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a b s t r a c t 

Understanding of the spatio-temporal behaviour of nonlinear geophysical signals, such as ionospheric to- 

tal electron content (TEC) by multifractal analysis brings out the chaotic and intermittent nature of the 

signal under consideration. Wavelet-based multifractal analysis was performed on TEC data and the hor- 

izontal component of the Earth’s magnetic field (henceforth referred to as H-component) data recorded 

during geomagnetic storm events at a few sites in equatorial, mid-latitude and high latitude regions (30 o S 

to 80 o N), confined to a narrow longitude band ( 35 o W − 80 o W ) (geographic coordinates) during the solar 

minimum (2008) and solar maximum (2014) years. The study was done using the magnitude cumulant 

analysis of the wavelet transform. The advantage of this technique, over the well known wavelet trans- 

form modulus maxima (WTMM) method in studying the multifractal behaviour of nonlinear signals is 

explained. Results show that during the major geomagnetic storm events (Dst. Index ≤ −50 nT) both 

TEC and the H-component data exhibit strong multifractal behavior and that the degree of multifractality 

(representative of the width of the multifractal spectrum) for the H-component data is more than that of 

TEC for all latitudes regardless of solar conditions. A nonlinear P-model, representative of multiplicative 

cascades for the above data sets, also supports the above observation. It has been observed that these 

observations hold good when multifractal behaviour of TEC data, with and without its dominant diur- 

nal component, is compared with that of H-component data. A statistical hypothesis testing of the above 

results obtained using bootstrapping technique also establishes the significance level of the multifractal 

behaviour of the data. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Ionosphere is a part of the Earth’s upper atmosphere, which is

ighly ionized and lies at an altitude ranging from 60 km to 10 0 0

m. The main source for ionization is the solar radiation. The elec-

ron density in the ionosphere exhibits spatio-temporal variation

arying as a function of latitude (space) and longitude (time) [1] .

ny electromagnetic (EM) wave travelling through the ionosphere

uffers a refraction which depends on the frequency of the EM

ave. In particular, for an EM wave of frequency f o , the ionosphere

cts as a refractive medium with a refractive index, μI , defined as

I = 1 − K I 
f 2 o 

, where K I = −40 . 3 N e , here N e is the number of free

lectrons in the ionosphere (see http://www.gnss.be ). Therefore,

 study of spatio-temporal variation of number of electrons in
∗ Corresponding author. 
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960-0779/© 2020 Elsevier Ltd. All rights reserved. 
he ionosphere, as it affects satellite communication, is an area of

cute research interest among geophysicists and space scientists.

lso the ionospheric total electron content (TEC) is an important

uantity as it facilitates to understand the behaviour of the Earth’s

pper atmosphere during different solar conditions. The typical

EC data show very high intermittency and non-stationarity,

hich suggest the highly complex and nonlinear behaviour of

onospheric dynamics. Therefore, there is a need to employ non-

inear mathematical techniques that can accurately capture these

onlinear dynamics in the underlying signals. 

The electron density in the ionosphere at a given location de-

ends usually on the solar activity like solar EUV flux, the neutral

omposition of the atmosphere and on the combined dynamical

ffect of neutral winds and electric fields [2] . During geomag-

etic storms, a sufficiently intense and long lasting interplanetary

onvection of electric field leads to a substantial energizing of

he Earth’s magnetosphere. This disturbance in the interplanetary

edium can be attributed to solar coronal mass ejection (CME),

https://doi.org/10.1016/j.chaos.2020.109653
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109653&domain=pdf
http://www.gnss.be
mailto:esekhar@iitb.ac.in
https://doi.org/10.1016/j.chaos.2020.109653
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Table 1 

List of TEC and geomagnetic observatory sites, whose data were used in the present 

study. 

S.No. Latitude Zone 

IGS (TEC) and IAGA (Mag. obs.) codes 

and coordinates for the sites 

1. Lower Latitude Zone CRO1 (Lat.:17.756, Long.:-64.58) 

SJG (Lat.:18.117, Long.:-66.42) 

2. Middle Latitude Zone ALGO (Lat.:45.958, Long.:-72.071) 

OTT (Lat.:45.403, Long.:-75.552) 

3. High Latitude Zone QAQ1 (Lat.:60.715, Long.:-46.01) 

NAQ (Lat.:61.167, Long.:-45.435) 

Table 2 

List of geomagnetic storm events together with their respective Dst indexes cor- 

responding to solar quiet (2008) and disturbed (2014) years. The H-component 

data and TEC data used in this study correspond to these dates. 

S.No. Storm Duration Dst. Index 

1. 28-29 Feb, 2008 -52 nT. 

19-20 Feb, 2014 -119nT. 

2. 26-28 March, 2008 -56 nT. 

28 th Feb.-2 nd March, 2014 -52 nT. 

3. 09-10 August, 2008 -57 nT 

27-29 August, 2014 -79 nT 

4. 04 September, 2008 -51 nT 

12 September, 2014 -88 nT 

5. 11 October, 2008 -54 nT 

14 October, 2014 -50 nT 
which often leads to sudden changes (usually decrease) in the

H-component intensity and also in the electron density of the

ionosphere [3] . Dst (abbreviation for Disturbance storm time)

is an important index for studying the geomagnetic storms and

related phenomena [4] . This index characterizes the intensity and

nature of the geomagnetic storms [5,6] . Knowledge of the dynamic

behaviour of both these nonlinear geophysical data sets recorded

simultaneously, is always important. 

Multifractal analysis of signals provides us with a set of mea-

sures that indicates the intermittency and chaos in the process of

generating the signal [7] . The main aim of multifractal analysis is

to quantify the local scaling behavior of signal under consideration.

From the statistical point of view, such an analysis tells us the

presence of long term or short term correlations present in the

signal. In the context of signal analysis, such an approach provides

a way to come up with parametric models for signals based on

the exponents that are obtained from local scaling behaviour of

the signals under consideration [8–10] . Various methods for mul-

tifractal analysis of signals and other multidimensional measures

exist in the literature, which give more or less the same results for

physical data [11–15] . For 1-D signals multifractal analysis involves

local detrending of the signal in the natural domain (time, space).

