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Much of the time, geological data are not accurately known. Instead, geoscientists work with a range of
possible data. These data can have a range since they can vary spatially and temporally. In this context,
we demonstrate how a well-established structural geological model of velocity proBle of ductile simple
shear, expressed as an equation, can be furthered by fuzzy set concept. The implementation of fuzzy set
concepts in terms of fuzziBcation in (geo)scientiBc models takes into consideration the uncertainties of
magnitudes of the parameters that deBne the model. The present study shows that the fuzziBed velocity
proBle of a ductile simple shear zone with parallel boundaries is eAectively independent of the dip of the
shear zone. This article demonstrates how models of (structural) geological processes can be modelled by
fuzzy set approach capable of incorporating a range of magnitudes of parameters.
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1. Introduction

Geoscience explains natural phenomena commonly
in the abiotic realm (sometimes with biotic inputs)
on the Earth and other planets and satellites. For
modelling purpose, natural processes such as rock
deformation are represented simplistically in terms
of equations (e.g., Mukherjee 2019). However, the
accurate values of parameters in themodel are rarely
known to a geoscientist. Rather the known infor-
mation is a range of magnitudes. One example of
such geological data is the age of rock, which is
expressed as numbers x ± y. Working with a model
equation and datasets will require the concept of
fuzzy set theory (e.g., Kahraman et al. 2016). In
particular, fuzzy set approach has been used

increasingly in earthquake hazard studies (e.g., Deyi
and Ichikawa 1989), fault slip analysis (e.g., Shan
et al. 2004), landslide studies (Pradhan 2011), high-
resolution mapping (e.g., Bemis et al. 2014), reser-
voir characterization (e.g., Guo et al. 2014), ground
subsidence (e.g., Park et al. 2014), structural com-
plexities at sub-surface (e.g., Justman et al. 2020),
etc. This article demonstrates how fuzzy set concept
can be introduced on an existing structural geolog-
ical model. Following the same approach, a range of
other deformation models can also be fuzziBed. The
article demonstrates the use of fuzzy set concept in
structural geology. The only other interdisciplinary
paper in this line is by Justman et al. (2020), but that
lacks fuzziBcation of an actual structural geological
equation.
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2. Simple shear model

A ‘velocity proBle’ across a shear zone represents
the velocity of its particles (e.g., Schlichting and
Gersten 1999 in engineering, Mukherjee and Koyi
2010 in structural geology). Mukherjee (2012)
presented a general equation (1) of velocity proBle
(Bgure 1) of simple shear of an inclined shear zone
with very long rigid parallel boundaries full of
Newtonian viscous Cuid:

Uz ¼ 0:5l�1½oP=oz � dg sin h� y2 � y20
� �

þ 0:5fyy�1
0 U1 þ U2ð Þ þ U1 � U2ð Þg:

ð1Þ

Here Uz is the laminar Cow velocity of a
Newtonian viscous Cuid at (0, y) coordinate (see
Bgure 1 for co-ordinate system), l is the dynamic
viscosity of the Cuid, qP/qz is the pressure gradient
that tends to Cow the Cuid along up-dip direction
(positive direction of the z-axis) of the shear zone,
d is the density of the Cuid, g is the acceleration due
to gravity, h is the dip of the shear zone, U1 is the
shear velocity of the upper boundary along up-dip
direction, U2 is that of the lower boundary acting
along the down-dip direction, and 2y0 is the
orthogonal thickness of the shear zone. Note y0 C

y C –y0. Uz is deBned as per the coordinate system
in Bgure 1. Here the Cow is considered to be two-
dimensional, i.e., no Cow component exists

perpendicular to the plane on which the Cow is
deBned.

3. Introduction to fuzzy sets

3.1 General points

The uncertain bounds may be modelled using
probabilistic methods, interval computations and
fuzzy set theory. In probabilistic approach, the
uncertain parameters are taken as random vari-
ables. On the other hand, in interval and fuzzy
computations, the parameters are considered as
closed intervals of real line and fuzzy numbers,
respectively.
In general, a classical or crisp set S can be

deBned as a collection of objects or elements of the
universal set X : The crisp set assigns a value of
either 1 or 0 to each individual object. Whereas,
fuzzy set is a class of objects with a grade of
membership (characteristic) function, which
assigns to each object a grade of membership

range between 0 and 1: As such a fuzzy set ~A may
be deBned (Zadeh 1965; Zimmerman 2011;
Chakraverty et al. 2016) as

