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Studying the kinematics of listric faults is of great importance in petroleum geology and seismicity. The de-
formation related to listric faults differ from the planar fault plane case. This study involves 3-D co-ordinate
geometry with spherical co-ordinates to deduce the effective-slip (es) and the net-slip (ns) of listric faults of three
ideal geometries: spherical, paraboloid and ellipsoidal. We perform 3D slip analyses on two types of listric faults
(Type-1 and 2). Previous authors have considered these shapes of fault planes in their modeling. Using these es,
one can track material points before and after faulting, similar to Mukherjee (2019) applied on translational

faults with planar fault planes. The ns can be divided into a strike-slip (S,s) and a dip-slip component (d;). This

resolution being done on the listric fault plane itself, ns # (s + d,fs)o's. This is unlike the planar fault plane
case. The purpose of 3D-geometric analysis of listric faults could be, in long run, the restoration of rock blocks

that underwent listric faulting.

1. Introduction and background

“Understanding the mechanical behavior of non-planar faults is a funda-
mental problem for scientists working on the brittle deformation of Earth's crust
and is of practical importance to disciplines such as rock mechanics, geotechnical
engineering, earthquake science, and economic geology” — Ritz (2013).

Listric faults are those with curviplanar fault planes, which are
found usually in extensional tectonic setting (e.g., the typical listric
normal faults, see Spahic et al., 2011), especially in sediment covers
that are detached (Mandl, 2000). The curved nature of the fault can
arise due to rocks'/sediments' anisotropy leading to spatially variable
shear strength; and (ii) abnormal pore pressure gradient developed in
the lithology (Mandl, 2000). Natural fault planes are almost always
listric to some extent (Bruhat et al., 2016). Such faults can be tectonic,
e.g., those at the in rift basin/passive margins (Bally et al., 1981) and at
the collisional plate boundaries, or atectonic, e.g., growth faults at the
deltaic setting. The term “cylindrical fault” means a kind of listric fault
where the faulted blocks rotate with respect to one another (Neuendorf
et al., 2005). Listric normal faults can be closely be compared with the
base failures in foundation engineering (Shelton, 1984). The ductile
substratum/the rafting model is an important constrain in the listric
fault kinematics (e.g., Spahic, 2010). Most normal faults become listric
at ~ 5-17 km depth where a zone of low velocity (Bally et al., 1981)/
increased ductility exists (Shelton, 1984). Thin-skinned tectonics is
dominated by listric faults, which are usually restricted to sedimentary
strata and in basements (Shelton, 1984). Therefore, listric faults have
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been studied intensely in petroleum geoscience. Nevertheless, their
genesis are not well understood (review in Yuan et al., 2020).

Listric faults are of paramount importance for petroleum geologists
since such faults have been reported to be the pathways for hydro-
carbon/fluid, and sometimes the reverse drag-folded hangingwall block
associated with them are the locations of hydrocarbon accumulation
(Hooper, 1991). Secondly, listric reverse faults can be associated with
allied back-thrusting (Yamada and McClay, 2003), which can be the
potential locations for earthquake epicenters. The reason is that the
distribution of stress along listric fault plane strike is heterogeneous
(Galvez et al., 2018). Fault-related seismicity has long been studied
from the consideration of planar faults. However, recent researches
show that most of the seismicity are associated with non-planar fault
planes.

Thus, to understand fault kinematics related to seismicity and pet-
roleum geology, we need to comprehend the kinematics of listric faults
of various geometries (Benjemaa et al., 2007). Ground Penetrating
Radar (GPR) can provide some detail of 3D geometry of sub-surface
faults (e.g., McClymont et al., 2008). Since the geometries of blind
faults are not known with full confidence, modelers use different geo-
metries of such faults and simulate deformation patterns (Ulrich and
Gabriel, 2017). Closer the match between this deformation and the one
in the prototype, better is the considered shape of the fault (Oakley,
2017).

