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ARTICLE INFO ABSTRACT

Keywords: Structures associated with rigid inclusions are a rich source of evidence to understand the local deformation
Rigid inclusions regime. The behaviour of rigid objects in modelled here as being immersed in a linear Newtonian fluid with
Ma‘l‘(ﬂes and tails either (i) a stick boundary condition (continuity of stress and velocity across the boundary) or (ii) a slip
Stic

boundary condition (continuity of boundary normal stress and velocity across the boundary with zero shear
stress at the boundary). Of particular interest are the types of structures developed in a concentric region
adjacent to the object termed the mantle. A model of the displacement of points around the inclusion comprises
a set of ordinary differential equations which are solved numerically. A comprehensive set of simulations for
a variety of mantle sizes, object aspect ratios, initial orientations as well as different boundary conditions has
been performed. A comparison between natural examples and model output indicates a level of consistency.
The resulting structures differ in detail and in a broader sense. In general §-type structures only develop
when stick boundary conditions are in operation. In contrast, o-type structures at high strain are restricted to
slip boundary conditions. Slip conditions also tend to be the source of complex mantle types involving more
than one generation of mantle structures or wings. Furthermore, our model indicates that using asymmetry of
orientation of objects relative to the shear direction may be problematic when used alone, particularly if stick
boundary conditions prevail but that together with mantle structures there is less chance of confusion.

Slip
Mathematical modelling

“Hard inclusions (e.g. mineral grains) in a relative weaker matrix shear sense and understand deformation type (Passchier and Trouw,
form one class of structures that have received much attention for the 2005; Dutta and Mukherjee, 2019). Behaviour of competent objects,
potential wealth of information stored in them, such as sense of shear, such as porphyroclasts, in various deformation regimes (Ghosh and
kinematic vorticity number, distinguishing different deformation events, Sengupta, 1973) and their degree of bonding with the matrix (Ildefonse
finite strain, etc”. et al., 1992; Odonne, 1994) have been discussed broadly in previous

[Griera et al. (2013)] literature. However, the detailed mechanism of the development of

mantle structures and the types of structures developed under differing
boundary conditions has not been addressed.

In this paper, we study and compare the development of mantle
structures around rigid elliptical objects in a simple shear flow in
the case of stick and slip boundary conditions. We first review rele-
vant work in the literature and then describe the modelling approach
used. We undertook a comprehensive series of numerical simulations
taking account of a variety of boundary and initial conditions. Re-
sults are mainly presented in graphical form. Furthermore, we con-
sider a selection of natural examples for comparison before drawing

1. Introduction

The study of ductile shear zones is crucial in tectonics and earth-
quake studies (Regenauer-Lieb and Yuen, 2003). Couette flow in fluid
mechanics (Schlichting and Gersten, 1999), the same as simple shear
in structural geology, produces a linear velocity profile when the
shear zone boundaries are parallel (Mukherjee, 2012; Ramsay, 1980).
Mulchrone and Mukherjee (2019) in their Fig. 1 reviewed different
kinds of shear zones relevant to structural geology. Ductile shear sense
indicators are a key structure used by structural geologists to determine conclusions.
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0-type

Winged inclusion

Fig. 1. Schematic illustration of the various types of mantle structure observed in
nature. The shear sense is dextral and the shear direction is indicated by the dashed
line. A circular rigid core is surrounded by blue mantle material which is assumed
to have a viscosity similar to that of the surrounding material. The bottom structure
is a winged inclusion which is composed entirely of material with uniform viscosity
different to that of the surrounding material and is usually more competent (it is
coloured differently to distinguish it).

