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Abstract Geophysical well-log (bore-hole) data facilitate understanding of the phys-
ical properties of the subsurface formations as a function of depth measured in a well.
In the present study, the wavelet transformation technique was applied to the well-log
data of three wells in the Bombay High oil field, India, in order to identify depths to
the tops of oil and/or gas formation zones (pay zones). Continuous wavelet transfor-
mation (CWT) was performed on gamma-ray, resistivity, neutron porosity and ve-
locity log data sets in order to determine the space-localization of the oil and/or gas
formation zones. The choice of a mother wavelet is important and largely depends
on the data under investigation. We have applied a variety of wavelets to the different
log data sets to not only identify the depths to the tops of formation zones, but also
to determine the optimum wavelet that best characterizes the pay zones. On exami-
nation of scalogram plots of each log corresponding to each wavelet for their better
resolution in identifying the formation boundaries, we have found that the scalograms
corresponding to the Gaus1 wavelet appeared to give the best resolution in identify-
ing the depths of pay zones in all the well-log data sets of all three wells. To further
validate the above observation, a histogram analysis of CWT coefficients is made.
This showed that, of all the wavelets considered for the present study, Gaus1 wavelet
is the most appropriate and optimum for determining the space-localization of pay
zones in all the well-log data sets considered in the present study. The depths of pay
zones estimated from scalogram plots of logs agree well with those provided by the
Oil and Natural Gas Corporation Ltd., India.
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1 Introduction

Most previous well-log data analyses involved direct interpretation of data using vi-
sual inspection and comparison between different logs. However, in the past three
decades, efforts to improve mathematical and data processing techniques have been
steadily progressing for improved understanding and interpretation of well-log data,
particularly for sedimentological and stratigraphic studies. Using the concept of
electrofacies (a set of log responses which characterizes a bed and distinguishes it
from others) introduced by Serra and Abbot (1982), Wolff and Pelissier-Combescure
(1982) developed an algorithm based on Principal Component Analysis for auto-
matic detection of electrofacies. Anxionnaz et al. (1990) carried out cluster analysis
for identification of lithofacies. Other methods include Fourier transformation studies
(Tiwari 1987) and semivariogram analysis (Jennings et al. 2000) to study periodicities
and assess the degree of similarity between sample pairs as a function of separation
distance within the subsurface formations.

Since different subsurface formations have various physical properties, which in
turn reflect different frequency characteristics, understanding their frequency char-
acteristics vis-à-vis their spatial location is always important and useful. However,
the conventional signal processing techniques can only tell whether or not some
particular frequencies (representative of formations) of interest are present in the
signal, and thus they fail to explain which frequencies (formations) occur at what
depths. This is known as space-frequency localization. Therefore, effective signal
processing tools that can provide information about the space-localization of the
formations is required. Wavelet analysis has been one of the most efficient math-
ematical tools for facilitating a comprehensive understanding of composite signals
like well-logs. Wavelet analysis of logs can identify cyclicities and depth loca-
tions of formation tops, thus providing space localizations of different formations.
Wavelet analyses have been applied for many purposes. This includes hydrocar-
bon production data for estimating the preferential flow paths and the existence of
flow barriers within the reservoir rocks (Jansen and Kelkar 1997), determining high
frequency sedimentary cycles of oil source rocks (Prokoph and Agterberg 2000),
identifying reservoir anomalies from pressure transient data (Panda et al. 2000;
Soliman et al. 2001), as well as for feature extraction in well-log data (Rivera et al.
2002, 2004) and gamma-ray log data to identify depths to the tops of the forma-
tion zones (Choudhury et al. 2007). Vega (2003) used pattern recognition technique
and identified the formation tops and discontinuities present in each well and studied
well-to-well stratigraphic correlation. All these techniques have been proved to be
helpful for better understanding of subsurface layers, compared to the conventional
correlations using visual inspection of well-logs.

In the present study, we have analyzed different well-log data sets recorded at three
wells in the Bombay offshore basin in western India, using continuous wavelet trans-
formation (CWT) to provide space localization of the pay zones. We have examined
a variety of wavelets to identify suitable wavelet(s) that can best resolve the space
localization of the formation zones. We further have extended our search to find an
optimum wavelet that best suits well-log data by analyzing the histograms of CWT
coefficients. The organization of this paper is as follows. Section 2 summarizes the



Math Geosci (2012) 44:901–928 903

Fig. 1 Geographical location of
the Bombay High and its
contiguous regions in Western
India. The data for the present
study has been procured from
this region (redrawn from
database supplied by ONGC
Ltd.)

geology and lithostratigraphy of the study area. Section 3 details the data used. Sec-
tion 4 describes the wavelet analysis of well-log data, and Sect. 5 provides the details
of analysis results and discussion.

