0, y0), P1 (x1, 
y1), P2 (x2, y2) and P3 (x3, y3). The properties of Bernstein 
polynomials (Eq. 2) are fixed for a specified degree (2nd, 
3rd, 4th etc.) of a Bézier Curve. In our case, we deal with 
3rd degree (cubic) Bézier equation (Eq. 4). Variation of 
Bernstein polynomials in Eq. (4) can be plotted as shown 
in Fig. 2 for t ∈ [0, 1].

(6)Y(t) = (1− t)3y0 + 3(1− t)2(t)y1 + 3(1− t)t2y2 + t3y3.

Fig. 1  An example of a cubic Bézier curve produced from plotting of 
X(t) and Y(t) (based on Eqs. 5 and 6) for t ∈ [0, 1] is an the control 
points P0, P1, P2 and P3 with coordinates (x0, y0), (x1, y1), (x2, y2) and 
(x3, y3), respectively

Fig. 2  Variation of Bi,n(t) for t ∈ [0,1] (value of t varies from 0 to 1 as 
shown in Fig. 3)
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Therefore, the shape of the curve can be altered with the 
help of P0 (x0, y0), P1 (x1, y1), P2 (x2, y2) and P3 (x3, y30), 
which are the controlling points of the curve as shown in 
Fig. 1.

Methods

Spreadsheet programmes are more common and easy to use 
as programming/coding is not required for simple arithmeti-
cal calculations and for plotting graphs. Therefore, different 
types of folds are simulated using a cubic Bézier equation 
(Eqs. 5 and 6) with the help of Microsoft Excel spread-
sheet (Repository files). The layout and functions used in 
the spreadsheet have been shown in Fig. 3. The parametric 
variable ‘t’ controls the shape of the curve and its value has 
been increased from 0.00 to 1.00. To plot the curve, a scat-
tered smooth line graph has been selected and columns X(t) 
and Y(t) act as a data source for the graph. The smoothness 
of the curve depends on the degree of fractions used for 
variable ‘t’. We have used two decimal fractions which have 
given a smooth plotting.

Methodology adopted to trace fold profile from photo-
graphs has been discussed in Applications part “Procedure” 
below which two examples of real folds photographs has 
been brought directly to a spreadsheet and best fit curved 
has been drawn over them.

Work examples

The shape of the curve can be changed in several ways. As 
mentioned above, cubic Bézier curve has four controlling 
points, which in Cartesian Coordinates produces eight vari-
ables (xi, yi): (x0, y0) for P0, (x1, y1) for P1, (x2, y2) for P2and 

(x3, y3) for P3. The coordinates (xi, yi) of points P0 and P3 are 
starting and ending points of the curve, respectively. There-
fore if the line joining P0 and P3 is considered as base-line, 
xbase = x3 – x0 (for fixed y0 and y3) determines the horizontal 
separation between the controlling points P0 and P3 which 
affects the inter-limb angle (Fig. 4a, b). Similarly, xtop = x2 
– x1 can be considered as the horizontal distance between 
P1 and P2 which affects the curvature of the limbs. Now by 
changing the value of xbase from 60 to 10, a different set of 
folds has been generated by keeping P1 and P2 separated by 
xtop = 60 by fixing them at (0, 60) and (60, 60) (Fig. 4a) or by 
putting P1 over P2 by giving them same coordinate (30, 60) 
at the middle of the curve (Fig. 4b). In both cases, base-line 
has been shortened gradually but with different curvature of 
the limbs. The folds shown in Fig. 4a are semi-circular arcs 
(when xbase is equal to xtop) to fan fold (when xbase is close to 
10) which are ovoid in shape. When xbase approaches 0, the 
shape curves more and resembles to the pendant or Cassini 
Ovals with a/b = 1 (Karataş 2013). On other hand, when 
xtop = 0 by putting the same coordinate for P1 and P2 at top 
of center of xbase, it is observed that shape of folds trans-
forms from closed parabolic to tight and isoclinal. When 
xbase approaches 0, the fold becomes ptygmatic (Fig. 4b).

