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1 INTRODUCTION

Pure shear deformation is one of the end members of the ductile shearing phenomenon in structural geology and
tectonics that work at widely different tectonic domains and from a depth usually exceeding 8 or 15km in the ductile
regime (Passchier and Trouw, 2005). In such a deformation, the two long rigid boundaries/margins of a ductile shear
zone, considered parallel in most of the cases, move toward (or away from) each other perpendicular to their lengths.
Secondary synthetic and antithetic shears in ductile shear zones in meso- and microscales probably indicate a pure
shear component (Mukherjee, 2013). Natural ductile shear zones have been reported to usually have one more defor-
mation component, viz., simple shear/Couette flow (=pure shear of Gere and Goodno, 2012; see Xypolias, 2010 and
Bose et al., 2018 as examples). Besides, pure shear kinematics is one of the ways to explain rifting (Fig. 1A) and nappe
movement/gravitational spreading (Fig. 1B) (e.g., Fossen, 2016).

Analyzing ductile shear in terms of pure and simple shear components have been in practice for more than 100 years in
geoscience (Howarth, 2017). There has also been significant discussion regarding pure shear (and simple shear) in mate-
rial science (Segal, 2002). In particular, velocity at any point in a shear zone, pure, simple, or general, has been presented
in Jaeger (1969). Simple and pure shear, if operating together, is called subsimple or general shear. Understanding kine-
matics of shear zones is of great importance in deciphering plate tectonics, rheology, and seismicity (e.g., Regenauer-Lieb
and Yuen, 2003; Hobbs and Ord, 2014; Mulchrone and Mukherjee, 2016; Fossen and Cavalcante, 2017).

Pure shear mechanism can work on some flowing lavas as well (Manga, 2005). Such shear kinematics has been
worked out from different perspectives in mechanics/rheology works (e.g., Segal, 2002; “Stephan’s squeezing flow”
in Papanastasiou et al., 2000; Malkin and Isayev, 2006). The deformation involves parabolic flow path of fluid particles
(Schlichting, 1960). However, how it would deform straight marker layers was not analyzed properly, even though
pure shear is referred frequently in structural geological texts (e.g., Dennis, 1987; Reitan, 1987; Twiss and Moores, 2007;
Fossen, 2016). The other detail of pure shear of two media has been available. For example, Treagus and Lan (2000)
studied the mode of deformation of square objects within another medium under pure shear.
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FIG. 1 (A) Pure shear-induced rifting. The uprising magma body exerts pure shear on the overlying rock body. (B) Gravitational spreading by
its own exerts pure shear on the spreading mass.

This work elaborates kinematics of pure shear presuming ductile rocks to be a single incompressible Newtonian
viscous fluid. Such a consideration has yielded other first order understanding of ductile shear zones (e.g., Ramsay
and Lisle, 2000; Mukherjee, 2012). Pure shear-dominated ductile shear zones do exist in nature (e.g., Bailey et al,,
2007) where this analysis could approximately apply. However, a natural shear zone with only pure shear and zero
simple shear has not yet been reported to the knowledge of the author.

A. Instruction to the Instructor: The prerequisite knowledge for students here would be elementary calculus. We
are going to do an area-balancing exercise, typically what is done for cross-section balancing (e.g., Lopez-Mir, 2018).
Our aim is to find the equation of the velocity profile for pure shear. Step-wise, present the following materials
to students. Give them sufficient time to solve equations independently.

2 PURE SHEAR KINEMATICS

2.1 One Boundary Stationary and the Other Moves

Consider a rectangle ABCD with a rigid base BC. Side AD is compressed with a constant velocity V. After instant “t,”
AD comes to A’D'. The incompressible Newtonian viscous fluid expels at the two free sides as parabolic profiles P; and
P,. With the chosen coordinates as in Fig. 2A, AA’=V't, therefore area AA'DD' = L-(Vt). Py is represented by:

x=Ay*+By+C 1)
As this parabola passes through the origin (0, 0), therefore C=0 (2)
Or, x=Ay*+By 3)

B. Instruction to the Instructor: Ask students what will be the problem if the origin is chosen differently. Also, one
needs to inform the students that the profile need not be parabolic for other rheology of the fluid.