2 Geology and Lithostratigraphy of the Study Area

Bombay High is the largest hydrocarbon field in India belonging to the western off-
shore basin (Fig. 1). The main oil and gas reserves (pay zones) are L-I, L-II, L-III
(limestone) and S-I (sandstone), located in the cenozoic sedimentary succession,
which rests either on the Cretaceous Deccan basalt or Archean metamorphic base-
ment (Bhandari and Jain 1984). Of these, the L-III is the largest and the most produc-
tive of all the pay zones. Figure 2 summarizes the stratigraphy, lithological variations,
seismic markers, and pay horizons of the Bombay High field. More geological and
lithostragraphic details of the field can be found in Rao and Srivastava (1981), Biswas
(1982), and Bhandari and Jain (1984).

3 Data Base

For the present study, gamma-ray, resistivity, neutron porosity, and velocity (Vp)
well-log data sets from three vertical wells, viz. Well-A, Well-B, and Well-C have
been procured from the Oil and Natural Gas Corporation (ONGC) Limited, India.
The wells, located in the Bombay High oilfield in the western offshore basin (Fig. 1)
are separated by a distance of approximately 10 km. Logs of all three wells repre-
sent subsurface sections of approximately 500 m below the sea floor. The original
data, available in DLIS (Digital Log Interchange Standard) format were converted
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into ASCII, before further processing. Velocity log data (in units of m/s) were gener-
ated from the sonic log. Data were sampled at 0.15 m and a total of 3280 data points
in each log of all three wells were obtained. Figure 3 depicts different log data sets
as a function of depth (with depth scale increasing from top [sea floor] to bottom),
corresponding to Well-A (Fig. 3a), Well-B (Fig. 3b), and Well-C (Fig. 3c).

Fig. 2 Lithostratigraphic details and seismic marker locations of Bombay High field (not to scale, after
Bhandari and Jain 1984)

Fig. 3 Gamma-ray log,
resistivity log, neutron porosity
log and velocity log data
corresponding to Well-A (a),
Well-B (b), and Well-C (c) from
the Bombay offshore basin,
India
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Fig. 3 (Continued)
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Fig. 4 Example of scalogram plots of CWT analysis of neutron porosity log data of Well-A, when edge
effects in the signal are not removed (a) and removed (b). Note the high resolution of marker horizons in
(b) than in (a)

4 Wavelet Analysis

4.1 Theory

The wavelet function,Wd,s(x), signifying the frequency-space localization is defined
as

Wd,s(x) = 1√
s
ψ

(
x − d

s

)
, (1)

where s > 0 indicates the scale and d indicates the shift parameter. s is analogous
to frequency, in the sense that the higher scales provide details of long-wavelength
features of the signal and the lower scales provide details of the short-wavelength
features of the signal. d refers to depth information in the transformed domain in
this application. The function Wd,s(x) is called analyzing wavelet or mother wavelet.
More details about the fundamentals of wavelet theory can be found in Daubechies
(1992), Mallat (1989, 1999), and references therein.

In wavelet transformation, the signal to be transformed is convolved with the
mother wavelet and the transformation is computed for different segments of the
data by varying d and s. The wavelet transformation in which the shifts and dila-
tions will be continuously varied is called CWT and the transformation in which
they will be varied as power of an integer n (that is: nj, j = 1,2,3, . . . , k) is called
Discrete Wavelet Transformation (DWT) (Ma and Tang 2001). Generally in DWT,
dyadic scales and shifts are used, in which case n = 2. Although both CWT and
DWT are linearly shift-invariant, the difference between them is as follows. In case
of CWT, an amount of small spatial shift (δd) in the wavelet function results in the
same amount of shift in the transformed domain. As a result, abrupt changes (spikes,
etc.) in the data can be effectively picked up by performing the computations at cho-
sen variations in shifts. On the other hand, in case of DWT, the wavelet transform
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Fig. 5 Scalogram plots of log data of Well-A when Gaus1, Gaus3, Morlet, and Sym2 wavelets were
applied to (a) gamma-ray log, (b) resistivity log, (c) neutron porosity, and (d) velocity logs

coefficients become shift invariant only if the shifts are in dyadic steps (that is, as a
power of 2) (Ma and Tang 2001). Therefore, if DWT is applied to well-log data, there
may arise a possibility that the identification of location of some peaks associated
with the frequencies of interest are missed in such dyadic steps of shifts. Therefore,
DWT is not suitable for the present study. Mathematical details of the shift-invariant
property of wavelets is given in Appendix A.