On other hand, amplitude (A) of a symmetric fold (as 
shown in Fig. 4a) depends on coordinates of y1 and y2 i.e., 
A = y1 = y3 . Two tests have been conducted in the curve#1 
of Fig. 4a and b in which A (by putting y0 = y3) value is 
reduced gradually from 60 to 10. As shown in Fig. 4c, 
the original curve#1 of Fig. 4a, in which xtop = 60 and by 
decreasing the value of A from 60 to 10, fold shapes varied 
from semi-circular arc to open and gentle fold. Similarly, 
from the curve#1 of Fig. 4b with xtop = 0 produced closed 
parabolic to hyperbolic gentle folds (Fig. 4d).

In Fig. 5, asymmetrical curves has been shown in which 
P0, and P3 are fixed at (0, 0) and (60, 0), respectively, 
along with fixed x1 = 0 and x2 = 60. In Fig. 5a, only the 

Fig. 3  Layout of the Microsoft Excel spreadsheet showing the 
arrangement of variables and functions used for plotting of curves on 
the basis of Eqs.  (5) and (6). Columns A for t ∈ [0,1] , B–E are for 

Bi,n(t), F–M for coordinates of control points P0, P1, P2and P3 and N, 
o for X(t) and Y(t). Final plot is done from columns N and O which is 
X–Y scattered smooth line graph
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value of y2 has been changed from 60 to 10 and as shown 
in Fig. 5b, value of y1 are altered from 60 to 10. For a fixed 
horizontal base-line, by dropping P1 and P2 vertically, left 
slanted and right slanted curves could be generated respec-
tively. This test suggests that asymmetry of these curves 
could be dilated with only one variable such as y1 or y2 
keeping other six variables unchanged. However, several 
other kinds of curves could also be produced by shifting 
these control points.

Another test has been conducted on an isoclinal curve 
which inclination of axial trace increased by shifting the 
P1 and P2 coordinates simultaneously from (10, 60) to (60, 
60) horizontally and then vertically to (60, 10) as shown in 
Fig. 6. In this test, P1 is put over P2 and changed simultane-
ously by giving similar coordinates. It has been observed 

that the axial trace follows the coordinate of the P1 or P2 (as 
both were taken at the same place). Let xc = (x3 – x0)/2 and 
yc = (y3 – y0)/2 be the coordinates of the middle point of con-
trol points P0 and P3, which could easily be identified (which 
is 5, 0 in Fig. 6). Let xa and ya be the coordinates of P1 and 
P2, therefore, the slope of axial trace could be established 
from the equation of the straight line (slope–intercept form): 
y − yc = m(x − xc)

For instance, for the curve-6 in Fig. 6:

m =
ya − yc

xa − xc

.

m = (60 − 0)∕(60 − 5) = 60∕55 = 12∕11 = 1.09.

Fig. 4  Cartesian plot showing different cubic Bézier curves devel-
oped in the Excel spreadsheet: in (a, b) control points P0 and P3 has 
been shifted towards middle point of the curve i.e. xbase has been 
changed by shortened from 60 to 10. But in (a) control points P1 and 
P2 has been kept apart by keeping xtop fixed at 60 and in figure (b) 

both P1 and P2 has been kept same at the middle of the curve with xtop 
fixed at 0. In figures (c, d) the amplitude A has been changed by low-
ering y1 and y2 simultaneously from 60 to 10, but in one case (c) xtop 
and xbase were kept fixed at 60, and (d) P1 and P2 has been kept same 
at the middle of the curve i.e. xtop = 0
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Now, let θ be the angle of inclination of axial trace, i.e. 
� = tan−1m.

Therefore, � = tan−1(1.09) = 47.5◦ . This is the angle of 
inclination of the axial trace of curve-6.

Likewise, θ for other curves could also be determined. 
However, to determine the gradient of an axial trace of the 
folds, P1 and P2 should coincide, as in that case the axial 
trace will intersect through the point of coincidence and, 

therefore, we will get two points with known coordinates to 
determine m and � or the equation.

When P0 and P3 are not in a horizontal line i.e. if y0 ≠ y3 , 
then, xbase = x3 – x0, may not be the separation distance 
between P0 and P3. In such cases, a distance of separation 
(D) between P0 and P3, following standard equation of line 
segment:

e.g. For a curve with P0 and P3 located at (0,5) and 
(15,10), the D =

√

(15)2 + (5)2 = 15.81.