2. Previous work

The behaviour of rigid and non-rigid objects during deformation
has been of considerable interest to structural geologists because their
rotational characteristics can potentially help understand the type of
deformation which can scale up to map scale tectonic interpreta-
tions (Marques et al., 2014). Typically in this type of analysis a steady
state deformation is assumed, meaning that the velocity gradient tensor
is constant. In spite of this simplification, many insights have been
gained into types of deformation history and how they might be rec-
ognized in nature (Fossen and Tikoff, 1993; Tikoff and Fossen, 1993,
1995, 1999; Fossen and Cavalcante, 2017). For example, the relation-
ship between foliations, lineations and vorticity indicators can be used
to determine the broad structure of the velocity gradient tensor (Tikoff
and Fossen, 1999) and thus understand deformation history in 3D.
Clearly then, understanding how to correctly interpret populations of
rigid objects and structures such as mantles and tails around rigid
objects is crucial to tectonic analysis.

Modelling, almost by definition, involves abstraction and simplifi-
cation. However, the inspiration for the models developed below (see
Section 3) are mantled objects where the mantle surrounding the core
can be recrystallized minerals, a reaction product of the core itself, or
strain shadows (Fig. 5.20 of Passchier and Trouw (2005)). Typically
porphyroclasts are feldspar surrounded by a matrix of quartz-feldspar-
mica or orthopyroxene in peridotite or dolomite in calcite (Passchier
and Trouw, 2005). Principle factors controlling the geometry of the
evolving mantle are deformation type, e.g. pure versus simple shear,
object aspect ratio and boundary conditions and the rheology of the
matrix is thought to negligible (Ildefonse and Mancktelow, 1993; Bons
et al., 1997; Griera et al., 2013).

Five varieties of mantled objects have previously been identified
(Passchier and Simpson, 1986):

1. O©-type: display no wings but mantle may bulge.
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2. ¢-type: exhibit wings on each side of the object which are
stretched out parallel to the shear plane and each other.

3. o-type: have a wedge-shaped mantle with stair stepping wings.

4. 5-type: the median line of wings cross the shear plane, with or
without stair stepping.

5. Complex-type: multiple generations of wings.

A schematic illustration of the different varieties is presented in Fig. 1.
O-type structures are typically symmetric but do not exhibit wings
whereas ¢-type structures exhibit symmetric wings aligned with the
shear direction. Both ¢ and §-type structures comprise asymmetric
wings with respect to the shear direction, however, the former exhibit
a stair stepping geometry and the latter are thinner, more curved and
cross the shear direction. Complex structures come in many varieties
but may exhibit two or more features from O, ¢, o or § structures.
The final structure type shown in Fig. 1 are winged inclusions (Grase-
mann and Dabrowski, 2015). Although geometrically similar to man-
tled structures, a key difference is that they do not form around a rigid
core. The material in a winged inclusion is idealized as having uniform
viscosity different to that of the surrounding material. For example,
they may be initially formed as segments of a boudinaged layer.

Experimental and numerical evidence indicates that it is the flow
pattern (eye-shaped or bow-tie shaped) around the object that deter-
mines the variety of mantle structure observed (Passchier et al., 1993;
Passchier and Trouw, 2005). Furthermore an additional flow pattern
named cats eye shaped has been identified by Marques et al. (2005b,
2014). A schematic illustration of each flow pattern is presented in
Fig. 2. Eye patterns are associated with stick boundary conditions
in simple shear whereas bow tie patterns are associated with stick
boundary conditions in confined flow (Marques et al., 2005b, 2014).
On the other hand, cat eye patterns were found (Marques et al., 2005a)
specifically in relation to slip boundary conditions.

The phenomenon of mantled structures has been approached from
both analogue experimental and theoretical perspectives. Theoretical
work has tended to focus on the situation where the object is strongly
bonded to the matrix (referred to as a stick boundary condition here)
whereas analogue models have considered both bonded and loosely
bonded (referred to as a slip boundary condition here) objects (Marques
et al., 2014).

