
Contents lists available at ScienceDirect

Marine and Petroleum Geology

journal homepage: www.elsevier.com/locate/marpetgeo

Research paper

Particle tracking in ideal faulted blocks using 3D co-ordinate geometry
Soumyajit Mukherjee
Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India

A R T I C L E I N F O

Keywords:
Brittle deformation
Slip along planes
Rotation in structural geology
Deformation modeling
Tribology

A B S T R A C T

This article performs particle (/material point) tracking for ideal brittle faults with translational and rotational
slip components. The fault planes are considered to be planar and step-like in separate cases. In the latter case
the hangingwall block is considered to behave ductilely. For a specific choice of the three Cartesian co-ordinate
axes, dip-slip fault will change two out of the three ordinates of any point in the faulted block that moves. A
strike slip faulting can change one out of the three ordinates. On the other hand, whatever be the orientation of
the orthogonal co-ordinate axes, an oblique slip fault of any dip amount and a purely rotational fault with dip ≠
0, 90° alter all the three ordinates, except the pivot point in the latter case. As expected, oblique-slip faulting
modifies the co-ordinates of the shifted material points depending on both (i) the pitch of stretching lineation,
and (ii) the dip of the fault plane.

1. Introduction

Understanding the geometry and the kinematics of faults (e.g.,
Billings, 1972; Mukherjee 2018; Mukherjee and Khonsari, 2018;
Mukherjee and Tayade, in press), especially involving their ramp-flat
geometry, are of great importance in petroleum geosciences (e.g., Kent
et al., 2002). To achieve these goals, faulted blocks are restored while
balancing structural cross-sections (Lopez-Mir, 2019). One way to
achieve this would be to develop a particle tracking method, before and
after deformation. Particle tracking is popular in other disciplines of
deformation modeling (Ando et al., 2012). Standard numerical tech-
niques have been implemented in structural geological problems in 2D
and 3D (e.g., Groshong, 2006; Allmendinger et al., 2012).

Fault planes can widely vary in dip amounts. Vertical fault planes
were conceptualized to explain various isostasy models (Turcotte and
Schubert, 2002; Mukherjee, 2017). Apart from such theoretical models,
vertical and sub-vertical fault planes have also been documented from
several terrains (e.g., Misra et al., 2014) that can be linked with either
isostasy or strike-slip tectonics as a part of positive or negative flower
structures (Dasgupta and Mukherjee, 2017). Likewise, (sub)horizontal
faults and shear zones have been documented from numerous terrains,
usually at the boundary between the upper and the lower crust based on
geophysical studies (e.g., Kobayashi et al., 2018).

Ramps develop in mechanically incompetent layers, whereas flats
appear inside the competent lithology (Merle, 1998). Ramp and flat
geometry of reverse faults are quite common in collisional mountain
belts and constitutes an integral part of fault-bend and fault propaga-
tion folding (review in Mukherjee, 2013). Ramps dip typically 35 to 40°

and connote a thin-skinned tectonics (Boyer and Elliot, 1982). Savage
and Cooke (2003) in their numerical models consider this dip to range
30 to 75°. While a “flat-ramp-flat” geometry is fairly common for fault
planes (Davis et al., 2012), geometries such as “ramp-flat-ramp” (SE
Spain: Ehrlich and Gabrielsen, 2004; Padrera et al., 2012) and “flat-
ramp-flat-ramp” (west Taiwan: Lock, 2007) have also been reported. A
ramp-flat geometry of normal faults in an extensional tectonic regime is
also possible (Gibbs, 1984), though presumably uncommon. In such a
setting, an extensional imbricate structure develops over the normal
fault plane (Fossen, 2016). The hangingwall block in case of fault
planes with steps can be deformable and behave in a ductile manner
(e.g., Rodriguez-Castaneda, 1996; especially McClay, 1990 for exten-
sional fault systems) and progressively collapse on the fault plane
(Fossen, 2016) thereby avoiding any space-problem that may otherwise
arise in such faulting.