We have some information about the curvature of the listric faults.
For example, (i) Wernicke and Burchfield (1982) pointed out that the
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Fig. 1. A planar fault plane with elliptical margin. Soliva et al. (2005) described
such a fault as an “elliptical fault”.

decollement depth can be nearly half that of the radius of curvature of
listric faults. However, this may not be true always. (ii) Pasone and
Main (2017) quantified the curvature of the listric faults in terms of a
“listricity coefficient” that links dip of such faults at different depths.
(iii) Resor and Pollard (2012) defined “listric shift” that establishes the
relation between the fault dip at the surface and the detachment at
depth. (iv) Braun et al. (1994) defined “listricity scale” which also links
fault's curvature with the detachment depth. (v) Xiao and Suppe (1989)
demonstrated how dip of listric grwth normal faults depend on the
porosity (which falls with depth).

Therefore considering listric faults with ideal geometries viz.,
spherical, parabolic and ellipsoidal is a crucial step towards developing
their kinematic models. Mukherjee and Agarwal (2018) consider cir-
cular geometry of the listric fault in 2-D. When the fault is modeled as
circular-shaped, Madariaga (1976) consider two kinds of models: (i)
breakage happens inside a circle of a finite radius; and (ii) a circular
breakage nucleates and then propagates. Benjemaa et al. (2007) con-
sider parabolic shape of the listric fault plane in their numerical model.
Oakley (2017) models deformation for both circular and non-circular
listric faults, and for the former types compared with the prototypes/
natural examples. For the later case, the author considers elliptical
geometry of the fault plane for the deformation in a selected location in
North Canterbury. A parabolic/paraboloid slip surface has been de-
duced from the Mohr-Coulomb failure criteria in slop-stability issues
(e.g., Wriggers et al., 1990). A point of caution is to be adopted while
working on the literature of listric fault. Sometimes, “elliptical fault”
does not mean that fault plane itself is curved like an ellipse. Rather it
means a planar fault with elliptical margin (e.g., Soliva et al., 2005,
Fig. 1). Ritz (2013) adopts a new approach of fitting sinusoidal curves
with non-planar fault planes. Cylindrical fault geometries are used in
the models by Ellis and McClay (1988) and Lohr et al. (2008).

Two research branches of structural geology/tectonics utilize defi-
nite listric geometries of the fault planes in their respective studies. I. In
their analogue models aimed to simulate deformation of the hanging-
wall block, Yamada and McClay (2003) used two specific shapes of
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rigid and listric fault planes (Fig. 2a and b and caption) none of which
are simple geometric shapes viz., parabola, ellipse or circle. II. Cruz-
Atienza et al. (2007) develop a dynamic approach to use different
geometries for fault planes in their seismicity-related models (Fig. 2(c)
and caption).

Deformation behavior of a non-planar fault plane is quite different
from that with a planar fault surface. For example, unlike the planar
fault planes that can have a single maximum slip near its mid-point,
elliptical fault planes can have several maxima of net slip magnitude
(Torabi et al., 2019). Strong curvature of the fault plane, such as bends,
promotes dynamic rupture propagation (Aochi et al., 2000). Aochi et al.
(2000) refer handling of deformation-related to listric faults in two
ways: (i) use a curve co-ordinate system that is conformable with the
curviplanar fault plane itself; and (ii) approximate the listric fault plane
as a number of small planar surfaces. Irregular faults of seismic nature,
which may be listric faults, manifest as complexities in seismic source
parameters (as referred in Bruhat et al., 2016). A non-planar fault plane
gives a better seismic model than that by a planar fault (Oglesby and
Archuleta, 2003).

Models of different purposes exist that deal with listric faults. For
example, Cruz-Atienza and Virieux (2004) apply finite difference ap-
proach to model how dynamic rupture moves ahead arising from listric
faults. Mukherjee and Tayade (2019) analyze slickenside patterns de-
veloped on listric fault planes by variable ratios of rotation to transla-
tion rates of the hangingwall block with respect to the footwall block.