This is done to remove any polynomial trends that masks the

singularities in the data. Popular techniques in this regard are DFA

(Detrended Fluctuation Analysis) and MFDFA (Multifractal DFA)

[13,14,16–18] . Another important time-frequency based method

that is widely used for doing multifractal analysis is the wavelet

transform modulus maxima (WTMM) method. It essentially relies

on the fact that most of the useful information in the data can be

retrieved by following the local maxima of wavelet transform at

different scales [11,12,19,20] . 

Wavelets have proven to be important mathematical tools to

analyze nonstationary signals because in most of the naturally

occurring signals the nonstationarity arises due to the presence

of the polynomial trends in the data [15,20] . The number of van-

ishing moments that each wavelet possess helps to remove these

polynomial trends in the data, resulting in easy identification of

singularities for their subsequent characterization [21] . A wavelet

function having n vanishing moments, n ∈ Z + , can unmask or

detrend the polynomial trends of order n − 1 in the data and

make the data more stationary. Then, ergodicity argument can be

applied to the detrended data to calculate higher order statistical

moments. These statistical moments help to determine various

multifractal measures that indicate the nonlinearity and chaos in

the dynamics of the system that generates them [19,22] . 

Two well-known ways of performing wavelet analysis are: Con-

tinuous wavelet transform (CWT) and Discrete wavelet transform

(DW T). CW T is employed to study the multifractal behavior of data

using WTMM method [12,19,20] and magnitude cumulant analysis

method [23,24] . DWT is employed to study the multifractal be-

haviour of the data using wavelet leaders and wavelet p-leaders

[25–27] . In this paper we employ the wavelet-based nonlinear

multifractal formalism, involving the magnitude cumulants of

wavelet transform coefficients obtained by CWT to effectively

characterize the TEC recorded during solar minimum (2008) and

solar maximum (2014) years. 

An important parametric model for multifractal data is pop-

ularly known as P-model of multiplicative cascades [28,29] .

P-models are characterized by the value of a parameter P that

can be used to quantify the degree of multifractality in the data,

representative of the spectral width of a multifractal process. In

this paper P-models corresponding to H-component data and TEC

data of different latitudes have been identified and discussed

concerning the dynamics of these multifractal processes. 

The paper is organized as follows. Section 2 provides the

details of the database. Section 3 briefly describes wavelet-based
ultifractal formalism based on cumulants of the magnitude

f wavelet transform, followed by fitting the P-model of multi-

licative cascades [30] for the singularity spectrum obtained via

avelet-based multifractal formalism. Section 4 describes some

esults related to multifractal analysis based on the technique

escribed in Section 3 and inspecting the statistical significance

f the empirical results obtained using bootstrapping technique.

inally Section 5 provides the conclusions. 

. Data Base 

For the present study, GPS data corresponding to the solar

inimum (2008) and solar maximum (2014) years have been

btained from Scripps Orbit and Permanent Array Centre (SOPAC),

alifornia (see http://sopac.ucsd.edu/dataBrowser.shtml ), where

 repository of GPS data from different IGS (International GNSS

ervice) stations (see http://www.igs.org/network ) is maintained.

ull description of the downloaded data and the procedure to

alculate TEC values from GPS data can be found in [18] (see also

ttp://seemala.blogspot.in/ ). 

The H-component data, sampled at 1 min. interval and the

st index sampled at 1 hr. interval were downloaded from World

ata Center (WDC-C2) for geomagnetism, Kyoto, Japan ( http://wdc.

ugi.kyoto-u.ac.jp/index.html ) and World Data Center (WDC) for

eomagnetism, Edinburgh ( http://www.wdc.bgs.ac.uk/data.html ).

n the present study, we considered the TEC and the H-component

ata of only those days, when the Dst. index is ≤ -50 nT. 

The sites corresponding to TEC and H-component data are

hosen in such a way that they are located as closely as possible.

able 1 gives the list of magnetic observatories and IGS sites for

EC together with their geographic coordinates considered for the

resent study. Fig. 1 shows an example plot of variation of Dst.

ndex, the H-component data recorded at a low latitude station,

JG and the TEC data recorded at the site, CRO1 corresponding

o the geomagnetic storm event of March, 2008. Table 2 lists the

umber of geomagnetic storm events considered for analysis in

he present study that correspond to 2008 and 2014 recorded at

he sites given in Table 1 . The TEC data considered in the present

http://sopac.ucsd.edu/dataBrowser.shtml
http://www.igs.org/network
http://seemala.blogspot.in/
http://wdc.kugi.kyoto-u.ac.jp/index.html
http://www.wdc.bgs.ac.uk/data.html
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Fig. 1. Variation of (a) Dst index, (b) Horizontal component of the Earth’s magnetic field recorded at SJG and (c) TEC recorded at CRO1 (see Table 1 for site co-ordinates). 

Portion of the data shown in the dashed box corresponds to the geomagnetic storm event of 26-28 March, 2008. 
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tudy correspond to the same dates of geomagnetic storms shown

n Table 2 , but recorded at IGS sites. 

. Wavelet transform-based multifractal analysis 

.1. Multifractal formalism 

Multifractal formalism is the process of extracting spectrum of

ingularities from a given sample path of a stochastic process. A

unction f : R → R has a local Hölder exponent h ( x o ) around the

oint x o if, 

 f (x ) − P n (x − x o ) | ≤ C| x − x o | h (x o ) (1)

ere, C is the proportionality constant, h ( x o ) is the largest real

umber for which the Eq. (1) holds. P n (x − x 0 ) is the polynomial

f degree n ∈ Z + such that n ≤ h (x o ) < n + 1 . P n (x − x 0 ) is the n th 

rder Taylor series approximation of the function in the neighbor-

ood of x 0 . For example, if 2 ≤ h ( x o ) < 3 then the singularity is

n the second derivative of f and P n (x − x 0 ) is the second order

aylor series approximation of f ( x ) in the neighborhood of x 0 .

imilarly, if 0 ≤ h ( x 0 ) < 1, then P n (x − x 0 ) is just the value of the

unction at x 0 . With the above definition intact, one can define the

pectrum of singularities for a function f as D ( h ), where D ( h ) is the

ausdorff dimension of all the points x 0 in the domain of f , where

he local singularity exponent is h . If h varies largely (remains

onstant) throughout the domain of f , then, such a function is

alled multifractal (monofractal). 