CWT, defined as the inner product of the mother wavelet Wd,s(x) (Eq. (1)) and
the signal, f (x), is given by

CWTx(d, s) = 1√
s

∫ ∞

−∞
f (x)ψ

(
x − d

s

)
dx. (2)

CWT coefficients are estimated at each s by continuously varying d . The larger the
value of the CWT coefficient, the greater the similarity between the shapes of the
signal and the wavelet at d and s, signifying the suitability of the chosen mother
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Fig. 5 (Continued)

wavelet for analyzing the signal. CWT was performed on the fully processed data
using a variety of wavelets.

4.2 Continuous Wavelet Transformation

CWT was performed on different well-log data sets, viz. the gamma-ray log, resis-
tivity log, neutron log and velocity log of three wells: Well-A, Well-B, and Well-C.
A variety of wavelets was used in order to select the optimum one(s). On exami-
nation of the scalograms (contour plots of absolute CWT coefficients) of each log
corresponding to each wavelet, we first have found that the edge effects in the signal
have resulted in producing high values of CWT coefficients at the ends of scalo-
grams, which have masked the features of subsurface formations of interest in the
data. Therefore, prior to further analysis, the edge effects were removed from the
data using the symmetric half-point method (Strang and Nguyen 1995). Figure 4
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Fig. 5 (Continued)

shows an example of the scalogram of the neutron porosity log of Well-A obtained
with Gaus1 wavelet, before (Fig. 4a) and after (Fig. 4b) removing edge effects. The
resolution of the subsurface features is more apparent in Fig. 4b than in Fig. 4a.
Cosine tapering is another method generally used to remove the edge effects in the
signal.

On observation of the obtained CWT results of several wavelets, we have found
that three wavelets viz. Gaus1, Gaus3, and Sym2 wavelets have shown acceptable res-
olution in identifying the formation boundaries in the scalogram plots. We also have
used the Morlet wavelet as it was found to be an optimum one for boundary detection
and cyclostrtigraphic studies of well-log data by Vega (2003) and for Gamma-ray
log data analysis by Choudhury et al. (2007). The shapes of Gaus1, Gaus3, Morlet,
and Sym2 wavelets together with their properties are given in Appendix B. Figure 5
shows the scalograms corresponding to Gaus1, Gaus3, Morlet, and Sym2 wavelets of
gamma-ray log (Fig. 5a), resistivity log (Fig. 5b), neutron porosity log (Fig. 5c) and
velocity log (Fig. 5d) of Well-A. Similarly, Figs. 6 and 7 show the scalogram plots
corresponding to Gaus1, Gaus3, Morlet, and Sym2 wavelets of the gamma-ray log
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Fig. 5 (Continued)

(Figs. 6a, 7a), resistivity log (Figs. 6b, 7b), neutron porosity log (Figs. 6c, 7c) and
velocity log (Figs. 6d, 7d) of Well-B and Well-C, respectively.

4.3 Histogram Analysis

Histogram plots between the CWT coefficient values and the maximum number of
times each coefficient occurs in the CWT analysis of the entire signal were generated
corresponding to each wavelet and each log of all three wells. They are shown in
Fig. 8a (Well-A), Fig. 8b (Well-B), and Fig. 8c (Well-C). The number of occurrences
designates the number of times a CWT coefficient occurred. That means, for example,
in Fig. 8a the CWT coefficient values ranging from 100–125 and 125–150 occur
about 125 and 100 times, respectively, in the analysis of the gamma-ray log data
using the Gaus1 wavelet for Well-A. This implies that the suitability of a wavelet for
analyzing a signal becomes important, only when the number of occurrences of high
CWT coefficients is more for that wavelet.
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Fig. 6 Scalogram plots of log data of Well-B when Gaus1, Gaus3, Morlet and Sym2 wavelets were applied
to (a) gamma-ray log, (b) resistivity log, (c) neutron porosity, and (d) velocity logs