~A ¼ fðx; l ~AðxÞÞ : x 2 X ; l ~AðxÞ 2 ½0; 1�g; ð2Þ

Figure 1. An inclined simple shear zone. Velocity proBle 1 is a product of gravity-induced Cow (curve 2), simple shear at margins
(line 4) and pressure gradient induced Cow (curve 3). Curve 5 is a product of resultant Cows represented by curves 2 and 3.
V: vertex of parabolic proBle 1, P: pivot or neutral point of curve 1. Reproduced from Bgure 1(b) of Mukherjee (2012).
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where l ~AðxÞ is the membership function of the

fuzzy set and it is piecewise continuous. A convex
and normalized fuzzy set deBned on the real line R,
whose membership function is piecewise continu-
ous is called a fuzzy number. There are different
types of fuzzy numbers namely Triangular Fuzzy
Number (TFN), Exponential Fuzzy Number
(EFN), Quadratic Fuzzy Number (QFN), and
Gaussian Fuzzy Number (GFN) based on the def-
inition of the membership function. The involved
uncertainty of the considered problems in the tar-
geted work is considered as fuzzy and the fuzzy
numbers are considered as TFN.

3.2 Triangular fuzzy number (TFN)

A TFN ~A ¼ ða1; a2; a3Þ is a convex normalized

fuzzy set ~A of the real line R such that there exist
unique x0 2 R with l ~Aðx0Þ ¼ 1 (x0 is called the

mean value of ~A) and the membership function of a
TFN is deBned as (Bgure 2):

l ~AðxÞ ¼

0; x� a1

x � a1
a2 � a1

; a1 � x� a2

a3 � x

a3 � a2
; a2 � x� a3

0; x� a3

8
>>>>>><

>>>>>>:

where a2 6¼ a3 and a2 6¼ a1:

a-cut: TFN ~A ¼ ða1; a2; a3Þ may be represented
in an interval form by using a-cut:

~A ¼ AðaÞ; �AðaÞ
� �

¼ a1 þ ða2 � a1Þa; a3 � ða3 � a2Þa½ �; a 2 ½0; 1�:
ð3Þ

3.3 Fuzzy arithmetic

For two arbitrary fuzzy numbers ~A1 ¼
A1ðaÞ; �A1ðaÞ
� �

and ~A2 ¼ A2ðaÞ; �A2ðaÞ
� �

, equality

means that A1ðaÞ ¼ A2ðaÞ and �A1ðaÞ ¼ �A2ðaÞ. The
arithmetic operations for addition, subtraction,
multiplication, and division of fuzzy numbers are
deBned below:

i) ~A1 þ ~A2 ¼ A1ðaÞ þ A2ðaÞ; �A1ðaÞ þ �A2ðaÞ
� �

; ð4Þ

ii) ~A1 � ~A2 ¼ A1ðaÞ � �A2ðaÞ; �A1ðaÞ � A2ðaÞ
� �

; ð5Þ

iii) k ~A ¼
kAðaÞ; k �AðaÞ
� �

; k� 0

k �AðaÞ; kAðaÞ
� �

; k\0

(

ð6Þ

iv) ~A1

~A2

¼ min
A1ðaÞ
A2ðaÞ

;
A1ðaÞ
�A2ðaÞ

;
�A1ðaÞ
A2ðaÞ

;
�A1ðaÞ
�A2ðaÞ

� �
;

�

max
A1ðaÞ
A2ðaÞ

;
A1ðaÞ
�A2ðaÞ

;
�A1ðaÞ
A2ðaÞ

;
�A1ðaÞ
�A2ðaÞ

� �	
: ð7Þ

where A2ðaÞ; �A2ðaÞ 6¼ 0:

4. Structural geological context

In geology, exact values of the six parameters l, qP/
qz, d,h,Ui (i=1, 2) in equation (1) arenot known that
prevailed in the past for any particular simple shear
zone. Second, these parameters might have varied
over the geological time period. For example,
exhuming shear zone material can cool down and
increase its l and d. Depending on the tectonic vari-
ation, qP/qz Ui can vary temporally (Ganguly et al.
2000). Shear zones can rotate (Kern andWenk 1983)
and therefore h can vary. The third uncertainty is
that these parameters can be depth-dependent.
Density variation with depth can be taken care by
taking d= ‘representative density’ (Mukherjee 2018)
in equation (1). In few cases, depth-wise variation of
parameters cannot be addressed by fuzzifying equa-
tion (1). Such a situation can arise if we consider:
(i) variation of h with depth in case of listric shear
zone in orogens (e.g., Xypolias and Kokkalas 2006);
(ii) depth-wise variation of l connoting presumably a
non-Newtonian behaviour of the Cuid; (iii) vertical
depth-dependent qP/qz; and (iv) variation of shear
velocities Ui along the boundaries of the shear zones
(e.g., stretching faults, Means 1989). In these cases,
new equation(s) Brst of all need to be derived.
We consider here a simple case of time and

depth-independent parameters (so that equationFigure 2. Membership function of a TFN.
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(1) holds) but with their magnitudes not known
accurately. In such a case, equation (1) requires
fuzziBcation. A fuzziBed equation has the capa-
bility to incorporate the range of parameters that
the crisp-equation (1) cannot. For a general
consideration (i.e., not speciBc to any particular
shear zone), we choose geologically realistic ran-
ges of magnitudes for the six parameters
(table 1).
The parameters are used as the Triangular

Fuzzy Numbers (TFNs; Bgure 3a–c). The TFNs
were plugged into equation (13). To keep the
calculation simple, variables ki (i = 1 to 6) are
considered. Equation (14) was solved using TFN
arithmetic and the values of the variables ki were
put back into equation (24). Note that the Bnal
equation (25) is a function of ‘y’ so the outputs
considered y = 0 and 2 9 105 (Bgure 4a, b). A
3-D plot was made using ‘y’ as a variable
(Bgure 4c).
For the sake of simplicity, we consider

k1 ¼ 0:5 l�1[ 0; since l[ 0: ð8Þ

k3 ¼ g sin h[ 0; for the interval h 2 0;p=2½ �: ð9Þ

Obviously k3 = 0 for h = 0, i.e., a horizontal
shear zone. As per equation (1), the velocity proBle
is independent to the density of the material.

k4 ¼ y2 � y20
� �

� 0 ð10Þ

k5 ¼ 0:5\0 ð11Þ

k6 ¼ yy�1
0 [ 0; for y[ 0

and

k6 ¼ yy�1
0 � 0; for y� 0: ð12Þ

Putting ki into equation (1):

Uz ¼ k1 k2 � dk3ð Þk4
þ k5 k6 U1 þU2ð Þ þ U1 � U2ð Þf g:

ð13Þ

Substituting the intervals in equation (13),

Uz ¼ k1k4 200; 30100; 60000½ � � 2:7; 2:8; 2:9½ �k3ð Þ
þ k5fk6ð 3:17E�9; 1:74E�8; 3:17E�8½ �
þ 3:17E�9; 1:74E�8; 3:17E�8½ �Þ
þ 3:17E�9; 1:74E�8; 3:17E�8½ �ð
� 3:17E�9; 1:74E�8; 3:17E�8½ �Þg: ð14Þ

After simplifying,

Uz ¼ k1k4 200; 30100; 60000½ � � 2:7; 2:8; 2:9½ �k3ð Þ
þ k5fk6 6:34E�9; 3:48E�8; 6:34E�8½ �ð Þ
þ �2:85E�8; 0; 2:85E�8½ �ð Þg: ð15Þ

For y C 0 (k6 C 0),

Uz ¼k1k4 200; 30100; 60000½ � � 2:7; 2:8; 2:9½ �k3ð Þ
þ k5 6:34E�9ð Þk6� 2:85E�8ð Þ; 3:48E�8ð Þk6;½f

6:34E�8ð Þk6 þ 2:85E�8Þ�g: ð16Þð g:

Simplifying equation (16),

Uz¼k1k4 200� 2:9k3; 30100�2:8k3; 60000�2:7k3½ �ð Þ
þ 6:34E�9ð Þk6� 2:85E�8ð Þð Þk5; 3:48E�8ð Þk6ð Þk5;½
6:34E�8ð Þk6 þ 2:85E�8ð Þð Þk5�: ð17Þ