An important parametric model for monofractals is given in

erms of their self-similarity. According to Mandelbrot et al. [8],

 process f ( t ) is self-similar with stationary increment, τ if for

> 0 and μ ∈ R , 

 f (t o + τ ) − f (t 0 ) } ≈ { μ−H [ f (t o + μτ ) − f (t o )] } (2)

ere, “ ≈ ” indicates identity in finite dimensional distribution

Note here that f ( t ) is treated as a stochastic process. So the value

his function takes at each t is a random variable). H is called the

urst exponent and has the same connotation as Hölder exponent

n deterministic setting. The value of H lies between 0 and 1.

 > 0.5 indicates the presence of long-range dependencies (LRD)

n the data, which indicates that increasing trends in the past

mplies increasing trend in the future and vice-versa. H < 0.5
ndicates the presence of short range dependence (SRD), which

ndicates anti-persistent behaviour in the data, suggesting increas-

ng trends in the past implies decreasing trend in the future and

ice-versa. However, H = 0 . 5 represents a complete random time

eries [31,32] . 

.2. Wavelet-based multifractal formalism and singularity detection 

In recent years, the wavelet transform has proven to be an

mportant tool for the analysis of multifractal measures and

unctions [12,25,26] . Wavelets are the functions that have finite

ime-bandwidth product [20] . They have zero average (if ψ( t ) is a

avelet function then 

∫ 
R 
ψ(τ ) dτ = 0 ) and unit L 2 norm, i.e, the

avelet function ψ , follows, 

 ψ ‖ 

2 
L 2 = 

∫ 
R 

| ψ (τ ) | 2 dτ = 1 

hese two properties leads to the admissible condition, 

 ∞ 

0 

| ˆ ψ (ω) | 2 
| ω| dω < ∞ 

here ˆ ψ represents the Fourier transform of ψ [33] . Wavelets

urn out to be a complete orthonormal basis for the space

f finite energy signals, i.e. for the set of functions in

 2 (R ) := { f, ∀ f ∈ L 2 (R ) , 
∫ 
R 
| f (τ ) | 2 dτ < ∞} . This property leads

o a sparse representation of signals in the wavelet domain. For

he purpose of singularity detection, non-orthogonal decomposi-

ion of signals (or functions) in terms of wavelets of varying scale

s proven to be useful and is commonly referred to as continuous

avelet transform (CWT) in literature [34,35] , i.e. for a function

f ∈ L 2 (R ) the CWT is given by: 

 T f (u, s ) = 〈 f, ψ u,s 〉 = 

∫ 
R 

f (t) ψ 

∗
u,s (t) dt (3)

ere, ∗ denotes the complex conjugate of the function and

 u,s (t) = 

1 √ | s | ψ( t−u 
s ) . The normalization factor 1 √ | s | ensures that

 ψ u,s ‖ L 2 remains independent of the translation parameter ( u )

nd the scale ( s > 0). It has been shown that the information

egarding the local singularity(Hölder) exponent can be extracted

y following the decay of | WT f ( u, s )| over the finer scales in the
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Fig. 2. a) H-component data recorded at SJG and (b) TEC data recorded at CRO1 during the 26-28 March 2008 storm event. Corresponding Lines of maxima of wavelet 

transform obtained using the first derivative of the Gaussian wavelet c) for the H-component data and d) for TEC data. 
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neighbourhood of the points, i.e. if the local Hölder exponent

of a function f around a point is α, then | W T f (u, s ) | ≤ C| s | α+ 1 
2 

[15,20] . The Gaussian family of wavelets have proven to be very

well suited for the purpose of singularity detection because, the

use of derivatives of Gaussian as the analyzing wavelet guarantees

the propagation of maxima line to the finest scale considered in

analysis [11,20] . These wavelets are obtained by taking successive

derivatives of Gaussian function. A Gaussian wavelet of order

N is defined as ψ 

N 
g (t) = 

d N 

dt N 
e 

−t 2 

2 , which will have N vanishing

moments and nullifies all the local polynomial trends upto degree

N − 1 . If ψ 

N 
g has N vanishing moments, then for all m , 0 ≤ m < N ,

we have 
∫ 
R 

t m ψ 

N 
g (t) dt = 0 . Using these properties one can define

a wavelet transform modulus maxima (WTMM) [9–11,19,20,22,36] ,

as the local maxima at each scale s , of the modulus of wavelet

transform. WTMM is a process of estimating the multifractal

attributes of the data using a set of curves, called lines of maxima

(LoM) in the time-frequency plane. These LoM converge to several

points on the translation (time) axis as scale s → 0, signifying

the occurrences of singularities in the data at those times. The

nature of singularities can be seen from the power law behaviour

of the modulus of wavelet transform along the maxima lines as a

function of scale [11,19,20] . Fig. 2 depicts the H-component data

( Fig. 2 a), TEC data ( Fig. 2 b) and their respective LoM ( Fig. 2 c and

d) corresponding to a geomagnetic storm event of March 2008,

recorded at low-latitude region. 

As proposed by Arneodo et al. [22,37] , Holschneider et al.