Experimental evidence suggests that wings tend to develop only
when the viscosity contrast between the materials in the mantle and
the surrounding matrix is small and §-type wings form only when
the mantle is relatively thin (Passchier and Sokoutis, 1993). Further-
more, Passchier and Sokoutis (1993) found that 6-type wings cannot
develop under slip as the object does not rotate through the shear
plane but can develop under stick whereas highly stretched o-type
wings are a feature of slip. Experimental work using circular inclusions
by Bose and Marques (2004) also found that stick conditions are
required for delta-type wing development and that o-type structures
can occur under both stick and slip. Additionally, stair stepping was
found to occur in both § and o-type wings but was more pronounced
under slip conditions. Marques et al. (2014) review a large amount
of important experimental work on the behaviour of deformable and
non-deformable inclusions with stick and slip conditions, and during
confined and unconfined deformation conditions.

Numerical investigations typically use the finite element method to
investigate structures developed for rigid inclusions immersed in New-
tonian, power law and non-Newtonian viscous fluids (Bons et al., 1997;
Pennacchioni et al., 2000; Marques et al., 2005a; Schmid and Podlad-
chikov, 2005; Grasemann and Dabrowski, 2015). Bons et al. (1997)
focus on flow around a circular inclusion and found that boundary
conditions rather than matrix rheology determined the flow type. Pen-
nacchioni et al. (2000) examined in detail the flow pattern in the
matrix surrounding circular objects for stick and slip boundary condi-
tions and found that bow-tie type patterns occur for stick conditions
independent of the value of the power law exponent in the power-law
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eye pattern

Fig. 2. Schematic illustration of suggested flow patterns around circular rigid objects.

matrix. In contrast when slip occurs a different flow pattern is observed
which depends strongly on the properties of the matrix. However, they
do not consider the evolution of tail geometry over time. Marques
et al. (2005a) model the lack of coherence between the object and
matrix by a permanent low viscosity layer and considered different
shapes (circle, square, lozenge, ellipse, rectangle and parallelogram).
They found neither bow-tie nor eye-type flow patterns but instead
found “cats eye”-shaped flow patterns. Furthermore they found anti-
thetic rotation of objects and the existence of stable equilibrium object
orientations. Schmid and Podladchikov (2005) use a similar set-up
to Marques et al. (2005a) and found stable object orientations and
in addition, related physical attributes of mantled objects to effective
viscosity contrast between mantle and matrix, mantle production rate
and total shear strain.

Recently, the development of winged inclusions was numerically
investigated (Grasemann and Dabrowski, 2015), and here pinch and
swell type structures (i.e. with pre-existing wings) are the initial ge-
ometry. It is important not to confuse winged inclusions and mantled
porphyroclasts for correct determination of shear sense.

In series of contributions (Mandal et al., 2000, 2001; Samanta et al.,
2003; Mandal et al., 2003), the development of mantled objects was
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studied using a 2D equivalent of the model of Jeffery (1922). In one
model object material was converted to mantle material at a fixed rate
during deformation (Mandal et al., 2000), whereas Mandal et al. (2001)
focused on particle paths and finite strain patterns. They found that
factors affecting the geometry of mantles were object aspect ratio, rate
of object reduction and flow vorticity. Mantles of type 5, ¢ and ¢ were
produced as the rate of object reduction increases. They also consider
the effects of multiple particle interaction (Samanta et al., 2003). In a
later contribution, the instantaneous rotation of rigid inclusions in an
anisotropic matrix was analysed (Mandal et al., 2005).

A rectangular rigid object without any mantle, similar to naked
objects in rocks, was used in analogue models to investigate the effect of
slip-boundary condition (Ildefonse and Mancktelow, 1993). The strain
condition around the object was found to be markedly different from
that of the no-slip boundary condition. The object that stays mantled
is usually less deformed or undeformed (Bose and Marques, 2004).
The geometry of tails around objects in a matrix under simple shear
depend on (i) mantle production rate, (ii) deformation rate, (iii) radius
of circular mantle surrounding the object, (iv) shape of the object
— whether circular or rectangular, (v) rate of object size reduction
(review in Ildefonse and Mancktelow (1993); Mandal et al. (2000)).
Additionally, Trouw et al. (2010) based on qualitative studies of thin-
sections comment that higher temperature shear zones produce more
symmetric objects (such as Fig. 13a in Mukherjee (2017)). Bellot et al.
(2002) consider symmetric (“category-i” of Bjornerud (1989)) of pres-
sure shadows/tails (and pressure fringes) as products of pure shear (also
see Ishii et al. (2007)). Continuous simple shear can alter an asymmetric
shear sense indicator into a symmetric structure and then again into
the former shape (Passchier, 1984; Mukherjee, 2017). On progressive
deformation, wings might alter morphologically but the objects simply
reduce size (Passchier and Trouw, 2005).