5 Results and Discussion

Shale (sand) formations show high (low) gamma-ray intensity. Since we are inter-
ested in identifying reservoir rocks (which are nonshaly), identification of bound-
aries between different subsurface formations in well-log data becomes necessary.
A careful examination of scalograms corresponding to the gamma-ray logs of Well-
A (Fig. 5a), Well-B (Fig. 6a), and Well-C (Fig. 7a) clearly shows that among the
four wavelets, the results of Gaus1 wavelet reveal a clear shale/sand transition zone
with well marked high (red) and low (blue) CWT coefficients, clearly delineating
the boundaries between the shaly and sandy formations as a function of depth. This
indicates that the Gaus1 wavelet is more suitable at effectively resolving the marker
horizons in the gamma-ray log data (Fig. 8). For the gamma-ray log data, although
such a resolution is less distinct in the scalogram of Gaus3 wavelet compared to
that of Gaus1, the resolution is even lower in the scalograms of Morlet and Sym2
wavelets. The poor resolution in the latter case could be due to the mismatch be-
tween the shapes of Morlet and Sym2 wavelets and the signal, at different shifts and
dilations. As a result, the continuous shifts and dilations of these wavelets in CWT
operation on the gamma-ray log data might have averaged out the CWT coefficients
at depths of L-I, L-II, S-I, and L-III formations, leading to smeared resolution about
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Fig. 6 (Continued)

the depth locations of the above formations. The estimates of the depths to the tops
of the L-I, L-II, S-I, and L-III formations obtained from the scalogram plots of all
the wavelets corresponding to all the wells are given in Tables 1, 2, 3, 4. The known
depth estimates of these formations in the study area, provided by ONGC Ltd. are
also given in Tables 1, 2, 3, 4. ONGC Ltd. has estimated these values using conven-
tional well-log data analysis and the core samples.

The scalograms associated with resistivity data are shown in three parts for each
well (Figs. 5b, 6b, and 7b). When the entire resistivity log data were considered as a
single trace and analyzed, the very high resistivity of the thick pay zone, L-III, has
masked the resolution of the formation tops of L-I, L-II, and S-I formations, and thus
it became difficult to identify the correct depth estimates of these formations. This has
been the case with the resistivity log data of the other two wells as well. Therefore, the
data of each well were first divided into three parts with overlapping data levels with
each part individually analyzed. Resistivity of the reservoir rock mainly depends on
the resistivity of the fluid (water/oil) present in it. Hydrocarbon-bearing formations
are characterized with high resistivity compared to those of non-hydrocarbon-bearing
formations. Accordingly, scalograms of the resistivity logs of Well-A (Fig. 5b), Well-
B (Fig. 6b), and Well-C (Fig. 7b) show clear distinction between the alternating
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Fig. 6 (Continued)

sequences of such formations in all three wells. The four formation tops L-I, L-II,
S-I, and L-III could be clearly identified in the scalograms of the Gaus1 and Gaus3
wavelets, showing considerable resolution in delineating these formation tops. Al-
though Morlet and Sym2 wavelets show some acceptable resolution in identifying
the depths to tops of the above formations corresponding to resistivity data, the depth
resolution of S-I in Well-A and L-II and S-I in Well-B, particularly due to Morlet
wavelet is very poor (Tables 3 and 4).

Study of the scalograms of the neutron porosity logs of Well-A (Fig. 5c), Well-
B (Fig. 6c), and Well-C (Fig. 7c) show high positive coefficients at different depths
corresponding to the decrease in neutron porosity. Generally, shaly formations show
higher neutron porosity than the nonshaly formations because of the clay bound wa-
ter. Hence, a decrease in neutron porosity is an indication of change of nonreservoir
rock to reservoir rock. Here again, the clear transition between the positive and neg-
ative CWT coefficients, representative of clear demarcation between reservoir and
nonreservoir rocks, is conspicuous in the scalogram plots of Gaus1 wavelet for all the
three wells. The depth estimates derived from the scalogram plot of Gaus1 wavelet
corresponding to these four formation tops L-I, L-II, S-I, and L-III of all the wells
also match well with those of the known estimates provided by ONGC Ltd. (Table 1).
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Fig. 6 (Continued)

Although Gaus3 wavelet also gives an acceptable resolution, the histogram analysis
clearly suggests that Gaus1 wavelet is superior to the Gaus3 wavelet (Fig. 8). The
depth resolution of the L-I, L-II, and S-I formation tops is again poor in the scalo-
gram plots of Morlet and Sym2 wavelets, corresponding to neutron porosity log data
(Figs. 5c, 6c, and 7c).