[38] and Muzy et al. [19] , one can define the partition function

using the wavelet transform coefficients as: 

Z(q, s ) = 

∑ 

l∈L (a ) 

[
sup 

(τ,s ′ ) ∈ l,s ′ <s 

| W T f (τ, s ′ ) | ]q (4)

Here L (a ) is the set of maxima lines that converges to the singular

point in the domain of f . The ‘sup’ in Eq. (4) implies that for any

particular scale of interest, say, s 1 , all the wavelet coefficients

that are below s and lie on the LoM are considered and supre-
1 
um is calculated. Then the coefficient at s 1 will be replaced

y the supremum, before proceeding for further analysis [35,38] .

q. (4) also implies that at q = 0 , Z(0 , s ) = N s , where N s is the

umber of maxima lines at the scale, s . The effectiveness of using

his partition function is explained in Muzy et al. [12,19] and

enugopal et al. [24] . For different values of q ∈ R , as s → 0,

(q, s ) behaves as 

(q, s ) ∼ s τ (q ) (5)

y taking the Legendre transform of τ ( q ) one can obtain the

pectrum of singularities D ( h ) as [20] . 

 (h ) = min 

q ∈ R 
[ qh − τ (q )] (6)

he behaviour of τ ( q ) around q = 0 indicates the degree of multi-

ractality of a signal. In particular if τ ( q ) is linear or d 2 τ (q ) 

dq 2 

∣∣
q =0 

= 0 ,

hen that indicates the monofractal behaviour of the data. Alter-

atively, around q = 0 , if d 2 τ (q ) 

dq 2 

∣∣
q =0 

< 0 , then there exist many

caling exponents resulting in multifractal behavior of the data

nd thus the large negative values indicate higher degree of

ultifractality and vice-versa [12,20] . Also for the continuously

ifferentiable τ ( q ), the following relationships hold 

 = 

dD (h ) 

dh 

(7)

(q ) = qh − D (h ) (8)

nd equivalently, 

 (q ) = 

dτ (q ) 

dq 
(9)

his completes the multifractal formalism. In summary, the na-

ure of multifractal attributes like τ ( q ), h ( q ), and D ( h ) provide

nformation about the scaling behaviour of multifractal process.

he computation of D ( h ) vs. h curve can be understood as the

omputation of entropy vs. internal energy of a multibody system.
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Fig. 3. Mutifractal attributes of the data in Fig. 2 obtained using cumulants of wavelet transform. Solid lines (H-component data) and dashed lines (TEC data) represent the 

variation of (a) the scaling exponent, τ ( q ) as a function of order of moments q (b) the generalized Hurst exponent, h ( q ) as a function of order of moments q and (c) the 

multifractal singularity spectrum. 
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he quantities q and τ ( q ) have a similar analogous meaning in

hermodynamics (Arneodo et al. [22] and references therein). With

he help of τ ( q ) determined from Eq. (5) , one can asses the degree

f multifractality by inspecting the non linear behavior of τ ( q )

ithin the small neighborhood of q = 0 ( Fig. 3 a). The extent of

onlinearity observed in the q − τ (q ) curve determines the degree

f multifractality in the data. The generalized Hölder exponents

 ( q ) can be derived from τ ( q ) (see Eq. 9 and Fig. 3 b). Equation (6)

s then used to obtain the singularity spectrum. The width of sin-

ularity spectrum is proportional to the degree of multifractality

f the data ( Fig. 3 c). However, the multifractal spectra estimated

sing the above method has been found to be taking longer time

or larger data sets. As advocated by [23,24] the efficacy in the

omputation of multifractal spectra can be improved by using

agnitude cumulants of the wavelet transform rather than the

avelet transform coefficients themselves. In the following section,

e provide a brief description of the methodology of estimating

he multifractal spectra using magnitude cumulants of wavelet

ransform and its application to the present data. 

.3. Estimation of multifractal attributes using cumulants of wavelet 

ransform 

If X is a random variable with pdf P(x ) as probability density

unction, then we can define a characteristic function or moment

enerating function �x ( k ) (Here x ∈ R is the value that the random

ariable X takes) associated with it as, 

x (k ) = E [ e ikx ] = 

∞ ∫ 
−∞ 

e ikx P(x ) dx (10)

ere E (. ) is the expectation operator. Also, equivalently, 

x ( k ) = E 

[
e ikx 

]
= E 

[ 

∞ ∑ 

n =0 

( ikx ) 
n 

n ! 

] 

. 

sing the linearity property of expectation operator, we obtain, 

x (k ) = 1 + 

∞ ∑ 

n =1 

M n 
(ik ) n 

n ! 

here, 

 n = 

∞ ∫ 
−∞ 

x n P(x ) dx 
s the n th order non-central moment of X for n = 1 , 2 , ... . Similarly,

umulant generating function of X, ψ x ( k ) is given by 

x (k ) = log �x (k ) (11)

x ( k ) has the power series expansion of the form, 

x (k ) = log E [ e ikx ] = 

∞ ∑ 

n =1 

C n 
(ik ) n 

n ! 
(12)

 n are the n th order cumulants of X . Value of the C n can be

btained as, 

 n = (i ) −n d n 

dk n 
�x (k ) 

∣∣
k =0 

(13)

lso, 

x (k ) = log �x (k ) 

= log 
[
1 + M 1 

(ik ) 

1! 
+ M 2 

(ik ) 2 

2! 
+ M 3 

(ik ) 3 

3! 
+ ... 

]
sing 

og (1 + r) = r − r 2 

2! 
+ 

r 3 

3! 
− r 4 

4! 
+ ... 

here, 

 ≡ M 1 
(ik ) 

1! 
+ M 2 

(ik ) 2 

2! 
+ M 3 

(ik ) 3 

3! 
+ ... 

o, 

x (k ) = M 1 (ik ) + (M 2 − M 

2 
1 ) 

(ik ) 2 

2! 
+ (14) 

(M 3 − 3 M 1 M 2 + M 

3 
1 ) 

(ik ) 3 

3! 
+ ... 

rom Eqs. (13) and (14) its easy to verify that cumulants and

oments are related to each other in the following way, 

 1 = M 1 

 2 = M 2 − M 

2 
1 

 3 = M 3 − 3 M 2 M 1 + M 

3 
1 

. . . 