The issue of stick or slip boundary conditions may also have a
bearing on larger scale structures. Shear zones that do not reach
Earth’s surface are entirely laterally confined, suggesting that no-slip
boundary conditions should apply in general for small- to mesoscale
structures (Schrank et al., 2008). Perhaps for this reason the ’no-
slip’ boundary condition is assumed in most structural geological con-
texts. Mulchrone and Mukherjee (2016) discuss velocity and shear
heat profiles for slip boundary condition in simple shear zones. Slip
boundary conditions may be facilitated by the presence of fluids or
partial melts (Hollister and Crawford, 1986; Boudier and Al-Rajhi,
2014). Analogue models often produce partial slip conditions even
when trying to implement a perfect no slip condition (Frehner et al.,
2011).

3. Modelling mantles around rigid objects with stick and slip
boundary conditions

The types of object rotation demonstrated in the present work are
expected to occur if the rock matrix behaves either as a linear or a
power law viscous fluid. For an elastoplastic matrix, however, such a
rotation is not possible (Griera et al., 2013).

The mathematical models considered here are concerned with the
motion of a rigid ellipse, with axial ratio R, immersed in an isotropic
viscous fluid (Jeffery, 1922; Mulchrone and Walsh, 2006; Mulchrone,
2007a,b). It is a fundamental assumption of these models that the rigid
object is isolated from and not interfered with by neighbouring objects.
Additionally it is assumed that the flow is unconfined in the sense that
at large distances from the object the perturbations to the flow due
to the presence of the object are effectively zero and negligible. In
practical terms this means that width of the shear zones ought to be
of the order of 20 times that of the long axis of the object. Iacopini
et al. (2011) provide a discussion of the validity of these assumptions
in a geological context.

In deriving the solution for the motion of a rigid ellipse with stick or
‘no slip’ boundary conditions Jeffery (1922) also determined the form
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Fig. 3. Diagram illustrating the set up of the model. A rigid object of known axial
ratio R = %, where a is the length of the long axis and b that of the short axis. The
object makes an angle ¢ with the positive x-axis. The black curve is the outer boundary
of the rigid object and the red curve is the outer bound of the area modelled as the
mantle. Dextral shear sense is illustrated.

of the perturbed flow around the object. A stick boundary condition
means that the velocity and stress of the external flow and internal
flow are equal at the boundary. The long axis of the rigid ellipse
makes an angle of ¢ with the positive x-axis which is parallel to the
shear direction. The mantle is modelled as a band of material directly
adjacent to the rigid object (see Fig. 3), which is delimited by an
elliptical curve outside of the rigid object. The axial ratio of the mantle
region is identical to that of the rigid object. The evolution of the
mantle curve is determined by the perturbed flow outside the object.
Thus we assume that the mantle material behaves in the same way as
any other material beyond the rigid elliptical object. In particular, the
solution of Mulchrone and Walsh (2006) (see their egs. 58-61) where
u, = 0 (the ratio of the external to internal viscosities, equivalent to the
solution of Jeffery (1922)) is used.

A solution for the motion of a rigid object with a slip boundary
condition has already been derived (Mulchrone, 2007a). A slip bound-
ary condition means that boundary normal components of velocity and
stress are equal and shear stress is zero at the boundary. The flow
adjacent to the slipping elliptical object can be determined using the
perturbed velocity solution given by Mulchrone (2007a).