The origin is chosen in this way to simplify Eq. (1). This does not modify the physical process of deformation. Rather
the representation is simplified. And as it passes through point A'[0, (yo— V)], putting x=0 and y = (yo — Vt) in Eq. (3)
and simplifying:

B=—A(yo— Vi) 4)
Now, the area bound by the line AB (or the Y-axis) and the parabola P;:
(Yo—Vt)
A= J xdx )

0
Putting the expression for “x” from Eq. (3) into Eq. (5) and integrating:
A1 = (yo — V1)?[0.33%A(yyg — V) +0.5%B] (6)

Considering that the area lost by compression [i.e., area AA'DD’=L-(V-t)] would be equally distributed at the two
parabolic sides, that is,

A1 =05LVt (7)

Equating A; from Egs. (6) and (7), and using Eq. (4):
A= -3ViL(yo— V)™ 8)
B=3«VtL(yo— Vt) > )

II. RELATING OBSERVED DEFORMATION TO STRESS AND/OR STRAIN HISTORY
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FIG.2 (A)Pure shear on rectangle ABCD on side AD with A v
a velocity “V.” Side BC places rigidly on the X-axis. Line AD Y
moves to A'D’ after time “t.” Had A'BMN been the only rect-
angle present, line NG would have been deformed as the D(-L, yo)
green parabolic profile. Had ND'CM been the only rectangle H A(0, yo)
present, line NG would have been deformed as the orange 7
parabola. When both the rectangles are present, thatis, when 1y ", _yp N S , _
we consider the rectangle A’'BCD’, Line NG would deform to =L (o= Vi A0, (yo= V)]
the red parabola. Note (QS — QW)= QR. (B) Shear strain for T
the red parabolic profile on point T is ®;. R
""""""""""" Q Tg| 7 7777 Vertex: [0.75L- VI(yo— V-t), 0.5(yo— V-1)]
P2 P1
= X
c-L0) ©|  po,0)
M(-=m, 0)
B
Y
N A
T
(0.0) X
M B
Using Egs. (3), (8), and (9):
x=3+ViLy(yo— Vt) *[1-y(yo— V&) | (10)
Therefore velocity-wise,
Ve=xt"1 =3+ VLy(yo— V)2 [1 —y(yo —Vt)*l} (11)

Writing V, henceforth as x, Eq. (3) can be written as, by writing (y,— Vt)=h,
(y—0.5h)2 = —0.33+L "1V "1, (x - 0.75*LVh;1) (12)
Coordinate of its vertex is deduced (also recall h;=y,— Vt):
{0.75LV(yo —VH, 050y — Vt)} (13)

Note (i) the x-ordinate of the vertex of the parabola as in Eq. (11) represents highest speed. (ii) The vertex is equidistant
from the two walls at every moment.

The parabolic profile that would be produced by the line MN passing through any point M (—m, 0) lying on the
X-axis (Fig. 2A) will be deduced now. If only the rectangle A’'BMN were there (Fig. 2A), the distance “M;” would have

"o 1

been, by replacing “m” in place of “L” in the x-ordinate of Eq. (13),
My =0.75+mV (yo— V)" (14)
If only the rectangle MNDC were there (Fig. 2A), the distance “M,” would have been, by replacing in place of “L” in the
x-ordinate of Eq. (13),
My =0.75+(L—m)V (yo— Vi) " (15)
The resultant of these two parabolic profiles, in this case both the rectangles MNDC and A’'BMN exist side by side and
in contact with each other along the line MN:

AM =M, — M, =0.75%(2m — L)V (yo — V)", if My > M, (16)
AM =M, — M; =0.75+(L—2m)V (yo — V) "}, if My <M, (17)
And, specifically, AM =0, if m =0.5%L (18)

II. RELATING OBSERVED DEFORMATION TO STRESS AND/OR STRAIN HISTORY
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Eq. (18) indicates that, at the middle of the rectangle ABCD, the linear inactive marker simply shrinks yet conti-
nues as a straight line. Egs. (16) and (17) indicate that, as one goes at either margins, AB and CD, one gets para-
bolic markers with increasing tapering, or in other words, with increasing curvature at their vertices. Second,
choosing different values of m (<L), one can constrain the exact parabolic profile passing through the corresponding
point M.