ore details on moments, cumulants and the relation between

hem can be found in [39] . The behaviour of | WT f ( τ , s )| q as a

unction of scale s (see Eq. (4) ), can be written to denote its

ependence only on the scales as, 

 [ | W T s | q ] = E [ e q log | W T s | ] (15)
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Since, we are only interested in calculating the sum of modulus

maxima over the lines of maxima, from Equation (4) we have 

E [ | W T s | q ] = 

1 

N s 
Z(q, s ) (16)

Where N s is the number of maxima lines at a scale s and it has

a power law relation with s . N s ∼ s −d f , d f is the fractal dimension

of the support of singularities. Noting that Z(q, a ) ∼ s τ (q ) [20] , we

have 

E [ | W T s | q ] ∼ 1 

s −d f 
s τ (q ) ∼ s τ (q )+ d f (17)

Therefore, 

s τ (q )+ d f ∼ E [ e q log | W T s | ] (18)

⇒ [ τ (q ) + d f ] log s ∼ log 
{
E [ e q log | W T s | ] 

}
(19)

using eq. (12) it can be seen that 

log 
{
E [ e q log | W T s | ] 

}
= log 

{
E [ e qi ( log | W T s | ) /i ] 

}
= 

∞ ∑ 

n =1 

κn 
(iq ) n 

n ! 
(20)

Here, κn are the cumulants of log | W T s | 
i 

. So, C n = κn × (i ) n are the

cumulants of log | WT s | [23] [24] . Now rearranging the terms in eq.

(20) and substituting it in eq. (19) we, get 

∞ ∑ 

n =1 

C n (s ) 
q n 

n ! 
∼ [ τ (q ) + d f ] log s (21)

or 

−d f log s + 

∞ ∑ 

n =1 

C n (s ) 
q n 

n ! 
∼ τ (q ) log s (22)

Where, 

 1 (s ) ≡ E 

[
log | W T s | 

]
∼ c 1 log (s ) (23)

 2 (s ) ≡ E 

[
log 

2 | W T s | 
]

−[
E 

[
log | W T s | 

]]
2 ∼ −c 2 log (s ) (24)
Fig. 4. Comparison of the singularity spectra obtained for H-component and TEC data

cumulant based multifractal analysis corresponding to March, 2008. 
 3 (s ) ≡ E 

[
log 

3 | W T s | 
]

−
3 E 

[
log 

2 | W T s | 
]
E 

[
log | W T s | 

]
+ [

E 

[
log | W T s | 

]]
3 ∼ c 3 log (s ) (25)

. . . 

o, it can now be easily seen that 

( q ) = −d f 
q 0 

0! 
+ 

∞ ∑ 

n =1 

[ 
C n ( s ) 

log s 

] 
q n 

n ! 

= −c 0 + c 1 
q 

1! 
− c 2 

q 2 

2! 
+ c 3 

q 3 

3! 
− ... (26)

rom the above it can easily be seen that one can estimate

( q ) and the D ( h ) curves using the polynomial expansion of

qs. (26) and (6) . For most of the practical purposes, a quadratic

pproximation of τ ( q ) will be sufficient for correctly estimating

he multifractal behaviour of the signal under consideration. For

he multifractal processes that have quadratic τ ( q ) and D ( h ), the

ollowing relation holds [23,24] 

 (h ) = c 0 − (h − c 1 ) 
2 

2 c 2 
(27)

his presents a major advantage over the other wavelet based

ethods like WTMM, where for estimating τ ( q ) one has to an-

lyze the behaviour of Z(q, s ) for a large number of q values.

rom Eq. (26) it can be seen that for a monofractal signal (linear

( q )) only two regressions are needed ( c 0 and c 1 ) and in the case

f multifractals one has to perform three regressions ( c 0 , c 1 , c 2 )

o obtain a quadratic approximation of τ ( q ). This reduces the

omputational time to a great extent even for very large data sets.

ig. 4 shows the comparison of singularity spectrum obtained for

EC and H-component data using WTMM and magnitude cumu-

ant of wavelet transform. The spectrum obtained using WTMM is

imilar to the one obtained using magnitude cumulants of wavelet

ransforms. Similar results were obtained for other sites also.

owever, because of its computational efficiency, the magnitude

umulant of wavelet transform is used in further analysis. 
 corresponding to CRO1 and SJG sites (lower latitude region) using WTMM and 
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Fig. 5. C n ( s ) ( Eq. 26 ) corresponding to the H-component (solid curves) and TEC (dashed curves) data shown in Fig. 2 . For (a) n = 0 (b) n = 1 (c) n = 2 . 

Fig. 6. Multifractal singularity spectra of the H-component data (solid curves) and TEC data (dashed curves) of low latitude stations (a,d), mid-latitude stations (b,e) and 

high-latitude stations (c,f) corresponding to the storm event occurred in the month of March during the solar minimum year (2008) (blue curves) and the solar maximum 

year (2014) (red curves). See Tables 1 and 2 . 
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The multifractality of H-component data and TEC can also be

nferred from the variation of cumulants of wavelet transform (see

q. 21 ) as the function of scales. Using Eqs. (21) and (26) , one can

btain the cumulants ( C ’s) and then the coefficients ( c ’s) of the

olynomial approximation of τ ( q ). Also, from Eqs (21) and (26) , it

an be seen that the coefficients ( c ’s) designate the slopes of the

lots drawn between cumulants ( C ’s) and the logarithm of scales.

ig. 5 shows the variation of the cumulants C n ( s ) as the function

f scale s for n = 0 , 1 , 2 . 

Figs. 6 and 7 show the examples of multifractal singularity

pectra determined for H-component and TEC data for different

atitude zones (see Table 1 ) during storm events in the months of

arch and August respectively (see Table 2 ). 