To the author's knowledge, strike-slip fault planes with ramp-flat
geometry do not exist. However, bends of both releasing and restraining
types and offset noted in plan view are well established in strike-slip
faults (Cunningham and Mann, 2007). Mostly the strike-slip faults are
(sub)vertical, as expected from Anderson's theory of faulting. Some-
times however, steeply dipping strike-slip faults have been reported
(Nemser and Kowan, 2009), and more rarely these fault planes can be
low-dipping (Huetra and Rodgers, 1996).

This article makes a simple analysis to track points before and after
the brittle deformation for ideal translational and rotational fault types
with planar fault planes. Real faults can be more complicated and
would require additional numerical care. Simplified approaches of fault
block restoration (without using co-ordinate geometry) are noted also
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in cross-section balancing exercises (Lopez-Mir, 2019).

2. Model

Consider a rectangular parallelepiped of rock(s) and the Cartesian
co-ordinate axes as per Fig. 1a. Points P and Q have co-ordinates [ri]
(r= x, y, z) and [0, y1, z1], respectively. Consider different types of
faulting on this block in distinct cases with the line PQ as the surface
trace or the strike line of the future fault. The equation of the line PQ
can be deduced.

The planar fault plane dips at an angle of θ (Fig. 1b) towards the
right hand side, i.e., towards the positive side of the Y-axis. The fault
plane trends along the X-axis and has the equation:

=z y. tan d. c 1 (1)

See Repository for derivation.
Lets start from the simple types of faulting and progressively address

the more complicated cases. Both the hangingwall block and the foot-
wall block may undergo absolute slip in real cases. To deduce the co-
ordinate of shifted points due to faulting, this work however considers
one of the faulted blocks to be stationary. The same approach has been
noted in the published articles in structural geology and tectonics
(Ghosh, 1993). For modeling purpose, one of the blocks is kept sta-
tionary in analogue models (e.g., simple shear models with one of the
shear zone walls stationary: Cobbold and Quinquis, 1980), numerical
models (e.g., pure shear model with one of the shear zone walls sta-
tionary: Mukherjee, 2019), and in cross-section balancing tutorials
(Marshak and Mitra, 1988).

2.1. Translational faults

2.1.1. Faults with a single planar fault surface
2.1.1.1. Dip-slip faults. In case of dip-slip normal faults (Fig. 1b), if the
faulted blocks are restored, say point P1 in the hangingwall block would
superpose with the point P in the footwall block. Net-slip= distance
PP1= nd, say. Construct triangle PRP1 with the angle PRP1=90°.
Therefore, heave (h)= PR nd.Cosθ, and throw (t) RP1= nd.Sinθ.
Therefore co-ordinate of P1:

+[x , y n . Cos , z n . Sin ]1 1 d 1 d (2)

For any co-ordinate [ri], (r= x,y,z) for the point IH before faulting
and within the future hangingwall block, its co-ordinate IH1 after
faulting becomes

+[x , y n . Cos , z n . Sin ]i i d i d (3)

Since the footwall block is considered stationary, coordinates of all
points inside it remains the same after faulting. If the hangingwall block
remains stationary and the footwall block move upward, any point
inside the footwall block IF [ri], (r= x,y,z) would attain the new co-
ordinate IF1:

+[x , y n . Cos , z n . Sin ]1 1 d 1 d (4)

In case of dip-slip reverse faults, if the footwall block only moves,
IF1:

+[x , y n . Cos , z n . Sin ]i i d i d (5)

And if the hangingwall block only moves, IH1:

+[x , y n . Cos , z n . Sin ]1 1 d 1 d (6)

Since no movement takes place along the fault strike, here the X-
direction, the x-ordinate (x1) remains the same in all these cases.

2.1.1.2. Strike-slip fault. For a sinistral strike-slip fault (Fig. 1c), if the
hangingwall block moved with net-slip= ns, P1:

[x n , y , z ]1 s 1 1 (7)

Therefore IH1 is:

[x n , y , z ]i s i i (8)

If the footwall block only moved, IF1 is:

+[x n , y , z ]i s i i (9)

For a dextral fault, if the hangingwall block only moved, IH:

+[x n , y , z ]i s i i (10)

Whereas, in case only the footwall block moved, IH1:

[x n , y , z ]i s i i (11)