C. Instruction to the Instructor: Instruct the student at this point what the meanings of curvature, strain, shear
strain, and tangential shear strain are.

Curvature of P; is deduced using the standard formula:

3/2 _
p= {1 + (dx/dy)z} (d*x/dy?) ! (19)
In the present case, dx/dy =3+LV (1 - 2*yht_1)ht_2 (20)
And d*x/dy? = —6+LVh; (21)

Using Egs. (20) and (21) in Eq. (19), curvature at the vertex (p,), for which y=0.5k, is given by:
py=—0171L7 V! (22)

This is the highest curvature on the parabola P;.
Shear strain at any point on the P; parabola is studied as follows. As per Fig. 2A, @ is the angular shear strain at
point T. Line TZ is a tangent on the parabola P; drawn at the point T.

Note tan® = Cotd = dx/dy (23)

From Eq. (11),
dx/dy =3+LVh; 2 (1 - 2*yh;l) (24)
Therefore tan® = 3+LVh, 2 (1 — Z*yhfl) (25)

Thus @ and tan® vary with time inside a pure shear zone. The only exception would be the points on the line that
bisects the length of the rectangle (line GH in Fig. 2A), where in fact @ =tan® =0 remains time independent. Note,
at vertex, that is, for y=0.5; in Eq. (25):

¢vertex =0 (26)

This matches with the intuition: at vertex the tangent drawn on the parabola parallels the Y-axis, therefore their angle
becomes zero.
At origin (0, 0), putting y=0 in Eq. (25),

tan Gyt origin = 3+LVh; (27)
And at point A’, putting y=Hh, in Eq. (25),
tan @y 4 = —3+LVh, (28)

The difference in sign in Egs. (27) and (28) indicates opposite ductile shear sense. Although at origin it is top-to-right, at
A' it is top-to-left. The shear sense flips across the vertex of the parabola.

Strain at any point inside the pure shear zone can also be deduced. With respect to the new coordinate system (Fig.
2B) where the X-axis passes through the vertex of the parabola, the equation of the (resultant) parabolic profile can be
written as, because it passes through points N: [0, 0.5%(yo— V-t)] and M[0, —0.5%(yo— V-)]:

x:H[yZ —0.25%(yp— V- )’ (29)
Aty=0,
x=—0.25+H(yo— V- ) (30)

II. RELATING OBSERVED DEFORMATION TO STRESS AND/OR STRAIN HISTORY
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This has to equal AM of either Eq. (16) or Eq. (17), therefore,

H=—4AM(yo—V-t) €]
Putting back H in Eq. (29), the parabola is now given by:
x=AM|1—412(yy—ot) 2 (32)
Therefore in the new coordinate system:
tan®; = dx/dy = —8AM - y(yo — ot) (33)

Putting back the expression of AM from Eq. (16) into Eq. (33):
tan®; = —6%(2m — L)V (yo— V) "y (34)

s

Choose different magnitudes of “m,” “y,” and “t” to get tangential shear strain tan®; (and therefore shear strain &)
at any point inside the pure shear zone. For example, for y=0, that is, for the new X-axis bisecting the pure shear zone
atany instant (i.e., for any “t”), tan®, =0. This is as expected because, at the vertex of the parabolic profiles, shear strain
is zero. Second, for y=0.5%(yo— Vt), and m =0, that is, at point A”:

l/tlr

tan®; =3+L-V - (yo— Vi) > (35)