.4. Multifractal cascades and the P-model 

Due to scale dependent nature of multifractal processes, ad-

itive linear models like ARIMA tend to be insufficient for a

omplete description (or modelling) of the underlined multifrac-

al phenomena. Therefore, to understand the relation between

ifferent multifractal singularity spectra (see Figs. 3 c, 6 and 7 )

nd their respective multiplicative cascade system, a non-linear

-model was fit to the multifractal spectra obtained for various

torm events (see Table 2 ) [28,29] . This model brings out the

nformation about the degree of multifractality of the data using

 parameter P that can be used to quantify the spectral width of

he process. According to the P-model, the singularity exponents h
nd their Hausdorff dimensions D ( h ) are related to each other via

he non-linear relation (see, [28,29] ) 

 = −w log P + (1 − w ) log (1 − P ) 

log 2 

(28) 

 (h ) = −w log w + (1 − w ) log (1 − w ) 

log 2 

(29) 

This model involves the partitioning of a unit line segment into

wo equal sub-segments. The concentration value ( ρ) of the quan-

ity (TEC or H-component data) in the unit segment can be written

s ρP for one half and ρ(1 − P ) for the other half (0 < P < 1),

uch that the the total mass is conserved. At the beginning of

he process ρ can be set equal to 1. The dispersion coefficient

 P ) is independent of the length of the segment. If the value of

 > 0.5, then the maximum and minimum element concentration

fter n subdivision are respectively P n and (1 − P ) n . However, for

 < 0.5, the maximum and minimum element concentrations are

eversed and thus they become (1 − P ) n and P n respectively. For

 particular segment after n subdivision the general concentration

s P k (1 − P ) n −k (0 ≤ k ≤ n ) From these, one can eliminate the

ariable w = 

k 
n and obtain the expression for D ( h ) in terms of h

nd parameters P and thus nonlinear leastsquares can be applied

o obtain the value of these parameters corresponding to the

ultifractal spectrum [28,29,40] . Results of P-model fitting to the

ultifractal spectra corresponding to different latitude zones are

iscussed in the next section. 
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Fig. 7. Same as Fig. 6 , but for the month of August. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

d  

s  

m  

i  

c  

a  

s  

l  

t  

(  

t  

l  

t  

a  

t  

p  

d  

t  

t  

[  

a  

t  

a  

a  

o

 

o  

c  

b  

c  

f  

n  

c  

s

v  

(  

h  
4. Results and Discussion 

4.1. Multifractal analysis of TEC and H-Component data 

Various methods of multifractal analysis provide similar infor-

mation regarding different multifractal attributes of the same data.

Analysis based on the cumulants of CWT coefficients is advan-

tageous because, the number of regressions needed to estimate

different multifractal attributes is greatly reduced (see Section 3.3 ).

Fig. 3 shows various multifractal attributes corresponding to

the H-component and TEC data shown in Fig. 2 . The linear be-

haviour of τ ( q ) for all q ( Fig. 3 a) suggests a monofractal behaviour

of TEC. However, the behaviour of τ ( q ) observed around q = 0

for H-component data ( Fig. 3 a) is nonlinear. This suggests that

the τ ( q ) estimated for H-component data ( Eq. 26 ) involves more

coefficients (higher order q terms) in its polynomial expansion,

making its behaviour nonlinear with respect to q . According to Eq

(9), this results in estimation of more number of Hölder exponents

to characterize the nonlinear behaviour of H-component data.

Fig. 3 b shows that the variation of h ( q ) with respect to q is large

(small) for H-component (TEC) data. This further justifies the

monofractal behaviour of the TEC data, while H-component data

displays multifractal behaviour. This is expected because, the TEC

data generally exhibits a quasi-periodic nature ( Fig. 2 b) compared

to H-component data ( Fig. 2 a) and thus they are less stochastic

than H-component data, regardless of solar conditions. The widths

of the singularity spectra characterize the degree of multifrac-

tality in the data (Kantelhardt et al. [14] and Chandrasekhar

et al. [18] ). The smaller (broader) width signifies the monofractal

(multifractal) behaviour of the data. Accordingly, Fig. 3 c displays

that the degree of multifractality is high for H-component data

compared to TEC data. Hence, all the attributes indicate that the

H-component data is more multifractal in nature than the TEC

data. This explains that the magnetospheric disturbances during

solar active times have largeer influences on geomagnetic data

than on TEC data, thereby making the former highly chaotic than

the latter, even though both are recorded during the same time.

Chandrasekhar et al. [18] show that the TEC at all other periods
xcept at 1-day period shows a higher degree of multifractality

uring solar maximum compared to solar minimum. The TEC

hows a clear monofractal behaviour at 1-day periodicity. The

ultifractal behaviour of TEC and H-component data determined

n the present study with the novel wavelet-based techniques also

orroborates these observations ( Figs. 6 and 7 ). Although the TEC

nd H-component data sets correspond to the same geomagnetic

torm event, the multifractal spectral widths are smaller during

ow solar activity (see Figures ( 6 a, 7 a), ( 6 b, 7 b), ( 6 c, 7 c)) compared

o those during high solar activity (see Figures ( 6 d, 7 d), ( 6 e, 7 e),

 6 f, 7 f)). Also from the figures ( 6 b, 7 b) & ( 6 e, 7 e), we can see that

he spectral width of the H-component at mid-latitude stations is

ess than that of low and high latitude stations. It is well known

hat the horizontal component of the Earth’s magnetic field is

bnormal during the geomagnetically disturbed times due to

he strong presence of the ring current [41,42] in the equatorial

lane. Also stations at higher latitudes are more geomagnetically

isturbed than those at low latitudes. However, at mid latitudes,

he field aligned currents have the largest contribution to both

he H and D magnetic components. The studies of Pulkkinen et al.

43] have shown that the induced geo-electric field magnitudes

re smaller by an order at around 50 o geomagnetic latitude. Hence

he geomagnetic disturbance in the horizontal component are less

t mid latitudes compared to those at the equatorial, low latitudes

nd at high latitudes. This is well reflected in the spectral widths

f the horizontal component ( Figs. 6 and 7 ). 