Fig. 1. a. A rectangular parallelepiped with chosen Cartesian co-ordinate system (Sections 2.1.1). PQ is the surface trace of a future fault. P is (x1, y1, z1) and Q is (0,
y1, z1). IH (xi, yi, zi) is any point in the future hanging wall block of the fault. yi > y1. IH1 is the position of IH after faulting. b. A dip-slip normal fault (Section 2.1.1).
Fault plane dips at θ towards the positive side of the Y-axis. Net-slip= dip-slip=PP1= nd. Heave= h=PR, throw= t=RP1. c. Sinistral strike-slip fault (Section
2.1.1.2). Net-slip= strike-slip= PP1=ns. d. Oblique-slip normal fault with a sinistral strike-slip component (Section 2.1.1.3). Net-slip=PP1= n.
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In both the sinistral and the dextral cases, only the X-ordinates (xi)
change and the other two ordinates (yi and zi) remain the same. This is
just the opposite case of the dip-slip faults. Also note that the new co-
ordinate is independent of the dip (θ) of the fault plane.

2.1.1.3. Oblique-slip faults. In case of an oblique-slip normal fault with
sinistral slip component (Fig. 1d) with “Ф” as the pitch or the rake, and
“n” as the net-slip. Construct triangle PNP1 where the angle
PNP1=90°. Here PN=ns= nCosФ; and NP1=nd= nSinФ. Two
well known relations are as follow:

= +n n n2
d
2

s
2 (12)

=tan n nd s
1 (13)

The horizontal component of nd, along the positive direction of the
Y-axis, equals nd.Cosθ=n.SinФ.Cosθ. The vertical component of nd,
along the Z-axis direction, equals nd.Sinθ= n.SinФ.Sinθ. Therefore the
co-ordinate IH1, if only the hangingwall block move, is:

+[x n. Cos , y n. Cos . Sin , z n. Sin . Sin ]i i i (14)

For an oblique-slip normal fault with dextral slip component, if only
the hangingwall block move, IH1 is:

+ +[x n. Cos , y n. Cos . Sin , z n. Sin .Sin ]i i i (15)

If only the footwall block move, IF1:

+[x n.Cos , y n.Cos .Sin , z n.Sin . Sin ]i i i (16)

In case only the footwall had moved for an oblique-slip reverse fault
with sinistral slip, IF1 is:

+ +[x n.Cos , y n.Cos .Sin , z n.Sin .Sin ]i i i (17)

If the same sense of faulting happened by moving only the hang-
ingwall block, IH1 is:

+[x n.Cos , y n.Cos .Sin , z n.Sin .Sin ]i i i (18)

2.1.2. Fault planes with step-geometries
2.1.2.1. Dip-slip fault. Suppose the “fault plane” can be divided into

two distinct planar surfaces FP-1 and FP-2 of same dip direction but
with different dip amounts θ1 and θ2 (θ1 > θ2; Fig. 2a1). Consider that
the net-slip “n” is divided into “n1” and “n2” on FP-1 and FP-2,
respectively. This means,

= +n n nd1 d2 (19)

Consider the triangle PP1P2 that is vertical to the XY horizontal
plane. Here angle PP1P2 = (180° + θ2 – θ1). Say the P co-ordinate is
(x1, y1, z1). Applying exp (2) on nd1, if only the hangingwall block
moved, the P1 co-ordinate is:

+[x , y n . Cos , z n . Sin ]1 1 d1 1 1 d1 1 (20)

Putting these r1 (r= x, y, z) values in exp (2) again, for the next slip
along the FP-2, P2 is given by:

+ +[x , y n .Cos n .Cos , z n .Sin n .Sin ]1 1 d1 1 d2 2 1 d1 1 d2 2 (21)

Therefore, IH1:

+ +[x , y n .Cos n .Cos , z n .Sin n .Sin ]i i d1 1 d2 2 i d1 1 d2 2 (22)

And IF1,

+ +[x , y n .Cos n .Cos , z n .Sin n .Sin ]i i d1 1 d2 2 i d1 1 d2 2 (23)

For “m” number of steps in the fault, IHm:

+ =[x , y ¯ n .Cos , z ¯ n .Sin ] (j 1 to m)i i dj j i dj j (24)

Similarly, IFm:

+ =[x , y ¯ n .Cos , z ¯ n .Sin ] (j 1 to m)i i dj j i dj j (25)

For a dip-slip reverse fault with steps, exp (21) and (22) become,
respectively,

+ =[I : x , y n .Cos , z n .Sin ] (j 1 to m)Hm i i dj j i dj j (26)

+ =[I : x , y n .Cos , z n .Sin ] (j 1 to m)Fm i i dj j i dj j (27)

2.1.2.2. Strike-slip fault. With reference to Fig. 2b, even if such a fault
plane really exists and consists of steps, the shifted co-ordinate has the
same expressions as that of a strike-slip fault plane that is devoid of any
stems (such as exps. (7)–(11)):

Fig. 2. Fault plane with steps (Section 2.1.2). IH1 is the position of IH (xi, yi, zi) after faulting. a1. Dip-slip normal fault (Section 2.1.2.1). FP-1 dips at θ1 and FP-2 at θ2.
PP1= nd1, PP2= nd2. PP2= neff. a2. The PP1P2 triangle is drawn separately to calculate neff. b. Sinistral strike-slip fault (Section 2.1.2.2). Net-slip= strike-slip= ns.
c. Oblique-slip normal fault with sinistral strike-slip components on FP-1 and FP-2 (Section 2.1.2.3). Net slip (n) = (PP1 + P1P2) = (n1 + n2). Angle QPP1 lying on
FP-1=φ1; angle Q1P1P2 lying on FP-2=φ2.
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For a sinistral fault,

I : [x n , y , z ]H1 i s i i (28)

+I : [x n , y , z ]F1 i s i i (29)

For a dextral fault

+I : [x n , y , z ]H1 i s i i (30)

I : [x n , y , z ]F1 i s i i (31)

2.1.2.3. Oblique-slip fault. Consider an oblique-slip normal fault with
sinistral slip along both the fault steps FP-1 and FP-2 (Fig. 2c). Unlike
the previous cases of dip-slip faults, here the PP1P2 plane is not
perpendicular to the fault plane strike. Say the pitch of net-slip vector
on FP-1 and FP-2 are Ф1 and Ф2, respectively.

The strike-slip component of n1 and n2 on FP-1 and FP-2 are
ns1=n1CosФ1 and ns2=n2CosФ2, respectively. Therefore The total
strike-slip component, along the X axis is, ns= (ns1+ ns2) =
(n1CosФ1 + n2CosФ2). The dip-slip component of n1 and n2 on FP-1 and
FP-2 are nd1=n1SinФ1 and nd2=n2SinФ2, respectively. Therefore, the
heave of the nd1 and the nd2 components on FP-1 and FP-2 are
h1=nd1Cosθ1=n1SinФ1.Cosθ1, and h2=nd2Cosθ2=n2SinФ2.Cosθ2,
respectively. Likewise, the throw of the nd1 and the nd2 components on
FP-1 and FP-2 are t1=nd1.Sinθ1=n1SinФ1.Sinθ1 and
t2=n2SinФ1.Sinθ2, respectively. Therefore, the total horizontal compo-
nent of net-slip, along the Y-axis is, h = (n1SinФ1.Cosθ1+
n2SinФ2.Cosθ2), and the total vertical component of net-slip t =
(n1CosФ1.Cosθ1+ n2CosФ2.Cosθ2). Therefore, P2 has the co-ordinate:

+ + +

+

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
1 1 1 2 2 1 1 1 1 2 2 2

1 1 1 1 2 2 2 (32)

Any point IH [ri] (i = x, y, z) before faulting will have the coordinate
after faulting IH1:

+ + +

+

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
i 1 1 2 2 i 1 1 1 2 2 2

i 1 1 1 2 2 2 (33)

And, IF1:

+ + +

+ +

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
i 1 1 2 2 i 1 1 1 2 2 2

i 1 1 1 2 2 2 (34)

In case this oblique-slip fault had a sinistral component of strike-slip
on FP-1, and a dextral component of strike-slip on FP-2, then IH1:

+ +

+

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
i 1 1 2 2 i 1 1 1 2 2 2

i 1 1 1 2 2 2 (35)

If this oblique-slip fault had dextral slip component on both FP-1
and FP-2: IH1:

+ + + +

+

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
i 1 1 2 2 i 1 1 1 2 2 2

i 1 1 1 2 2 2 (36)

And IF1:

+ +

+ +

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
i 1 1 2 2 i 1 1 1 2 2 2

i 1 1 1 2 2 2 (37)

For an oblique-slip reverse fault with sinistral slip component.
IH1:

+ + +

+ +

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
i 1 1 2 2 i 1 1 1 2 2 2

i 1 1 1 2 2 2 (38)

IF1:

+ + +

+

[x (n Cos n Cos ), y (n Sin .Cos n Sin .Cos ),

z (n Cos .Cos n Cos . Cos )]
i 1 1 2 2 i 1 1 1 2 2 2

i 1 1 1 2 2 2 (39)

For “m” number of fault steps each with dip θj and net-slips nj (j = 1
to m), for an oblique-slip reverse fault with sinistral slip component,

+I : [x n Cos , y n Sin .Cos , z n Cos .Cos ]F1 i j j i j j j i j j j (40)

Similarly one can write expressions for other oblique-slip fault
patterns with multiple fault steps.

Fig. 3. Fault with rotational component (Section 2.2). a1. A purely rotational fault (Section 2.2.1). The pivot O is located at the end point of the fault trace. Point P
after faulting shifts to P//. a2. The plane parallel to XZ-plane passing through the line PO (drawn by dash lines in Fig. 3a1) is drawn separately. a3. The plane parallel
to the YZ-plane passing through the point N (drawn by dash lines in Fig. 3a2) is drawn separately. b. A purely rotational fault with the pivot O lying on and in
between the two ends of the fault trace (Section 2.2.1). c. A roto-translational fault with translational net-slip= n, and ω amount of rotation (Section 2.2.2).

S. Mukherjee Marine and Petroleum Geology 107 (2019) 508–514

511



2.2. Faulting involving rotation of faulted block

2.2.1. Rotational fault
In Fig. 3a1, consider O (0, y1, z1) be the fixed pivot about which a

clock-wise sense of rotation of the rear faulted block (footwall block:
block-B) takes place in terms of absolute rotation of the other block
(hangingwall block: block-A). Recognizing faulted blocks as block-A
and block-B is necessary in this article since the case of horizontal fault
plane will also be referred in “Section 3: Discussions” where the faulted
blocks cannot be recognized as the hangingwall block or the footwall
block. Consider O be the one of the terminal points of the fault trace.
Such a fault has been described as a “hinge fault” by Donath (1962) but
a “scissor fault” by Roberts (1982). The axis of rotation is a line passing
through O and is perpendicular to the fault plane. Recalling that eqn (3)
represents the fault plane, the equation of the axis is:

=(y y)Cot (z z)1 1 (41)

Say the angle POP//= ω. The co-ordinate of P//in the hangingwall
block (block-A in Fig. 3a1) will be deduced in two steps. Consider a
vertical plane Y=y1, parallel to the XZ plane, passing through PO
(Fig. 3a2). Say OP rotates downward about the point O to OP/. Co-
ordinate of P/will be first obtained. After that the plane y= y1 will be
rotated about the OP axis so that it coincides with the given fault plane.
After rotation P/will coincide with P//. Geometrically, the co-ordinate
of P/after such a rotation will be deduced.

Line P/N is drawn perpendicular to the line OP. Length
OP= xp=OP/. Now in triangle NP/O, length NP/= OP/Sinω, or

=NP x Sin/
p (42)

In the same way, length NO=xpCosω. Therefore the P/coordinate
is [xpCosω, y1, z1-xpSinω]. Now consider a vertical plane passing
through N and parallel to the XZ plane, i.e., y= xp.Cosθ. Now the line
NP/will be rotated keeping N as the fixed point so that line NP plunges θ
and trend in the same direction as the dip direction of the fault plane (in
this case the positive side of the Y-axis). By rotating like this, P/will
coincide with P//. Note NP/=NP//since NP rotates to a new position
NP//. Therefore from eqn (42),

=NP x Sin//
p (43)

With reference to Fig. 3a3, drop a perpendicular P//T on the line
NP/. In triangle P//TN, NT = NP//Sinθ. Substituting NP // from eqn
(43),

=NT x Sin .Sinp (44)

= =Now TP (NP NT) x Sin x Sin .Cos/ /
p p (45)

Again, from triangle P//TN, TP//= NP//Cosθ. Substituting NP //

from eqn (43),

=TP x Sin .Sin//
p (46)

By rotating the NP/line in this specific way, the x-ordinate of P/point
in its new position P//remains the same, but the y-ordinate increases by
TP // distance (see eqn (46)), and the Z-ordinate increases by TP/ dis-
tance (see eqn (45)).