2. Net-slip and effective-slip

The net-slip (ns) has been defined classically as the distance be-
tween the two points after brittle faulting that were coincident as a
single point before faulting (Billings, 1972). For all ideal translational
faults with planar surfaces, ns is constant at every point along the fault
strike and is defined as a straight line. On the other hand, for the (i)
rotational and the (ii) roto-translational faults with planar fault sur-
faces, the magnitude of varies along the fault strike, and are (i) circular
and (ii) curved lines other than circular arcs, respectively.

Effective slip (es) is the shortest (therefore linear) distance between
the two points that were coincident as a single point before faulting.
The term was first used by Mukherjee and Khonsari (2017) for rota-
tional and translational faults with planar fault planes. Here we extend
the use of these terms for the listric faults as well. For translational
faults with planar surfaces, ns = es. For all rotational and roto-transla-
tional faults with planar fault planes, ns > es (Fig. 3 and caption). Thus
the following relation is always true for any kind of faults: ns > es. In
other words, ns < es is never possible.

Block diagrams of listric faults have been presented by different
authors in slightly different ways. For example. Fig. 9.3 of Fossen
(2016) shows that the surface trace of such faults to be a curved line

(a)

(c)

Fig. 2. a. A concave listric fault, which appear as a sigmoid in plan. b. A concave listric fault that is double-concave in plan. Reproduced from Fig. 1a and b of Yamada
and McClay (2003). c. Fault planes in a vertical-cross section, given by the quadratic equation of the form: y(x) = y, = [4a(x — X)]**. Asa — oo, the fault plane is

planar. Reproduced from Fig. 10 of Cruz-Atienza et al. (2007).
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along with local irregularities (Fig. 4(a), say type-1 listric faults). On the
other hand, based on geophysical studies, Chakravarthi (2011) con-
sidered the listric fault to have a linear/uniform strike (Fig. 4(b), say
type-2 listric faults, where the listric fault plane is non-spherical, also
see Fig. 6.14 of Mandl, 2000). We did not find a second reference by
any other workers referring to such a fault. For the type-1 listric strike-
slip faults, ns > es, whereas for the type-2 listric strike-slip faults,
ns = es. Therefore, in a general language, for listric strike-slip faults,
ns > es. For both the dip-slip and the oblique-slip listric faults, ns > es.

Interestingly, the straight line defining the es for all kinds of faulting
along a planar fault surface lies on the fault plane itself. But for all kinds
of listric faults, the line defining es lies outside the fault plane. For a true
listric fault (concave towards the hangingwall block), the line lies
outside the footwall block (and within the hangingwall block). For an
anti-listric fault (convex towards the hangingwall block), the line lies
inside the footwall block (and outside the hangingwall block). Anti-
listric geometry of fault plane does not necessarily mean reverse
faulting (Fletcher and Spelz, 2009). On the other hand, an anti-listric
reverse fault is expected to indicate a compressional tectonic regime.

As in case of faults with planar surfaces, two components of ns can
be defined for listric faults: the strike-slip (s,s) and the dip-slip (dns)
component (Fig. 4(a)). For the faults of the former type,
ns = (sA + d2)*°. However, this relation does not hold true for the
listric faults.

In this work, we deduce the “es” and the “ns” for listric faults that in
separate considerations are spherical, paraboloid, and ellipsoid. See
Section-1: Introduction of Mukherjee and Tayade (2019) for recent
review on natural examples of strike-slip, dip-slip and oblique-slip lis-
tric faults.

3. Models
3.1. Type-1 listric faults

3.1.1. General points
Let us consider a type-1 listric fault as shown in Fig. 5(a), such that a

(a)
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B

(c)

Fig. 3. ab. Ideal rotational faults. c. An ideal roto-translational fault. Reproduced from Fig. 1 of Mukherjee and Tayade (2019).

point at P moves to P'. Here distance along curved line between P and P’
is the net slip ns and straight line distance between P and P’ is the
effective slip es.