In each case a large system of ordinary differential equations needs
to be solved. Code written in the technical computing environment
of Mathematica (version 12) was used to solve these equations and
to produce the graphical solutions presented. In each model the shear
strain rate is taken to be unity, which is immaterial because the results
are presented in terms of finite shear strain. Furthermore, because
the object is rigid (effectively infinite viscosity) the viscosity of the
surrounding material is irrelevant. In all model solutions a dextral
simple shear is applied as the background (i.e. far-field) flow.

The rotational behaviour of rigid objects differs quite significantly
depending on the type boundary condition applied (Mulchrone and
Walsh, 2006; Mulchrone, 2007a). The rotation rate for a stick boundary
condition is (Mulchrone, 2007a):

a¢ _ 7 (Rz—l)c0s2¢_1
dt ~ 2 R2+1

where 7 is the rate of shear strain. This equation implies that the rigid

object rotates continuously and speeds up or slows down depending

on R and ¢. If y > 0 the slowest rotation occurs for ¢ = 0 and the
T

object rotates fastest for ¢ = 5-0n the other hand with a slip boundary
condition the rotation rate is (Mulchrone, 2007a):

a¢ _ 7 ((R+1)0052¢ _1>

dr 2 R-1

(€8]

(2)
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This equation admits two orientations where the object does not rotate,
one stable and one unstable. For y > 0 these orientations are:

ot = %cos_1 (:—;i) 3
¢ =—%c0s’1 (i—;i) C)]

For ¢* the orientation is stable in the sense that after a small pertur-
bation away from this orientation the object will rotate back into the
stable orientation whereas for ¢~ the orientation is unstable and any
perturbation away from it will result in the object rotating into the
stable orientation. Thus it is almost certain that all objects will rotate
into the direction of the stable orientation. The level of shear strain
required for an object to reach the stable orientation depends on R and
the initial orientation (¢,). Taking ¢, far from ¢* then for R = 2 the
stable orientation is almost attained at a shear strain of 3, whereas for
R =10 it takes a shear strain of 6.

A notable behaviour of objects with slip boundary conditions is the
ability to rotate both synthetically and antithetically. Considering the
interval (0, 180°) then synthetic rotation occurs for 0 < ¢ < ¢+ and
¢~ < ¢ < 180°, whereas antithetic rotation occurs for ¢p* < ¢p < ¢~.

It is instructive to consider and compare the flow around rigid
inclusions in the cases of stick and slip (see Figs. 4 and 5). In the case of
a stick boundary condition (Fig. 4) there is a continuity of the velocity
field between outside and inside the object, demanded by the boundary
condition. Because the elliptical object is executing a rigid rotation,
the velocity field inside consists of circular arcs. In all cases the sense
of rotation is consistent with the overall dextral shear sense imposed
on the model. Outside the object the velocity field is significantly
perturbed. The flow is perfectly symmetrical for ¢ = 0° and 90° and
is somewhat asymmetrical for 0° < ¢ < 90° and 90° < ¢ < 180°. There
are no stagnation (where the velocity is zero) points present.

The velocity fields in the case of a slip boundary condition are quite
different (Fig. 5). The flow is typically disjointed between the inside
and outside of the object, however, the boundary normal velocity com-
ponents are equal. For ¢ = 45° and 135° the flow fields are continuous
and identical to the velocity field in the stick case. The internal velocity
field consists of circular arcs due to rigid rotation however it can oppose
the sense of shear (see for example ¢ = 150°,165°,0°, 15°,30°). A pair of
stagnation points appear adjacent to the rigid object for certain angles
(see ¢ = 60° and 120°, for example). The velocity field is symmetric for
¢ = 0° and 90° but demonstrates a much great asymmetry away from
these values (see ¢ = 30° and 150°).

Given the differences in the velocity fields for stick and slip condi-
tions it is reasonable to expect differences in the geometry of mantles
developed. Furthermore, during the course of deformation with a stick
boundary condition, the object undergoes continual rigid body rotation
as the mantle geometry changes. On the other hand, the case of slip,
the object relatively quickly rotates into a stable orientation and stops
rotating, but the mantle material continues to deform.