2.2 Both the Boundaries Move (Fig. 3A)

Consider the boundaries of shear zones move toward each other at velocities V; and V, (V1> V5). Let AD and AB be,
respectively, L and 2y, units long. Points A (0, yo) and B (0, —yp) on the two walls, after time “t,” comes at A’ (0,
Yo— Vit) and B’ (0, Vot — yo), respectively. The vertex of the parabola will be equidistant from these two points. Therefore
its y-ordinate would be —0.5%#(V; — V). Let the x-ordinate of the vertex be p. Thus the complete coordinate is {p, —0.5*-
t(V1— V3)}. Let the equation of this parabola be:

FIG.3 Pureshear onsides AD witha velocity V3and BCwith Vs, A V,
of the rectangle ABCD. After time “t,” A reaches A’ and B to B'. Y
(A) Compression. (B) Extension. @
D
A(0, +yo)
A0, (yo— Vat)]
X
(0] P;
P, Vertex: Y-ordinate: —0.51(V3— V)]
B’ [0, (Vat=yo)]
¢ n B(0, -o)
Vy
A[0, (yo+ V3t)]
b A(0, +¥o)
P4
0 X
Py
c B(0, —yo)

{/l B'[0, (=Vat-yg)]

Vs
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Y?+Dx+Ey+F=0 (36)

D. Instruction to the Instructor: At this point onward, ask the students to proceed themselves. It will be very
interesting to see whether they can deduce the velocity profiles!

Putting A" and B’ coordinates in Eq. (36), E and F are solved:

E=(V, - Vo)t (37)
F=(yo—Vit)(Vat —yo) (38)
Putting them back in Eq. (36):
V+D-x+ (Vi = Vo)ty+ (yo — Vit)(Vat — o) =0 (39)
Area bound by this parabola with the Y-axis between the coordinates {0, (o — V1f)} and {0, (Vat —yo)}:
(yo—V11)
A= xdx (40)
(Vat=yo)
Putting x in Eq. (40) from Eq. (39), and integrating:
Ay =D 2syo — t(Vy + V2)} [0.33*{(\/2 — VPR 42y — Vit)(Vat — yo)} —0.5%H(Vy + vz)] (41)

Area lost due to compression equals area gained at the two sides, being an incompressible fluid under consideration
inside the rectangle ABCD. Therefore,

A1 = 05*(V1 + Vz)tL (42)
Eliminating A; from Egs. (41) and (42):
D =211 (Vy + Vo) {2y — H(V: + V) } [0.33*{(V2 — V)22 +2(yo — Vit)(Vat — yo)} 054 (Vi +Va)|  (43)

Eliminating D from Egs. (41) and (43), one gets the resultant parabolic flow profile P;. In this case also, the vertex will
mark the point of minimum shear strain and maximum curvature.

E. Instruction to the Instructor: By now, one can easily locate students in the classroom who correctly solved and
enjoyed taking the challenge. Refer to that small group of students, the two papers, Mukherjee (2012,2014), and ask them
to find out the velocity profile for general shear deformation. This would be a step forward from the title of this article.

3 DISCUSSIONS

Wittenberg (2003) briefly presented shear strain for a sphere pure sheared to an ellipsoid. But unlike the present
work, point-to-point variation of shear strain for a pure sheared object, here a rectangle, was not presented by any.
Allmendinger et al. (2012) and Zeb et al. (2013) presented kinematic analyses of pure shear zones that especially track
fluid particles over time. They did not however provide equations of parabolic velocity profiles produced by such an
ideal deformation. Eq. (12) of flow profile for one of the boundary’s movement (Case 2A) matches with that presented
straightway by Spurk (1999). However, Spurk (1999) did not give the deduction, and to the author’s knowledge, it does
not exist in any publications. The second deduction of profile for both the boundaries’ movement can be obtained by
eliminating “D” from Egs. (41) and (43). This also does not exist in any previous publications. Note the parabolic flow
profile also develops for Poiseuille flow of Newtonian viscous fluid through parallel-sided boundaries. However, in
that case, the profile becomes time-independent (Mukherjee, 2012). This is unlike pure shear where the curvature at
every moment at the vertex is a (cubic) function of time (such as Eq. 22). Changing shear strain with time inside shear
zones is also known in real cases (e.g., Grasemann et al., 1999). Note that, by putting V, =0 in Egs. (41) and (43) and
then eliminating “D,” one would not simply go back to Eq. (12): the case of movement of a single boundary. This is
because, in the two cases, the origins (0, 0) were selected differently.