Velocity logs generated from sonic logs measure the interval transit time of sound
waves in the formations. As expected, velocities are usually low for the reservoir
rocks (lime stone and sand stone) when compared to shaly formations. Accordingly,
the scalograms of the velocity logs of Well-A (Fig. 5d), Well-B (Fig. 6d), and Well-C
(Fig. 7d), clearly show the marked distinction between sand and shaly formations
representative of different velocities. Among the four wavelets used in the analysis,
scalograms of Gaus1 wavelet show clear resolution in identifying the space local-
ization of the four formation tops L-I, L-II, S-I, and L-III (Table 2). Figures 5d, 6d,
and 7d, and also Tables 3 and 4 clearly show that identifying the depth locations of
the above four formations zones is very difficult with Morlet and Sym2 wavelets.
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Fig. 7 Scalogram plots of log data of Well-C when Gaus1, Gaus3, Morlet, and Sym2 wavelets were
applied to (a) gamma-ray log, (b) resistivity log, (c) neutron porosity, and (d) velocity logs

A careful observation of the histogram plots shown in Fig. 8 suggests that the
Gaus1 wavelet appears to be the most suitable wavelet for analysis of well-log data
of all three wells, because the number of occurrences of high CWT coefficients is
more for the Gaus1 wavelet than any other wavelet. This in turn explains the suitable
match between the shape of the Gaus1 wavelet and the well-log data. It is perti-
nent to mention here that the shape of the Gaus1 wavelet (see Appendix B), which
shows a positive peak followed by a negative peak, matches well with the signa-
tures of alternate sequences of shale and sand formations during the CWT operation,
when the wavelet is shifted and dilated. Accordingly, this results in producing high
CWT coefficients for all log-data sets with Gaus1 wavelet. Interestingly, it can also
be shown mathematically that Gaussian functions will have the least uncertainty in
effective representation of signals in a time-frequency frame. Appendix C provides a
brief mathematical description of the same. However, compared to those of the Gaus1
and Gaus3 wavelets, the number of occurrences of high CWT coefficients of Morlet
and Sym2 wavelets is very few corresponding to all the well-logs of all three wells
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Fig. 7 (Continued)

(Fig. 8). Histogram results also tell us which wavelet suits best for studying well-log
data. Accordingly, Fig. 8 and Tables 1–4 clearly suggest that all four wavelets appear
to be suitable for studying resistivity log data. Morlet and Sym2 wavelets do not ap-
pear to be suitable for studying gamma-ray, neutron porosity and velocity log data.
Although the histograms of CWT coefficients of the Gaus3 wavelet suggest that it
can be used to study all the logs, the resolution of subsurface formations in the scalo-
gram plots due to this wavelet is less distinct compared to that of the Gaus1 wavelet.
Therefore, based on the data used in the present study we conclude that the optimum
wavelet identified for analysis of well log-data is the Gaus1 wavelet.

6 Conclusions

CWT is an efficient mathematical tool to analyze nonstationary signals like well-logs.
Among the variety of wavelets used, we find that the Gaus1 wavelet shows good res-
olution in clearly delineating the boundaries of alternating sequences of shaly and
nonshaly formations in different well-logs, considered in the present study, corre-
sponding to three wells in the Bombay offshore basin, India. Compared to that of the
Gaus1 wavelet, the depth resolution of formations in the scalogram plots of Gaus3
wavelet corresponding to all the three wells is less distinct. Use of Morlet and Sym2
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Fig. 7 (Continued)

wavelets in the analyses of gamma-ray, neutron porosity, and velocity logs has not
provided any useful information on the depth locations of formation boundaries in
all three wells. Histogram analysis of the CWT coefficients also supports these ob-
servations (Fig. 8) and thus becomes important in the kind of studies described here.
Depths to the tops of the formation zones could be clearly demarcated in the CWT
analysis of the gamma-ray log (with Gaus1 and Guas3 wavelets) and resistivity log
(with all four wavelets) data. The calculated estimates of the depths to the tops of
the L-I, L-II, S-I, and L-III formations obtained from the scalogram plots of Gaus1
and Gaus3 wavelets, corresponding to different log data sets of all the wells match
well with the known information on the depths of these formations in the study area.
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Fig. 7 (Continued)