4. Results

In this section the evolution of mantle geometries under stick and
slip conditions are examined and compared in a simple shear regime.
In particular, the effect of (i) aspect ratio (R) (ii) initial orientation
(¢po) and (iii) mantle size is studied. Mantle size is quantified as the
difference between length of the long axis of the mantle region (a,,)
and that of the rigid ellipse (a,), divided by the length of the long axis
of the ellipse (ay). Thus mantle size is given by <2 — 1. For example,
if the mantle region has long axis of size 11 and the ellipse has long
axis of size 10 then the mantle size is given as 0.1 or 10%. The aspect
ratios investigated are R = 1.25,1.66,2.5,5, 10, the initial orientations
(¢po) vary from 0° to 360° in steps of 5.625° (312 radians) and mantle
sizes are 10%,20%,30% and 40%. For each combination of parameters
the system was numerically solved up to a total shear strain (y) of 10.
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Fig. 6. Side by side illustration of slip versus stick mantle structures for mantle size
20%, R =2.5 and ¢, = 22.5°.

Detailed results are presented in an electronic appendix as a series
of pdf files. A summary of the results in presented by side comparisons
of slip and stick structures for a variety of parameters in Figs. 6 to 13.

In the case of slip boundary conditions and relatively high aspect
ratio the predominant morphology is o-type mantles (see Fig. 6) espe-
cially at lower strain levels. Stair stepping is clear at lower shear strain
but tends to diminish at higher shear strains. Depending on the initial
orientation (see Fig. 7) more complex o-type structures where two
wings generations are present (e.g. see Fig. 7 for slip with y = 6) can
develop. This corresponds to complex-type wings in the classification
reviewed earlier. By contrast, in the case of stick boundary conditions
(see Figs. 6, 7, 10 and 11), only §-type structures develop with stair
stepping.

For lower aspect ratios, i.e. more circular inclusions, the difference
between mantles around slip and stick inclusions is less pronounced.
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Fig. 7. Side by side illustration of slip versus stick mantle structures for mantle size
20%, R=2.5 and ¢, = 90.0°.

For mantle size = 20% mantles may bulge or produce short wings in
both cases (see Fig. 6). However, depending on initial orientation more
s-like structures develop around stick inclusions (see Fig. 9). For mantle
size = 40% more extensive, similar wings are produced in both cases
(Figs. 12 and 13).

Larger mantle sizes tends to produce more enhanced structures
around inclusions. Furthermore, in the case of relatively high aspect
ratios, the lengths of wings tends to increase with shear strain. This
suggests that by measuring the length of wings systematically across a
shear zone may allow a quantitative/qualitative assessment of shear
strain variation. This idea was tested for R = 2.5 and ¢, = 90° in
both the slip and stick cases. Using the centre of the elliptical object
as the origin, the maximum point in the x-direction on the mantle
was selected. Shear strain was estimated by the ratio of the x to the y
coordinate of the maximum point. Fig. 16 shows the output compared
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Slip

y=2 y=2

Fig. 8. Side by side illustration of slip versus stick mantle structures for mantle size
20%, R=1.25 and ¢, = 22.5°.

with the actual shear strain in both cases. It is clear that the method
is poor for shear strain less than one but for higher shear strains it is
remarkably accurate. We reiterate that this approach, according to our
results, will only be useful when the elliptical object has a high aspect
ratio.

5. Application to natural data

The present modelling work can be readily compared with natural
examples of sheared clasts with mantle structures where dominantly
simple shear deformation has taken place. We consider examples
from two locations: (i) Greater Himalayan Crystallines (GHC; Indian
Himalaya); and (ii) the Tso Morari Crystalline (TMC) gneiss dome
from the Ladakh/Trans-Himalayan range (India). The top-to-S/SW
ductile sheared GHC rocks, with a significant simple shear component,

Journal of Structural Geology 132 (2020) 103968

Stick

y=2 y=2

Fig. 9. Side by side illustration of slip versus stick mantle structures for mantle size
20%, R =1.25 and ¢, = 90.0°.

are mostly Precambrian and Proterozoic schists and gneisses meta-
morphosed to greenschist and amphibolite facies, and Mid-Miocene
leucogranites. In addition there are few exposures of granulites
and metabasites, and Ordovician orthogneiss (review in Mukherjee
(2013b)). The TMC gneiss metamorphosed at amphibolite to granulite
facies while extruding from 120 km depth following Poiseuille flow
mechanism involving simple shear, which is reflected in meso-scale as
extensional ductile shear zones (review in Mukherjee and Mulchrone
(2012)).