For our convenience we will do the calculations in spherical co-
ordinates. If the Cartesian coordinates of a point is (x, y, z) then its
spherical coordinates (r, 6, ¢) are such that

Xx = rsin 6 cos ¢ (€D)]
y = rsin 6 sin ¢ (2)
z=rcosb 3)

Here, r is the radial distance from the origin, 6 is the azimuthal
angle and @ is the polar angle.
Let us now define the coordinates of P and P'.

P, y,2)=P(r, 6, 9) @
Py, 2)=P(r, 8, ¢) )
Let Q be the point defined by
QX" y",2")=Q(", 6, ¢") (6)
Therefore, strike slip, s,s = FQ’ 7)
effective strike slip, s,s = PQ 8)
dip slip, d,s = QP’ ©)
and, effective dip slip, d,; = QP’ (10)

Let us consider the top view of the type-1 listric fault as shown in
Fig. 5(b). Consider a small angle dp such the r remains constant on
going from ¢ to ¢ + dp Then the small arc length &s is given by

ds = r(6, ¢)sin 6dp (11
. o'

L Sps = Sin 9./‘¢ r(6, p)dp az)

Seg = Sin 6\/;'2 + "2 = 2rr"cos(p — ¢') 13)

(b)

Fig. 4. a. The net slip (ns) is divided into a strike-slip (s,s) and a dip-slip (d,s) component for a. a Type-1 listric fault; and b. a Type-2 listric fault.
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(d)

Fig. 5. a. A Type-1 listric fault along with a spherical co-ordinate system. Positive side of the Y-axis is along the dip direction of the fault plane. The X-axis is at 90°
angle to the Y-axis and lies on a horizontal plane. The Z-axis is vertical. PP”: net slip (ns); PQ: strike-slip component (s,;); QP’: dip-slip component (d,;). b. Top view of
the fault, i.e. viewing from + Z direction. c. Side-view of the fault. d. Kinematic analyses on a Type-2 listric fault.

Let us consider the side view of the fault as shown in Fig. 5(c).
Consider a small angle df such the r remains constant on going from 6
to 6 + d6 Then the small arc length &d is given by

&d = r (6, ¢)db a4
. 6/

e I CROLE (15)
dos = \/r”z + 12 — 2r"r'cos(6 — 6) (16)

By distance formula,

es=Jx—xP+@-yP+iz-2)

Using equations (1)—(3)

es = ‘J‘(r sin 6 cos ¢ — 1’ sin 6’ cos ¢')?> + (r sin O sin ¢ — ' sin 6’ sin ¢')?
V + (rcos© — 1’ cos 9')?
= [r? sin?6 cos?¢ + r'2 sin?0’ cos?¢’ — 2rr’ sin O sin & cos ¢ cos ¢’ + r? sin? O sin?
¢ + r'?sin?6’ sin’¢
— 217’ sin 0 sin €' sin ¢ sin ¢’ + r2 cos? O + r'2 cos20’ — 211’ cos O cos O']/2
=[r?+ r? = 2rr' sin O sin 0’ cos(¢ — ¢') — 2rr’ cos O cos O']'/2
a7
Net slip ns is calculated from the real path of the block on the fault
plane.

From equations (13) and (16)

s2 + d2 =r2sin® 6 + r2(1 + sin? 8) + r'2 — 2rr” sin? 8 cos(¢ — ¢')
— 2r"r" cos(6 — 6) (18)

Substituting 7’2 from equation (17),

52 +d2 = es? + r2(sin? 6 — 1) + r"2(1 + sin2 8) — 2rr” sin? 6
cos(¢p — ¢') — 2r"r’ cos(6 — 6')
+ 2rr' sin 6 sin 6 cos(¢p — ¢') + 2rr’ cos 6 cos &' 19)

Thus, the relation s2 + d2 = es?> does not hold in case of listric
faults.