+Therefore the P coordinate is[x Cos , y x Sin .Cos ,

z x Sin .Sin ]

//
p 1 p

1 p (47)

Therefore, any point in the block-A, [ri] (r= x, y, z) after the ab-
solute rotation of the block-A, attains the new co-ordinate Iblock-A1:

+[x Cos , y x Sin .Cos , z x Sin .Sin ]p i p i p (48)

Had there been a counter-clockwise sense of relative rotation at-
tained by absolute rotation of the block-B alone, the coordinate Iblock-B1
is

+[x Cos , y x Sin .Cos , z x Sin .Sin ]p i p i p (49)

Exp (47) can be cross-checked in the following two ways. First, the
distance between the points P [xp, y1, z1] and P//, given by the exp (47)
itself, is found to be 1.4.xp(1-Cosω) as per the formula of finding dis-
tance between two points in 3D geometry. This matches with the tri-
gonometric way of deducing PP//distance from the triangle OPP//that
lies on the fault plane (where distance OP=distance OP//= xp, and
angle POP//= ω). Second, note that for the pivot itself (0, y1, z1) for
which xp= 0, the point after rotation attains the position, after sub-
stituting x1= xp= 0 in exp (47), is (0, y1, z1), which is the same as its
original position. This is as expected.

In case, the pivot does not lie at the either of the end points of the
fault strike, but rests in between (Fig. 3b; “pivotal fault” as per Donath,
1962), the first few steps of deduction of P//co-ordinate remains the
same. For all points Pb for which its x-ordinate (xpb) is more than that of
the pivot (x1), i.e., xpb > x1, after rotational faulting, its new position
P//will be:

+[x Cos , y x Sin .Cos , z x Sin .Sin ]pb 1 pb 1 pb (50)

This is same expression as exp (48) but with xp= xpb substituted.
For all points Ps for which the x-ordinate (xps) is less than that of the

pivot (x1), i.e., xps < x1, after rotational faulting, its new position P//

will be:

[x Cos , y x Sin .Cos , z x Sin .Sin ]ps 1 ps 1 ps (51)

2.2.2. Roto-translational fault
Two broad types of faulting can be possible under this category: (i)

rotation and translation of faulted block happen simultaneously; (iia)
first only a translation takes place and then a purely rotation happens
(Fig. 3c), (iib) or vice versa. In cases (iia) and (iib), say the total amount
of anti-clockwise rotation (ω) of such a faulted block happens when the
footwall block (block-B) remain stationary and the hangingwall block
(block-A) only rotates. Block-A also translates like an oblique-slip normal
fault with a net-slip “n” with a pitch of “Ф”. In such a case, IH1 is given by
the sum of the respective ordinates for IH for a pure translational oblique-
slip normal fault with sinistral slip component (case of Fig. 1d and exp
(14)) and that for a pure rotational fault (case of Fig. 3a1, exp (52)):

+ +I [x .Cos n.Cos , y Cos .(x Sin n.Sin ),

z Sin . (n.Sin x . Sin )]
H1 p i p

i p (52)

Similarly one can work out IF1 when only the hangingwall and when
only the footwall block slips and rotates. One can also find out various
simpler cases, such as a purely strike or purely a dip-slip component of
translational slip by putting Ф=0 or 90°.

3. Discussions

For a vertical fault plane (θ=90° applied on exps. (14)–(18)) that
can be either related to isostatic adjustment or strike slip tectonics, i.e.,
parallel to the XZ-plane, with equation y= k, terms such as normal
fault, reverse fault, hangingwall block (block-A) and footwall block
(block-B) do not apply. The co-ordinates of points after faulting, how-
ever, can still be worked out. For example, the co-ordinate of any point
in the faulted “block-A” that move upward maintaining a sinistral slip
component is given by IA1 [xi-n.CosФ, yi, zi-nSinФ]. It can be obtained
by putting θ=90° in exp. (14) in Section 2.1.1.3.