Procedure

An application of this spreadsheet technique for tracing 
and re-synthesis of fold has been displayed in Figs. 7 and 8 
involving the following steps:

Step 1: Click on the Graph in Excel > Go to Chart 
Tool > Click on Format Tab > Go to Size Section and note 
the size of the Graph.
Step 2: Take a photograph of a natural fold in digital for-
mat (in JPEG or any supportable format) and resize it 
inside a frame, which is exactly same as that of the size 
of the Graph noted in step 1. This will help to trace the 
fold without altering the aspect ratio of the photograph. 
We choose Fig. 1.63 of Mukherjee (2015) as an example 
to demonstrate the process of tracing or re-synthesis.
Step 3: Click on the Graph, go to Chart Tool > For-
mat Tab > Shape Styles Section > Shape Fill > Pic-

D =

√

(x3 − x0)
2 + (y3 − y0)

2
,

Fig. 5  Sets of slanted curves of varying inclination of axial trance has plotted by changing the values of a y2 from 60 to 10 and b y1 from 60 to 
10; keeping rest of the coordinates fixed

Fig. 6  11 different inclined isoclinal curves has been produced by 
keeping control points P1 and P2 as same point (xa, ya) which has 
been shifted from (10, 60) to (60, 60) and then from (60, 60) to (60, 
10). It has been found that axial trace of each curve follows (xa, ya). 
P0 and P3 has been kept fixed at (0, 0) and (10, 0), respectively, for 
the test
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Fig. 7  Steps involved in tracing fold profile in Excel spreadsheet 
Graph Plot Area from photographs of real example: a A photo 
(Fig.  1.63 of Mukherjee 2015) of real folds has been imported 
directly as background of Graph Plot Area as given in steps 1 and 2 
of Application section. Points A–B of the highlighted (in green dash-
line) fold profile has been selected to which the control points P0 and 

P3 of the curve will be brought. b By changing the coordinates as 
shown in table inset, points P0 and P3 has been transported to point A 
and B. Now with little adjustments in coordinates of points P1 and P2 
the curve has fitted over the fold profile. c Some of these layers have 
been traced in similar procedure with the help of multiple curves. Red 
dot indicates locations of P0 and P3 of these curves

Fig. 8  Another example of 
tracing by using this technique 
where the entire folded vein has 
been traced out in four segments 
(coordinates given in Table 1). 
Source of the background 
photo is Fig. 1.71 of Mukherjee 
(2015)
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ture > import the fold picture. Remove the background 
colour of Plot Area by clicking on Shape Fill and then 
No Fill. Adjust the Axes with the edges of the Picture.
Step 4: Activate the Gridlines by clicking on Plot 
Area > Chart Tool > Layout Tab > Axes Section > Grid-
lines and chose the suitable gridlines (major or minor).
Step 5: As shown in Fig. 7a, select a fold profile and 
imagine two points A, B in the fold profile (close to the 
inflection points) which will be traced. As the grid lines 
are already activated, now bring up the controlling points 
P0, and P3 near to these points by putting the values of 
x0, y0 and x3, y3(Fig. 7b). To match the curve with the 
fold profile, we will be required to change the values of 
x1, y1 and x2, y2 and bring them up just above the crest 
of the fold. With some adjustments in the values curves 
will fit above the fold. In Fig. 7c some such curves has 
been shown that have been traced over these rock layers. 
Red dot suggests the breaks in curves as some layers have 
developed multiple folds of different hinges and a single 
curve cannot cover the entire profile. Therefore, several 
curves have been used to trace these layers.

Tabulation of data for re-synthesis: In some cases, coor-
dinates of the controlling points are helpful to determine the 
inclination of the axial trace as mentioned in later part of 
Results section “Work examples” above or for re-synthesis 
of the folds. Tabulation of coordinates of a traced curve 
could be useful to meet such aspects. An example of such 
tabulation is shown in Table 1, which is helpful to re-plot a 
curve on a spreadsheet as shown in Fig. 3.

In Fig.  8 tracing of another natural fold taken from 
Fig. 1.71 of Mukherjee (2015) in four segments (1,2, 3 and 
4) has been given. There are four sets of coordinates as listed 
in Table 1 of the control points, which will give these four-
fold segments. It is not possible to trace a non-periodic fold 
with a single cubic Bézier curve. Therefore, it has been con-
sidered in four parts.