3.1.2. Calculations for different geometries
Let's now consider different geometries of the fault plane.

3.1.2.1. Sphere. Consider a sphere of radius R.
LP=(R,6,9)

P'=(R, 0, ¢)
Q=(R, 0,9

From equation (12)



S. Mukherjee and M. Chakraborty

_re ;
Sps = f¢ R sin 6de
=Rsin6(¢ — @)

From equation (13)

Ses = sin 8,/R2 + R* — 2R? cos(p — ¢)
=R sin 6,/2[1 — cos(p — ¢')]

=Rsin 9\f4 sin”_T“’/

,
=2Rsin 8 sin%

From equation (15)
dns = RO —6)

From equation (16)

des = \/[R2 + R2 — 2R%cos(0 — ©)
=R/2[1 — cos(6 — 6]
\f4sin26_Tel
6-¢

=2R sin ——

=R

From equation (17)
es = [R* + R?> — 2R? sin 8 sin &’ cos(¢ — ¢') — 2R? cos O cos 6']/2
= J2R[( — sin 6 sin &' cos(¢ — ¢') — cos 6 cos &']"/*

3.1.2.2. Paraboloid. The equation if a paraboloid is given by
x2+y?=az

.. In spherical coordinates we have
r2sin? 6 = ar cos 8

r@) =r@® ¢) =a

sin26

From equation (12)
: ¢
Sps = Sin 6‘[;5 r(6)de
- acozii;1;19(¢ _ ¢,)
=acotf(¢ — ¢)

Since, r is a function only of ,therefore. r" = r
- From equation (13)

Ses = 8in 8,/r2 + 12 — 2r2 cos(p — ¢')
=r sin 6,/2[1 — cos(p — ¢')]
=r sin Qm

,
= 2a cot 8 sin %

From equation (15)

dys = fe’acosede

sin? 0

= f:' ﬁd (sin B)since, cos 6d6 = d(sin 6)

a siné’
sin 0 'sin@

ol - )
- sin & sin 6

From equation (16)

[ 2 2 N ’

| ,cos* 6 cos? O cos 6 cos 6

des = | a?>— + a’——— — 2a%— ———cos(6 —6') =
\" sin* 6 sin* @ sin? @ sin? @

(20)

(21)

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29

a

sin? 6 sin? &’
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From equation (17)

g2 20" < 0 o ot
2cos” 6 2c0s°0" 2 2 cos 6 cos &' sin 6 sin 6 — ) =2
g0 T & nde a sin? sin2 @’ cos(¢ — ¢)

es=[a

1/2
q2c0s 6 cos €' cos 6 cos 6 ] /

sin? sin26’
cos? 6 5 cos2e’ ’ , 2 207 1/2
s oy 2 cot 6 cot 8’ cos(¢p — ¢’) — 2 cot? cot?6
3D
3.1.2.3. Ellipsoid. The equation of an ellipsoid is given by
x2 y2 zZ
i 2z 2 =1
a? + b? * c? (32)
.. In spherical coordinates we have
r2sin? Ocos?p + r2sin®6sin’p + ricos’® _ 1
2 b2 2 33)
b%c%sin?6cos?p + a’c?sin®6sin’p + a?b*cos?6
=>r? =
a2b?c? (34)
abc
= r(6, p) =
©.9) [c2sin0 (b%cos?p + a’sin’p) + a?b?cos?0]'/? (35)
From equation (12)
Sps = f: r(@, @)d¢
4 abe
=5, = d
Sns ¢ [czsinze(bzcosz¢+a25in2¢)+a2b2c0529]u2 4 (36)
From equation (13) we can get s,; by putting r” = r (6, ¢').
From equation (15)
o
dps = f@ r (6, §0)d9
4 abe
=>d, = dé
" fe [czsinzs(b2c052<p+a25in2<p)+azbzcoszejl/z 37)

From equations (16) and (17) we can get d,; and es respectively.
In eqn (35), if we puta = b = ¢ = R, we get

R3
4 (6’ (D) - [R2sin%6 (choszv + stinz(p) + R2R2C0529J1/2
- [R25in26 x R? + R4cos26]1/2
- [R4sin%6 + R400526]1/2
R3
- [R4L/2
R3
=2
~r6, ) =R (38)

This is the equation of a sphere, just as expected. Eqn (36) and eqn
(37) will, therefore, be the same as the ones for the sphere.