Similarly, when the fault plane is horizontal, as happens locally in
undulating fault planes (regional thrusts in collisional mountains and
normal faults), putting, θ= 0 in exp. (14) in Section 2.1.1.3, the shifted
co-ordinate of the top block is given by IT1 [xi-n.CosФ, yi-nSinФ, zi].

In case of fault planes with steps, note that exps. (19)–(40) remains
unchanged if θ2 < θ1, since Cos(–α)=Cos(α). Secondly, in exps.
(20)–(41), by choosing few θi= 0, one can work out the flat-ramp-flat
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(Davis et al., 2012), the flat-ramp-flat-ramp (Lock, 2007), the ramp-flat-
ramp cases (Ehrlich and Gabrielsen, 2004; Padrera et al., 2012).

Mukherjee and Khonsari (2017) define “effective-slip” (neff) for non-
planar and/or non-translational faulting. For such faults, it is the linear
distance between two originally coincident points before faulting that
are now separated by the process of faulting. For such faults, net-
slip > effective-slip. For translational faults with a single planar fault
surface, net-slip= effective-slip. For dip-slip normal faults with two
steps, linear distance PP2= neff2, from Fig. 2a2,

= +n [n n 2. n .n . Cos( )]eff2 d1
2

d2
2

d1 d2 1 2
0.5 (53)

Eqn (53) is cross-checked to be correct since the linear distance
between the points P [x1, y1,z1] and P2 (coordinate as per exp. (21))
matches with eqn (53).

This work utilizes purely a 3D geometric approach and does not
bring solid mechanics in tracking particles in the faulted blocks. 3D
geometric approach can be found in many classic structural geology
articles e.g., Ramsay (1980) in the context of ductile shear zones, and
McNaught and Mitra (1996) while balancing cross-sections.

Allmendinger et al. (2012) converted several structural geological
problems and their solutions into 3D co-ordinate geometrical exercises.
Such an approach helps to write computer programs for complicated
deformations. The present article does the first part of the work, i.e.,

new geometric formulation of fault slip studies. The numerical in-
troduced in this article will be simple to follow for the geosciences
students who have taken a course on 3D coordinate geometry. There-
fore the instruction can teach this article while introducing different
kinds of faults in block diagrams.

Particle tracking by 3D co-ordinate geometry needs also be ex-
tended for listric fault planes with strike-slip, dip-slip and oblique-slip
patterns. Listric faults have been modeled alternately as spherical sur-
faces/circular arcs (e.g., Schultz, 1987; 1992; Mukherjee and Agarwal,
2018), cylindrical geometry (Ellis and McClay, 1988) and Lohr et al.
(2008). Such a simplified assumption can be adopted in the present
case.
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Derivation of equation of fault plane as presented in eqn (2) in the main text:
With reference to Fig. 1 in the main text, say the fault plane has an equation:

+ + + =ax by cz d 0 (1)

Since the plane cuts the three co-ordinate axes at positive sides and does not pass through the origin [0,0,0], a, b, c > 0 and d < 0.
As this plane passes through P (x1,y1,z1) and Q (0,y1,z1),

=a 0 (2)

Equation of XY-plane is:

=z 0 (3)

Angle between the XY-plane and the fault plane is the dip (θ) of the fault plane.

= +Therefore, Cos c(b c )2 2 (4)

Simplifying,

= ±b c tan (5)

From eqns (1), 2 and 5, after eliminating a and b, possible equations of the fault plane:

= ±z d.c y.tan1 (6)

Out of these two possibilities, is always > 0 for all y > 0, since d< 0 and c>0. Therefore eqn (7) represents the fault plane as shown in Fig. 1.

= +z d.c y.tan1 (7)

After applying the standard formula between two planes: the fault plane (eqn (7)) and the XY-plane (eqn (3)), θ angle is found. This confirms that
eqn (7) is certainly correctly deduced.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.marpetgeo.2019.05.037.
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