As the present model considers deformation of an internally rigid
core surrounded by a softer deformable rim of a different rheology,
we exclude two cases (i) the core and the rim are composed of grains
of the same mineral (e.g., rolling structures and/or winged inclu-
sions; Fig. 14a); (ii) mineral fish that are devoid of tails of differ-
ent materials surrounding them like rims, and the fish themselves
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Slip

y=2 y=2

Fig. 10. Side by side illustration of slip versus stick mantle structures for mantle size
40%, R=2.5 and ¢, = 22.5°.

are deformable (Passchier and Trouw, 2005; Mukherjee, 2011). Com-
plex structures can be found around a single core that exhibit tails
with ¢ and §-type features, in both meso- (Fig. 14b) and micro-scales
(Fig. 14c). The examples in Figs. 14a and 15d resemble the model
output (for example) in Fig. 6 stick y = 10 with 6-type characteristics.
In contrast the examples in Fig. 14b, ¢, d and Fig. 15a, b, c are of o-type
and are more consistent with model output from slip examples (e.g. see
Fig. 12 or 13 for y < 8).

Of particular interest here are the clearest examples where the foli-
ation around the core is visible (Figs. 14c, 15a,c). As well as appealing
to the similarity of the model output, the flow pattern around the core
with a slip boundary condition (Fig. 5) is consistent with this pattern.
For example consider Fig. 5g, the flow tends to produce and maintain
the o-type pattern. By contrast, in the case of a stick boundary condition
(Fig. 4g) the flow pattern is one whereby a periodic flow around the
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Stick

y=2 y=2

Fig. 11. Side by side illustration of slip versus stick mantle structures for mantle size
40%, R =2.5 and ¢, = 90.0°.

core is always present. A o-type pattern may initially form but as
deformation continues this pattern is smeared into a §-pattern.

There are several new directions in which “core-mantle research”
needs to be furthered: (i) natural shear zones reveal several examples
(e.g. Fig. 15¢), which are not exactly simulated in any of our models.
Perhaps more realistic boundary conditions are required to simulate
such structures, for example conditions may switch from stick to slip
and back again during deformation. (ii) There are natural cases when
the tails and the matrix of a core-mantle structure are folded (Fig. 15d).
This may imply post-shear folding of the bulk rock or alternatively the
flow regime is not simple shear and has a pure shear component or
it may the result of progressive simple shear. Additionally, it might
be that local conditions (e.g. rheology, competency or geometry) in-
fluence the specifics of the developed structure and requires further
investigation.
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Slip

y=2

Fig. 12. Side by side illustration of slip versus stick mantle structures for mantle size
40%, R =125 and ¢, = 22.5°.

6. Discussion and conclusions

The model presented here is based on a continuum approximation
of rock behaviour with a linear or Newtonian rheology. In reality, rock
behaviour is much more complex. For example, in Fig. 14c the mix
of discrete grains of quartz and mica surrounding the garnet core is
clearly observed. We emphasize the approximate nature of the model
used in this contribution which cannot be expected to exactly reproduce
natural structures.

Nevertheless, our results indicate that one of the key differences
between mantle structures around slip and stick objects in the devel-
opment of ¢ or § structures respectively. However, this is only true
at relatively high shear strains (v y > 8). At lower shear strains
the structures are quite similar. However the presence of § structures
appears to be a definite indicator of stick boundary conditions. Our
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Stick

y=2

Fig. 13. Side by side illustration of slip versus stick mantle structures for mantle size
40%, R =1.25 and ¢, = 90.0°.

model also indicates that in the case of thin mantles and low object
aspect ratios structures tend to be muted. This is not the case for higher
aspect ratios. In the case of thicker mantles (relative to the object size)
notable structures develop independent of aspect ratio.