Note k1k4 B 0, since k4 B 0. Therefore,

Uz ¼ k1k4 60000� 2:7k3ð Þ; k1k4 30100� 2:8k3ð Þ;½
k1k4 200� 2:9k3ð Þ�
þ 6:34E�9ð Þk6 � 2:85E�8ð Þð Þk5;½
3:48E�8ð Þk6ð Þk5;
6:34E�8ð Þk6 þ 2:85E�8ð Þð Þk5� ð18Þ

Uz ¼ ½k1k4 60000� 2:7k3ð Þ þ 6:34E�9ð Þk6ð
� 2:85E�8ð ÞÞk5; k1k4 30100� 2:8k3ð Þ
þ 3:48E�8ð Þk6ð Þk5; k1k4 200� 2:9k3ð Þ
þ 6:34E�8ð Þk6 þ 2:85E�8ð Þð Þk5�: ð19Þ

Table 1. Chosen parameter ranges for fuzziBcation of equation (1), taken from Himalayan shear zones in Mukherjee and
Mulchrone (2012) and Mukherjee (2013).

Parameters Units TFN fig no.

Viscosity (l) 1018 Pa.s. (i.e., 1019 Poise) None

Pressure gradient (qP/qz) 2–6 Kbar km�1 (i.e., 200–60000 Ba cm�1) 3(c)

Density (d) of shear zone rock 2.7–2.9 g cm�3 3(b)

Dip (h) of shear zone 0�–90� None

Velocity of upper boundary of shear zone (U1) 1–10 mm y�1 (3.17 9 10�9 to 3.17 9 10�8 cm s�1) 3(a)

Velocity of lower boundary of shear zone (U2) 1–10 mm y�1 (3.17 9 10�9 to 3.17 9 10�8 cm s�1) 3(a)
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Figure 3. (a) TFN: X-axis represents the values of ‘U1’ and ‘U2’; Y-axis denotes the membership values. (b) TFN: X-axis
represents the values of ‘d’; Y-axis denotes the membership values. (c) TFN: X-axis represents the value of qP/qz; Y-axis denotes
the membership values.
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Figure 4. (a) TFN: X-axis represents the value of Uz; Y-axis denotes the membership values. (b) TFN: For y = 200000, X-axis
represents Uz; Y-axis denotes the membership values. (c) TFN: Uz that has been calculated with the variable y. X-axis represents
the value of Uz, Y-axis denotes y (0–300000), Z-axis: membership values.
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Inserting the values of the assumed variables in
equation (19):

Uz ¼ ½0:5l�1 y2 � y20
� �

60000� 2:7g sinhð Þ

þ 0:5 6:34E�9ð Þyy�1
0 � 2:85E�8ð Þ

� �
;

0:5l�1 y2 � y20
� �

30100� 2:8g sinhð Þ

þ 0:5 3:48E�8ð Þyy�1
0

� �
;0:5l�1 y2 � y20

� �

� 200� 2:9g sinhð Þ þ 0:5 6:34E�8ð Þyy�1
0

�

þ 2:85E�8ð ÞÞ�:

ð20Þ

Similarly, for y\ 0 (k6\ 0):

Uz ¼ k1k4 200; 30100; 60000½ � � 2:7; 2:8; 2:9½ �k3ð Þ
þ k5 6:34E�8ð Þk6 � 2:85E�8ð Þ; 3:48E�8ð Þk6;½f
6:34E�9ð Þk6 þ 2:85E�8ð Þ�g: ð21Þ

Uz ¼k1k4 200�2:9k3; 30100�2:8k3; 60000�2:7k3½ �ð Þ
þ 6:34E�8ð Þk6� 2:85E�8ð Þð Þk5;½
3:48E�8ð Þk6ð Þk5; 6:34E�9ð Þk6ð

þ 2:85E�8ð ÞÞk5�: ð22Þ

We have to quantity k1k4 B 0, because k4 B 0.
Therefore,

Uz ¼ k1k4 60000� 2:7k3ð Þ; k1k4 30100� 2:8k3ð Þ;½
k1k4 200� 2:9k3ð Þ� þ 6:34E�8Þk6ðð½
� 2:85E�8ð ÞÞk5; 3:48E�8ð Þk6ð Þk5;
6:34E�9ð Þk6 þ 2:85E�8ð Þð Þk5�; ð23Þ