Fig. 5 shows the variation of the cumulants C n ( s ) as the function

f scale s for n = 0 , 1 , 2 . As explained in the previous section, the

oefficients of polynomial expansion c n (see Eqs. 26 and 27) can

e obtained as the slope of straight line fit to the C n ( s ) vs log s

urve. From Eq. (26) , it can be seen that c 0 = d f , where d f is the

ractal dimension of the support of singularity and is related to the

umber of maxima lines at a given scale [23] . So, a higher value of

 0 indicates the presence of more singularities in the data at lower

cales. Accordingly, the H-component data that shows higher c 0 
alue compared to TEC data ( Fig. 5 a) has more singularities in it

 Fig. 2 c) than TEC ( Fig. 2 d). The value of c 1 represents the mean

 (the value of h for which D ( h ) is maximum i.e., D (h ) = 1 in our
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Fig. 8. Multifractal singularity spectra of H-component data corresponding to NAQ (see Table 1 ) for a storm event in the month of August (see Table 2 ). 
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ase) as the scale s → 0 [23] . It can be clearly seen from Fig. 5 b

hat both for the H-component data and TEC data, the straight line

t to the C 1 ( s ) vs. log s curve results in an identical slope, resulting

n the mean h value for both the data sets to be identical. This can

e clearly seen in Fig. 3 c, where the multifractal spectra of TEC and

-component coincide at D (h ) = 1 . The coefficient c 2 is related to

he 2 nd order derivative of τ ( q ) in the neighborhood of q = 0 . The

agnitude of c 2 indicates the degree of nonlinearity of τ ( q ) in the

eighborhood of q = 0 . Hence, it can be seen from Fig. 5 c that the

agnitude of the slope of a straight line fit for C 2 ( s ) vs. log s curve

or H-component (TEC) data is large (small), resulting in the larger

smaller) multifractal spectral width ( Fig. 3 c). The nature of c 0 , c 1 
ig. 9. Fourier transform of raw TEC data during a geomagnetic storm event in March du

urves) for low-latitudes (a,d), mid-latitudes (b,e) and high-latitudes (c,f). Dominant diurn
nd c 2 coefficients have been observed to be similar for all the

torm events corresponding to solar minimum (2008) and maxi-

um (2014) years shown in Table 2 . The smaller multifractal spec-

ral widths for TEC data ( Figs. 3 c, 6 and 7 ) signify their monofractal

ehaviour, which can be attributed to their quasi-periodic nature

ith a fundamental period of about 1 day [18] . The widths of mul-

ifractal singularity spectra of H-component data ( Figs. 3 c, 6 and 7 )

re larger compared to those of TEC, signifying their multifractal

ehaviour, which can be attributed to their highly stochastic and

haotic nature during different solar conditions. Even among the

-component data alone, the spectral width for 2014 data are

igher compared to 2008 data recorded at the same site ( Fig. 8 ).
ring solar minimum year (2008) (blue curves) and solar maximum year (2014) (red 

al component is indicated with black circles. 
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Fig. 10. Multifractal singularity spectra of the H-component data (solid line) and filtered TEC data with diurnal component removed (dashed line) for low latitude stations 

(a,d), mid-latitude stations (b,e) and high-latitude stations (c,f) corresponding to the storm event occurred in the month of March during the solar minimum year (2008) 

(blue curves) and the solar maximum year (2014) (red curves). See Tables 1 and 2 . 
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This further confirms that the higher degree of stochasticity in the

data results in larger multifractal spectral width and vice-versa.

The singularity spectrum corresponding to the H-component data

is always right skewed. In general, while a right-skewed multifrac-

tal spectrum signifies strongly weighted high fractal exponents,

corresponding to finer structures present in the data, the relatively

low values of fractal exponents, representative of the presence of

coarser structures account for left-skewed spectra [14,18] . 

Fig. 9 shows the Fourier transform of TEC data for low-latitude

stations ( 9 a, 9 d), mid-latitude stations ( 9 b, 9 e) and high-latitude

stations ( 9 c, 9 f) corresponding to a storm event in month of

March during solar minimum year (2008) (blue) curves and solar

maximum year (2014) (red curves). It is evident in all these cases

that, sinusoids having one day period are dominant in the data.

These dominant sinusoids are the main reason for diurnal behavior

of TEC data. So, there is a possibility that many singularities are

hidden or remain undetected in the usual multifractal analysis. To

detect those singularities, we first filter the raw TEC data using a

highpass zero-phase distortion IIR filter. The passband frequency

for this filter is chosen to be 1 . 33 × 10 −5 Hz, corresponding to

the sinusoid having a fundamental period of 20 hours. It can be

observed from Figs. 10 a-–f and 11 a-–f that the widths of the

multifractal spectra of the TEC data significantly increase after the

diurnal frequency is filtered out from the data, compared to those

shown in Figs. 6 a-–f and 7 a-–f, which have the diurnal frequencies

present in the data. This shows that the singularities in the TEC

data are masked by the presence of dominant diurnal compo-

nent. Also, the mean singularity (value of h for which D (h ) = 1 )

in the case of filtered TEC data is always less than that of the

H-component data. This can be attributed to the presence of a

fewer number of cycles present in the filtered TEC data, compared

to those in the H-component data [18] . 

Fig. 12 shows the singularity spectra and their P-model model

fit for different latitude locations corresponding to a storm event

in March 2008. Cheng [29] showed that the value of the parameter
 is directly proportional to the spectral width ( 
h ) of the process

s 

h ∝ log 
P 

1 − P 
(30)

here the proportionality constant is equal to 1 
log 2 

. Fig. 12 shows

uite a good fit between the estimated P-models and their re-

pective multifractal spectra for H-component and TEC data of a

eomagnetic storm event of 2008, corresponding to lower ( Fig. 12 a,

), middle ( Fig. 12 b, e) and higher ( Fig. 12 c, f) latitude zones. It

s noteworthy that the P-model estimates for H-component data

re higher than that for TEC data. It is also interesting to note

he increase in P-model values for the TEC data, when the diurnal

requency component is filtered out from it ( Figs. 11 d–f). Similar

ehaviour was observed for both the data sets of 2014. This further

onfirms the persistent higher degree of stochasticity present in

-component data than in TEC data, regardless of solar conditions.

ince we have considered symmetric multiplicative cascades in

stimating the P-model (see Section 3.4 ), the multifractal spectrum

hat is more symmetric will fit well with the P-model Accordingly,

s can be seen in Fig. 12 , the P-model fitting for TEC data is better,

ompared to that for H-component data. 