Discussions

Advantages of the proposed method

It is not sufficient to describe folds profile by using expres-
sions of sinusoidal waves (sine or cosine), parabolic or 
hyperbolic equations etc. On the other hand, even though 
there are certain limitations in working with the Bézier 
curves, they fit smoothly in most of the fold profiles because 
of the flexible operation. The method mentioned here is 
based on the fundamental equation of Bézier curves, the 
cubic Bézier curve to be specific. The method of synthetic 
folds generated in this way is simple and can be replicated 
on any spreadsheet programmes- both commercial and open-
source. Note that research works dealing with the simplifi-
cation of mathematical analyses do exist in other issues of 
structural geology, such as strain analyses (Chew 2003). The 
present work uses one of the most commonly used software 
Microsoft Excel by determining the coordinates of the con-
trolling points (here P0, P1, P2 and P3) and plotting the val-
ues of X(t) and Y(t) putting the values of controlling points 
in Eqs. (5) and (6) in the Cartesian coordinate system. By 
importing a digital raster image (*.JPEG, *.GIF etc.) into 
the Graph Plot Area of the spreadsheet, a segment of folded 
layer could be traced as discussed in the Application section, 
and further be re-synthesized by simply putting the coordi-
nates of the earlier fold traced in the same spreadsheet.

The specific advantages are (1) easy re-plotting or re-
synthesized of folds either manually or with computer aid, 
and (2) plotting requires minimum data: only coordinates of 
the controlling points—x0, y0, x1, y1, x2, y2, x3 and y3 to re-
synthesize the symmetric and asymmetric folds. Moreover, 
higher-order Bézier curves could be prepared by expanding 
the basic equation and can be plotted with more adjustments 
in the Microsoft Excel sheet. It will help to fit the curves 
more effectively over fold trains and segmented tracing (as 
shown in Fig. 8) will not be required.

Table 1  Cartesian coordinates of controlling points P0, P1, P2 and P3 of four fold segments plotted in the Fig. 8

Sl. no Photo source Curve no Coordinates of controlling points Remark

P0 (starting) P1 (intermediate) P2 (intermedi-
ate)

P3 (ending)

x0 y0 x1 y1 x2 y2 x3 y3

1 Figure 1.71 of Mukherjee (2015) #1 0 31 17 7 21 15 13.5 25 Total 4 seg-
ments, Fig. 82 #2 13.5 25 4.5 35 16 38 17 38

3 #3 17 38 28 32 24 26 35 35
4 #4 35 35 55 49 60 41 60 43
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Limitations of the proposed method

Since circular arcs cannot be represented by cubic Bézier 
curves perfectly (Riskus 2006), the present approach cannot 
give a 100% fit for circular fold profiles. Folds in meso- and 
micro-scales can have geometries with extrados not match-
ing with its intrados, which are commonly found from 
deformed migmatites (Mukherjee and Koyi2010). In such a 
case, none of the existing methods, Bézier and NURB, can 
uniquely represent the fold profile. Super- and sub-ellipses 
are to be investigated as the next step to simulate such fold 
profiles. Folds with straight limbs and sharp hinges (kink 
folds) are not attempted in this study. Shao and Zhou (1996) 
attempted a piecewise Bézier curve fitting where a complex 
algorithm was used to fit a continuous cubic Bézier Curve 
with irregular curves.

It is also difficult to trace superposed folds or folds with 
multiple hinges from a single curve. Instead of relying on 
a single curve, a multi-hinged curve could be manipulated 
in segments and later joined them digitally. Two or more 
Bezier curved joined in a series constitutes composite Bézier 
curves, As in Fig. 8, the curve is actually four curvilinear 
segments, each being a cubic Bézier curve. They replicate a 
train of folds. This has already been successfully attempted 
in the second example in Fig. 8.

Conclusions

This work presents a method of fitting curved to natural folds 
in 2D using cubic Bézier curves with four controlling points 
and by utilizing a spreadsheet programme viz., Microsoft 
Excel. The process is worked out on two field-snaps of folds. 
Handling a spreadsheet will prove easier for the general geo-
scientists over the currently practiced computer programs.
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