Uz ¼ ½k1k4 60000� 2:7k3ð Þ þ 6:34E�8ð Þk6ð
� 2:85E�8ð ÞÞk5; k1k4 30100� 2:8k3ð Þ
þ 3:48E�8ð Þk6ð Þk5; k1k4 200� 2:9k3ð Þ
þ 6:34E�9ð Þk6 þ 2:85E�8ð Þð Þk5�: ð24Þ

Replacing the values of assumed variables in
equation (24),

Uz ¼ ½0:5l�1 y2 � y20
� �

60000� 2:7g sin hð Þ
þ 0:5 6:34E�8ð Þyy�1

0 � 2:85E�8ð Þ
� �

;

0:5l�1 y2 � y20
� �

30100� 2:8g sin hð Þ
þ 0:5 3:48E�8ð Þyy�1

0

� �
;

0:5l�1 y2 � y20
� �

200� 2:9g sin hð Þ
þ 0:5 6:34E�9ð Þyy�1

0 þ 2:85E�8ð Þ
� �

�:

ð25Þ

Figure 4(a) is the TFN plot for equation (25),
taking y = 0. Note that the output plot for y = 0 is
symmetric across the Y-axis, so, X = 0 has the
maximum membership value. Figure 4(b) presents
the TFN plot for equation (25) taking y = 200,000.

We note that the TFN plot shifts to the right side
when we increase the value of y and also shrinks in
width. Figure 4(c) is the 3D TFN plot for equation
(25). For sake of neatness of graph, only a couple of
points have been connected using lines. Note that
with increasing value of ‘y’, the plot shrinks and
shifts to the right side, i.e., the value of Uz

increases. In equation (25), the value of h does
not have a significant eAect on the equation, which
is counter-intuitive.

5. Discussions and conclusions

The variables and parameters appearing in the
geological equations are generally considered as
crisp in most formulations. However, the inherent
errors in observations and measurement method-
ologies can bring uncertainty in these parameters,
transforming them into fuzzy numbers instead of
crisp values. It is a great challenge about how to
deal with variables and parameters of uncertain
value in these problems. In case of uncertainty,
different combinations with interval/fuzzy uncer-
tainty can be considered.
In this work, the aim was to get as close as

possible to a speciBc type of natural ductile simple
shear including the range of possible variations of
the magnitudes of the parameters. To fuzzify the
velocity proBle of simple shear of an inclined shear
zone, TFNs were used in equation (1). If required,
the TFN can later be defuzziBed as well. Since the
uncertainties were taken into consideration, equa-
tion (25) is a better representation of the natural
deformation. Through this exercise, it is under-
stood that the natural possible variation of the
parameters, viz., density of the shear zone rock,
shear velocities at the boundaries and the pressure
gradient together can mask the eAect of variation
of dip of the shear zone in the fuzziBed version of
the velocity proBle.

Uz ¼ 0:5l�1 oP=oz � dg sin h½ � y2 � y20
� �

þ 0:5 yy�1
0 U1 þ U2ð Þ þ U1 � U2ð Þ


 �
:

In equation (25), variation of dip of the shear
zone (h) from 0� to 90� does not alter significantly
the velocity proBle. This is because the other shear
zone-related parameters, viz., density (d) and
viscosity (l) of rocks, pressure gradient (qP/qz)
and the thickness of the shear zone (2�y0) have too
large magnitudes (table 1) and mask the eAect of
variation of h. For example, [qP/qz – dgsinh]
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equals [60000 – 2.7 9 980 9 sin h] in CGS units for
qP/qz = 6 Kb km�1, d = 2.7 gm cm�3 and
g = 980 cm s�2. For h within 0� to 90�, the
expression varies from 6000 to 3354. Likewise,
proceeding as per equation (25) fully, for some
speciBc position in shear zone with respect to the
shear zone boundary (or speciBc y0 value), one
comes across Uz to be practically the same for 0�
and 90�. Thus, fuzziBcation through this work
allows us to fully understand how the natural
variation of shear zone parameters can aAect the
velocity proBle.
Geological data with uncertainty (Nilsson et al.

2006) is quantiBable, and can alternately be tack-
led by probabilistic models (e.g., Gaines 1978).
Probabilistic concept is usually used when a large
number of data and associated probability density
function, etc., are known for the parameters. But
when (i) the parameter values vary in an interval
such as the fuzzy numbers, (ii) or interval form
with much less number of data, the fuzzy set con-
cept is advantageous to handle uncertainty when
the parameter values are known in uncertain but
bounded form.
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