3.2. Type-2 listric faults

Consider a type-2 listric fault as shown in Fig. 5(d), such that a point
at P after faulting reaches P'. Here distance along the curved line be-
tween P and P’ is the net slip ns and straight line distance between P and
P’ is the effective slip es.

Let the curvature of the fault plane be defined by the ellipse

2 z2
z2tp=! 39)

\/cosz O sin* 0’ + cos? 6'sin* 8 — 2 cos O cos 6’ sin? 8 sin? 6’ cos(6 — 6')

(30)
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There is no curvature in the X-direction in this case.
Let

P=(x1y,2)
P =y, z2)
Q=2

Therefore, effective slip, es = PP’

= Vo =X+ 0=+ @2 (40)
In Fig. 5(d), the effective strike slip and net strike slip are equal.

Ses = Sns = PQ = |x — x| 4D
Similarly, the effective dip slip is given by

des = P'Q =y = y) + (2 - 2)? (42)

To calculate the net dip slip let us consider the equation for the
ellipse in circular polar coordinates:

y=rcosb (43)
z=rsinb (44)

Therefore, eqn (39) becomes,

ricos’® | risin’6 _
a? 2 (45)
r2 _ aZbZ
b%cos?6 + a’sin?6 (46)
ab
~r6) =
r® [b2cos?0 + a’sin?0]V/2 47)

From eqn (43) and eqn (44), 6 = tan‘% (eqn (48)).
Therefore, the net dip slip:

5 v
du=PQ= [ r©4ds (49)
1z’
= f tarilzyl 2 2 ab 2qin2Q11/2 dé
tan™' 3 [b*cos’0 + a’sin’0)] (50)

4. Discussions

The term, “irregular fault” has been under use in geophysical lit-
erature (e.g., Bruhat et al., 2016) for fault planes that have irregula-
rities, i.e., those departing from the perfectly planar fault planes. In a
way, these too maybe listric faults but the present study deals with
those listric faults that do not have minor irregularities on it. Putting
a=b=rc in eqn (35) for the ellipsoid case for the expression for
r(6, @), one satisfactorily gets back to eqn (38), which is the case of a
spherical fault surface. This validates that the derivations in this article.

Putting a = b = R in case of type-2 faults in eqn (47) gives

2
r©) = oy e

. R2
- [R2]1/2

This is the equation of a circle as expected.
Therefore, eqn (50) becomes

dns =R [tan‘lil, - tan‘lg]

y y (52)

Several assumptions were adopted in the present fault slip analyses.

Some of the constraints are (i) irregular fault planes in reality can well

be none of the ideal geometric shaped considered here. (ii) The slip

pattern of the fault planes can vary spatially and temporally. (iii) pro-
pagation of fault plane.
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The curved geometry of fault plane may arise due to post-fault
faulting (Bally et al., 1981). Such “secondary” listric faults should not
be compared with our present analysis. The present study also does not
consider listric faults that are primary structures, such as grown faults.
Besides, dip of listric faults also vary along not only with depth, but also
along the strike of the fault planes (Shelton, 1984). The later variation
is not considered in the chosen simple 3D-geometries of the presented
fault models.

A few modern researchers have attempted to utilize the irregular
geometries of the fault planes as much as possible in explaining the
fault kinematics. For example, the surface ruptures have been extra-
polated to depth and the fault surface has been extrapolated (review in
Lovely, 2011). Ando et al. (2007) develop a numerical strategy to tackle
faults of any geometries, including the planar types, in seismic mod-
eling. Idealization of faulted rocks as rigid blocks with equal amount of
net slip at every point, i.e., translational faults have been made long
back (e.g., Billings, 1972 for review). It is expected that progressively
from ideal fault plane geometries, we should be able to reach kine-
matics of faults with irregular geometries. This would be possible after
the irregular geometry of the natural faults will be constrained sig-
nificantly by numerical means. In other words, the models presented
here needs to be improved in terms of more realistic fault plane geo-
metries.
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