.2. Statistical Hypothesis Testing 

For testing the statistical significance of the results, bootstrap-

ing technique as described in [44] is used. For a given time-series

everal instances of shuffled data (10 0 0 in the present study)

re generated to remove any temporal correlation that exist in

he data. Multifractal analysis is then carried out using the same

ethod as described above. Since an uncorrelated time-series

xhibits a monofractal behavior (linear τ ( q )) [22,37] , it should re-

ult a smaller spectral width. Therefore, if we denote the shuffled

ime series for TEC and H-component data as tec rnd and mag rnd ,

hen the width of multifractal spectrum of the shuffled time series
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Fig. 11. Same as Fig. 10 , but for the month of August. 

Fig. 12. P-model fit (dashed-lines) for the multifractal spectra (solid-lines) of H-component data (blue curves) and TEC data (red curves) for lower latitudes (a,d), middle 

latitudes (b,e) and higher latitudes (c,f) for a geomagnetic storm event of March 2008. Red curves in d,e,f represent the multifractal spectra and P-model fits for the TEC data 

after removing the diurnal component. P tec ( P mag ) is the value of the parameter P for the TEC (H-component) data. For (a) lower lat. P tec = 0 . 055 ( P mag = 0 . 2368 ) (b) middle 

lat. P tec = 0 . 088 ( P mag = 0 . 273 ) (c) higher lat. P tec = 0 . 140 ( P mag = 0 . 307 ). Similarly, after removing the diurnal component, (d) P tec = 0 . 277 , (e) P tec = 0 . 2698 , (f) P tec = 0 . 2616 . 
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h tec rnd 
(or 
h mag rnd 

) will be less than that of original data 
h tec (or

h mag ). Therefore, to test this, we establish a null hypothesis 

 0 : 
h tec rnd 
(
h Mag rnd 

) ≥ 
h tec (
h Mag ) (31)

For statistical significance of the empirical results, this hypoth-

sis should be rejected for every shuffled sequence. So, the proba-

ility of H 0 , expressed as p = P (H 0 ) , is calculated. Under the con-

entional significance level of 0.05, the multifractal phenomenon
s statistically significant if and only if p ≤ 0.05. Table 3 gives the

stimated probability values for TEC data and H-component data

f all the sites ( Table 1 ). It can be seen from Table 3 the very low

robability values suggest that the the null hypothesis, H 0 ( Eq. 29 ),

s rejected and thus the width of multifractal spectrum of the shuf-

ed time series 
h tec rnd 
(or 
h ma g rnd 

) has always been less than

hat of original data 
h tec (or 
h mag ). This shows that the results

re statistically significant having a significance level of 95%. 
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Table 3 

Estimated p -values ( p = P ( H 0 )) (see Section 4.2 ) for magnetic observatory sites (1-3) and TEC sites (4-6) for different storms of 

the years 2008 and 2014 (see Table 2 ). 

S.No. Site Code Feb 2008 (2014) March 2008 (2014) Aug. 2008 (2014) Sept. 2008 (2014) Oct. 2008 (2014) 

1 SJG 0(0) 0(0) 0(0.005) 0.002(0.001) 0(0) 

2 OTT 0(0.002) 0.001(0) 0(0) 0(0) 0(0.001) 

3 NAQ 0.01(0) 0(0.003) 0.001(0) 0(0) 0.001(0.002) 

4 CRO1 0.002(0.001) 0(0) 0.004(0.004) 0(0.001) 0.001(0.002) 

5 ALGO 0(0) 0.003(0) 0.001(0.003) 0.002(0.001) 0(0) 

6 QAQ1 0(0.001) 0.0(0.003) 0(0.002) 0(0) 0(0.003) 
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5. Conclusions 

The multifractal behaviour of the ionospheric TEC data vis-a-vis

the H-component data during different solar conditions has been

studied using the cumulants of magnitudes of wavelet trans-

form coefficients. The advantage of determining the multifractal

behaviour of nonlinear data using cumulants over the WTMM

method is, in WTMM method, for estimating the multifractal

attribute, τ ( q ), one has to analyze the behaviour of the partition

function Z(q, s ) for a large range of q values. Whereas, with

cumulants of wavelet transform coefficients, τ ( q ) can be easily

estimated by making the polynomial expansion of τ ( q ) (see

Eq. 26 ) up to three terms only. The results clearly explain that the

degree of stochasticity in H-component data is relatively higher

than that in TEC data at all latitude zones, regardless of solar

conditions. These observations have also been validated by fitting

a nonlinear P-model, representative of multiplicative cascades to

the multifractal singularity spectrum. It was also noticed that the

spectral width for the H-component data was less at mid-latitudes

compared to that of low and high latitudes. This is because, the

induced geo-electric field magnitudes are smaller by an order

at around 50 o geomagnetic latitude. Hence the geomagnetic dis-

turbances in the horizontal component are less at mid latitudes

compared to those at the equatorial, low latitudes and at high

latitudes. A bootstrapping-based statistical hypothesis testing also

establishes the statistical significance of the multifractal behaviour

of both the data sets. The lower degree of multifractality observed

in TEC data is due to the presence of a strong diurnal component,

which masks the singularities in it. This is verified by performing

the multifractal analysis of TEC data with and without the dom-

inant diurnal frequency component present in it. The increased

mulfractal spectral width of the filtered TEC is also reflected by

the increased value of P-model estimates (see Fig. 12 ) 

These results further strongly motivate the apt use of appli-

cation of wavelet transform-based cumulant analysis on various

other nonlinear geophysical data sets for their improved under-

standing and characterization. 

Data availability 

Data used in the present study are freely downloadable from

the following repositories (see also Section 2 ). 
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