An important take away from this work is the usefulness of the core-
mantle structures in shear sense determination. The geometry of the
core should not always be used in isolation for shear sense determina-
tion. For example, consider the y = 6 stick case in Fig. 10 an elliptical
core with its long axis oriented antithetic to the applied dextral simple
shear. It is therefore suggested that only the geometry/inclination of
the tails (e.g., y = 6, stick case in Fig. 10 itself) is used to deduce
shear sense. However, when the tail is not well developed then even
at high strain (e.g., y = 10, stick case in Fig. 8), tails alone may not
be a reliable shear sense indicator. A field/lab structural geologist in
that case needs to skip that specific core-mantle structure and look for
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Fig. 14. Shear sense shown by orange half arrows. a. A § structure on a quartz vein. Since the tail and the core seem to be continuous, for such structures, using the present
mathematical model is to be avoided. Location: Bhagirathi section of Greater Himalayan Crystallines, India. Reproduced from Fig. 1.4d of Mukherjee (2013b). b. A complex
structure with quartz core but showing a reliable top-to-left (up) ductile shear. The tail of biotite and quartz layer at left and right show §-structure geometry. However, a o
structure like tail is also noted (blue full arrow). Following the present work (e.g. see Fig. 8), a slip boundary condition may be a possibility in this ductile shear zone. Reproduced
from Mukherjee (2014). Length of a part of the pen visible is 3 cm. c. Top-to-left sheared garnet porphyroblast. 5 type (blue full arrow) and a possible ¢ type (red full arrow) at
a single side of the blast. This is comparable to the slip example in Fig. 11 in this work at low shear strain. Main Central Thrust/Vaikrita Thrust in the Karcham area, basal part
of the GHC, Sutlej river section, Himachal Pradesh, India. Reproduced from Fig. 1.75 of Mukherjee (2013a). Cross-polarized light. Width of image: 4 mm. d. Top-to-left sheared
clast showing a o structure. Mylonitized gneiss from Greater Himalayan Crystallines, Bhagirathi section, India. Reproduced from Fig. 1.40 of Mukherjee (2014). Length of a part
of the pen visible is 7 cm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Shear sense shown by orange half arrows. a. A top-to-left sheared and fractured garnet porphyroblast displaying a ¢ geometry. A single generation of tail is noted.
Photographed by Dripta Dutta. Cross-polarized light. Width of image: 0.5 mm. Location: Near Karzog (previously unpublished photomicrograph). b. Quartz grains showing top-to-
left shear and ¢ geometries. Recrystallized materials at the boundaries define the mantle. Photographed by Dripta Dutta. Cross-polarized light. Width of image: 0.5 mm. Location:
Near Karzog (previously unpublished photomicrograph). c. Top-to-left sheared feldspar clast enveloped within sub-horizontal primary shear planes. Note the two tails are of different
geometries. Greater Himalayan Crystallines, Bhagirathi section, India. Reproduced from Fig. 1.48 of Mukherjee (2014). Length of a part of the pen visible is 3.5 cm. d. A § structure
composed of olivine (reproduced from Fig. 2.42 of Mukherjee (2015)). Both the foliated matrix and the tail are folded. Photo width: 0.25 mm.
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Fig. 16. Results of calculating shear strain from the tips of mantle wings using
numerical data.

other, clearer examples to deduce the shear sense of the deformed rock.
Additionally, if most objects in an outcrop demonstrate a consistent
synthetic orientation with respect to the direction of shear (e.g. Pen-
nacchioni et al. (2000)), then this is likely to support interpreting the
sense of shear from this observation. Given that the slip boundary
condition results in stable synthetic object orientations despite ongoing
deformation (Mulchrone, 2007a) then it is likely that these objects
deformed under slip conditions.
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