Analysis of further data sets from wells in other regions is largely worthwhile and
necessary in order to globally optimize whether or not the Gaus1 wavelet can be
proclaimed to be the most suitable wavelet for analyzing well-log data.
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Appendix A

Let fδx(x) = f (x − δx) be the spatial shift in f (x) ∈ L2(R) by a small amount, δx.
The CWT of fδx(x) is

CWT
(
fδx(d, s)

) = 1√
s

∫ ∞

−∞
f (x − δx)ψ

(
x − d

s

)
dx

= 1√
s

∫ ∞

−∞
f

(
x′)ψ

(
x′ − (d − δx)

s

)
dx wherex′ = x − δx

= CWT
(
f (d − δx, s)

)
.
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Table 1 Comparison of the estimated depths of formation tops from the scalogram plots of Gaus1 wavelet
for different well-logs with the known depth estimates provided by ONGC Ltd. Note the good agreement
between the observed and estimated values

Gaus1 Formations Known depths
provided by
ONGC Ltd. (in m)

Gamma-ray Resistivity Neutron porosity Velocity

Well-A L-I 998.5 998 998 997 997.6

L-II 1020 1021 1022 1022 1021

S-I 1226 1225 1225 1225 1226

L-III 1350 1352 1351 1351 1352

Well-B L-I 980.5 983 980.5 980.2 984

L-II 1006 1006 1000 1008 1007

S-I 1202 1200 1201 1201 1201

L-III 1329 1329 1329 1328 1331

Well-C L-I 1004 1003 1003 1004 1004

L-II 1032 1031 1032 1032 1033

S-I 1195 1200 1200 1189 Not clear

L-III 1361 1361 1361 1361 1361

Table 2 Same as Table 1, but for Gaus3 wavelet

Gaus3 Formations Known depths
provided by
ONGC Ltd. (in m)

Gamma-ray Resistivity Neutron porosity Velocity

Well-A L-I 998.5 998 998 996 995

L-II 1020 1021 1021 1021 1021

S-I 1226 1223 1226 1226 1227

L-III 1350 1351 1356 1351 1350

Well-B L-I 980.5 980 981 979 983

L-II 1006 1005 1009 1005 1007

S-I 1202 1205 1220 1198 Not clear

L-III 1329 1326 1329 1326 1328

Well-C L-I 1004 1004 1004 1004 1004

L-II 1032 1031 1033 1032 1030

S-I 1195 1201 1199 1187 1190

L-III 1361 1361 1360 1361 1364

Since the output is shifted the same way as the input signal, the CWT is shift-
invariant. Similarly, the shift-invariant property for DWT, where the shifts are in
dyadic scales also can be shown. For further details, the reader is referred to Ma
and Tang (2001).
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Table 3 Same as Table 1, but for Morlet wavelet

Morlet Formations Known depths
provided by
ONGC Ltd. (in m)

Gamma-ray Resistivity Neutron porosity Velocity

Well-A L-I 998.5 Not clear 996 997 997

L-II 1020 Not clear 1022 Not clear 1023

S-I 1226 Not clear Not clear 1223 Not clear

L-III 1350 1348 1353 Not clear 1352

Well-B L-I 980.5 Not clear 980 Not clear 983

L-II 1006 Not clear Not clear Not clear Not clear

S-I 1202 1206 Not clear 1200 Not clear

L-III 1329 1329 1329 Not clear 1327

Well-C L-I 1004 Not clear 1004 1005 1005

L-II 1032 1030 1033 Not clear Not clear

S-I 1195 1193 1200 1194 1194

L-III 1361 1361 1360 Not clear Not clear

Table 4 Same as Table 1, but for Sym2 wavelet

Sym2 Formations Known depths
provided by
ONGC Ltd. (in m)

Gamma-ray Resistivity Neutron porosity Velocity

Well-A L-I 998.5 Not clear 997 995 1000

L-II 1020 Not clear 1022 Not clear 1019

S-I 1226 Not clear 1225 1225 Not clear

L-III 1350 1350 1351 Not clear 1351

Well-B L-I 980.5 Not clear 980 983 Not clear

L-II 1006 1004 1005 Not clear 1005

S-I 1202 1206 1220 Not clear Not clear

L-III 1329 1328 1329 Not clear Not clear

Well-C L-I 1004 Not clear 1004 1004 1004

L-II 1032 Not clear 1031 Not clear Not clear

S-I 1195 1201 1199 1199 Not clear

L-III 1361 1359 1358 Not clear 1361

Appendix B

The following provides a brief guide of the mathematical representations of the
wavelets used in the present study:

1. Gaussian wavelets
The Gaussian wavelet of nth order is defined as

ψn(x) = Cnf
(n)(x), (B.1)
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where f (n)(x) denotes the nth derivative of the Gaussian function and f (x) =
exp(−x2). Here, Cn is such that ‖f (n)(x)‖2 = 1. Considering n = 1 and 3 in (B.1),
we get Gaus1 and Gaus3 wavelets, respectively.

2. Morlet wavelet
Morlet wavelet is obtained by multiplying the complex exponential function with

the Gaussian function. As a result, Morlet wavelet is a complex wavelet. Since only
the real wavelet is used in the present study, the real valued Morlet wavelet is usually
defined as

ψ(x) = 1
4
√

π
exp

(−x2) cos(ω0x) ω0 ≥ 5. (B.2)

The wavelet function, ψ(x)satisfies the admissibility condition only when ω0 ≥ 5
(Kumar and Foufoula-Georgiou 1994).

3. Symlet wavelet
Symlets are also known as Daubechies’ least-asymmetric wavelets. They are near

symmetric, and like Daubechies’ wavelets, are also orthogonal. They are compactly
supported and have finite vanishing moments. For more details of the Symlet family
of wavelets, the reader is referred to Daubechies (1992):

Name of the
wavelet

Shape of the
wavelet*

Symmetry Compact
support

Orthogonality Vanishing
moments

Gaus1 Anti-symmetric No No Arbitrary

Gaus3 Anti-symmetric No No Arbitrary

Morlet Symmetric No No Arbitrary

Sym2 Near symmetric Yes Yes 2

*The horizontal and vertical axes for the wavelet shapes are in arbitrary units.

Symmetry: The symmetry property of wavelets explains that the wavelet transform
(WT) of the mirror (m) of a signal is mirror of the wavelet transform of the signal.
That is, WT{m[f (t)]} = m{WT[f (t)]}.
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Compact support: This property explains that the wavelet vanishes outside a finite
interval. Shorter intervals indicate higher compactness of the wavelet.

Orthogonality: This property implies that if it is possible to construct some wavelets
ψ(t), such that ψu,v(t) are orthonormal. That is,

∫
ψu,v(t)ψu′,v′(t) dt = δuu′δvv′ ,

where δi,j denotes the delta function, then such wavelets are orthogonal to their trans-
lations and dilations.

Vanishing moments: A wavelet, ψ(t) has N vanishing moments, if the Fourier trans-
form of the wavelet at the origin, is k times continuously differentiable. That is,
dk

dωk ψ(ω = 0) = 0, for k = 0,1, . . . ,N −1. In other words, if a wavelet has N vanish-
ing moments, then wavelet-coefficients for N th order polynomial corresponding to
that wavelet will be zero. This implies that any polynomial signal up to order N − 1
can be represented completely in scaling space. In theory, if a wavelet has more van-
ishing moments, its scaling function can represent more complex signals accurately.
N is also called the accuracy of the wavelet. For more details, the reader is referred
to Strang and Nguyen (1995).

Appendix C

Let a signal, x(t), centered at origin, be finite and square integrable; that is, x(t) ∈
L2(�), which can be written as∫ ∞

−∞
∣∣x(t)

∣∣2
dt = ‖x‖2

2. (C.1)

The probability density function (PDF) of x(t) in time and frequency domains can
be written as

Px(t) = |x(t)|2
‖x‖2

and Px(ω) = |x(ω)|2
‖x‖2

.

The variance of each of these is a measure of corresponding uncertainties. Accord-
ingly, for zero-mean signals, both in time and frequency, we have

σ 2
t =

∫ ∞
−∞ t2|x(t)|2 dt

‖x‖2
2

and σ 2
ω =

∫ ∞
−∞ ω2|x(ω)|2 dω

‖x‖2
2

. (C.2)

From the differentiation property of Fourier transformation, σ 2
ω can be written as

σ 2
ω =

∫ ∞
−∞

∣∣ dx(t)
dt

∣∣2
dt

‖x‖2
2

.