In one case, the sides of the rectangular pure sheared rectangle is completely rigid and precludes flow materials
outward due to the presence of some massive geological body; Egs. (7) and (42) alter respectively to:

II. RELATING OBSERVED DEFORMATION TO STRESS AND/OR STRAIN HISTORY
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A =LVt (44)
Ay =(Vi+ Vo)tL (45)

Accordingly the flow profiles (Egs. 12, 41, and 43 after elimination of “D”), shear strain pattern (Eq. 25) inside the pure
shear zone, and the curvature of the profile (Eq. 22) would change.
In case both the boundaries move with equal velocity U (=V;=V>), Egs. (41) and (43) simplify, respectively to:

Y +D-x—(yo— Ut =0 (46)
D=—4L" (yo - tU)’ 47)

Eliminating “D” from Egs. (46) and (47), the parabolic profile becomes:
v — 4L (yo— tU)* - x — (yo — tU)* =0 (48)

The Y-ordinate of its vertex is “1o.” This means that the vertex is not only equidistant temporally from both the moving
walls but maintains its initial position. This is unlike the situations when (i) one of the walls is static (Case 2A) and
(ii) both the walls move with unequal velocities (V; # V; situation in Case 2B). Note Eq. (48) cannot be compared
straightway with Eq. (12) by merely considering 2U =V, because the coordinate systems of Cases 2A and 2B differ.
In case the boundaries move away from each other in a pure shear manner, the coordinates of the points A’, B’ etc.
should be obtained first (Fig. 3B) and then proceed in the same way to deduce flow profiles. In this case, the convex
sides of the two parabolic margins are toward the center of the rectangle.

The deductions presented here work obviously under several presumptions. Because rocks have quite low compress-
ibility (2.55%10 "' Pa~"' for sediments: Turgut, 1997), considering it to be incompressible looks justified. However, in a bit
different context, layer perpendicular compression of sediments in basins due to their own weights (“gravitational com-
paction”: Wangen, 2010) can reduce volume (Mukherjee and Kumar, in press). Shear zone boundaries would be rigid if
the ratio of viscosity between the shear zone and its surroundings is <10~’. Melting and other fluid activities during
ductile shearing can significantly reduce volume of the shear zones. Ultra-high-pressure rocks under dissolution-
precipitation creep and granular flow at low stress act as Newtonian fluids (review in Mukherjee, 2012; Mukherjee
and Mulchrone, 2012). Likewise, natural granitic melt can be a Newtonian fluid, but this is not necessarily true for
all kinds of crustal melts. Natural shear zones can obviously contain more than one lithology. Viscous dissipation might
elevate temperature that might modify the parabolic profile. Unlike constant V' considered in Case 2A and constant V;
and V; in Case 2B, the movement rate of boundaries of shear zones can vary in nature (e.g., Janecke et al., 2010).

This work deduces kinematics of a horizontal pure shear zone (Figs. 2A and 3A). Horizontal (Mies, 1991) and sub-
horizontal ductile shear zones (Lister and Davis, 1989) have been referred by many from nature. In reality, shear zones
can dip (Jégouzo, 1980), and in that case, the effect of gravity needs to be considered in the kinematic analysis.

Elliptical symmetric quartz blebs, symmetric pressure shadows and fringes indicate pure shear, although asymmet-
ric fabrics can also be produced by simple shear (Mukherjee, 2017 and references therein). Myrmekitization-induced
augen in ductile shear zones indicate volume loss (e.g., Menegon et al., 2008), therefore the presented model for con-
stant area (and volume) deformation would not work there. Also, augens can indicate heterogeneous deformation
(Dell’Angello and Tullis, 1989) that would restrict the use of the presented model.
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