The product of time–frequency variance, also known as time bandwidth product
(for a review, see Gadre 2011) is

σ 2
t σ 2

ω =
∫ ∞
−∞ t2|x(t)|2 dt

∫ ∞
−∞

∣∣ dx(t)
dt

∣∣2
dt

‖x‖4
2

. (C.3)
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Using Eq. (C.1), Eq. (C.3) can be written as

σ 2
t σ 2

ω = ‖tx(t)‖2
2

∥∥ dx(t)
dt

∥∥2
2

‖x‖4
2

. (C.4)

Equation (C.4) represents the uncertainty that lies in the simultaneous measure-
ment of time and frequency. Now the problem is to find out how minimum this un-
certainty is.

Let us consider two vectors 	v1 and 	v2. According to the Cauchy–Schwarz inequal-
ity, their inner product for higher order terms is given by

∣∣〈	v1, 	v2〉
∣∣2 = |	v1|2|	v2|2 cos2 θ

(
0 ≤ cos2 θ ≤ 1

)
⇒ ∣∣〈	v1, 	v2〉

∣∣2 ≤ |	v1|2|	v2|2. (C.5)

Consequently, the numerator of Eq. (C.4) can be written as

∥∥tx(t)
∥∥2

2

∥∥∥∥dx(t)

dt

∥∥∥∥
2

2
≥

∣∣∣∣
〈
tx(t),

dx(t)

dt

〉∣∣∣∣
2

≥
∣∣∣∣
∫ ∞

−∞
tx(t)

dx(t)

dt
dt

∣∣∣∣
2

≥
∣∣∣∣
∫ ∞

−∞
t Re

[
x(t)

dx(t)

dt

]
dt

∣∣∣∣
2

, (C.6)

where, dx(t)
dt

indicates the complex conjugate of dx(t)
dt

(as these expressions are also
valid for complex functions). The real part of a complex function (z) can be written

as Re(z) = ( z+z̄
2 ), where z = x(t)

dx(t)
dt

and its complex conjugate, z̄ = x(t)
dx(t)
dt

=
x(t)

dx(t)
dt

. Thus,

Re

[
x(t)

dx(t)

dt

]
= 1

2

[
x(t)

dx(t)

dt
+ x(t)

dx(t)

dt

]

= 1

2

d

dt

[
x(t).x(t)

]

= 1

2

d

dt

∣∣x(t)
∣∣2

.

Therefore, from Eq. (C.6), we have

∥∥tx(t)
∥∥2

2

∥∥∥∥dx(t)

dt

∥∥∥∥
2

2
≥

∣∣∣∣1

2

∫ ∞

−∞
t

d

dt

∣∣x(t)
∣∣2

dt

∣∣∣∣
2

. (C.7)

Solving the integral in Eq. (C.7) using integration by parts, we get t |x(t)|2|∞−∞ −∫ ∞
−∞ |x(t)|2 dt .

Since
∫ ∞
−∞ t2|x(t)|2 dt is finite, and for the integral in Eq. (C.6) to converge,

t |x(t)|2|∞−∞ = 0 as t → ±∞.
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Accordingly, we have

∥∥tx(t)
∥∥2

2

∥∥∥∥dx(t)

dt

∥∥∥∥
2

2
≥ 1

4

∣∣∣∣−
∫ ∞

−∞
∣∣x(t)

∣∣2
dt

∣∣∣∣
2

≥ 1

4
‖x‖4

2.

Substituting the above value in Eq. (C.4), we get

σ 2
t σ 2

ω ≥
1
4‖x‖4

2

‖x‖4
2

σ 2
t σ 2

ω ≥ 1

4
= 0.25.

This proves that the uncertainty in the measurement of any two parameters such
as time–frequency or position–momentum, etc., can never be less than 0.25. The
equality in Eq. (C.5) can be achieved, only when cos2 θ = 1. This implies that the two
vectors [	v1 = tx(t)] and [	v2 = dx(t)

dt
] must be collinear (that is, linearly dependent).

This leads to
dx(t)

dt
= A0tx(t) (A0 = constant). (C.8)

Equation (C.8) can be solved to get x(t) = CeA0t
2/2. Since the functions we con-

sidered are finite, A0 must be a negative real number (say, −1) and C is a constant.
Therefore, the optimal analyzing function, which enables time-frequency represen-
tation of a signal with least uncertainty is the Gaussian function, x(t) = e−t2/2. The
same analogy can be extended to space-domain signals like well-logs.
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