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A B S T R A C T

Time-series modeling forms an important area of research in geophysics. Time-series models can be linear,
like linear state-space models or non-linear, like artificial neural networks. One way to judge the goodness of
different models associated with a given time-series is to assess the prediction capabilities of these models.
Some of the important techniques used in time-series forecasting are: (i) Minimum mean squared error
(MMSE) forecast obtained using conditional means of ARIMA(p,d,q) models, (ii) Kalman filter approach and
(iii) Artificial neural networks (ANN) approach. However, the wavelet-based versions of these techniques,
respectively denoted as W-MMSE, W-Kalman and W-ANN, rather than the original techniques themselves,
have been found to possess better capabilities in forecasting the highly nonlinear geophysical data. Using the
original and predicted data, these observations have been validated by determining the RMSE (root mean
squared error) and correlation coefficients between them. The prediction capabilities of both versions of the
above techniques are tested on (i) the ionospheric total electron content (TEC) data, (ii) the daily average
rainfall data and (iii) the gamma-ray log data from an offshore oil well, off the west coast of India. The TEC
and daily average rainfall data sets designate as examples of data with very high correlations pertaining over
very large lags. They also have a strong seasonality component associated with them. However, the gamma-ray
log data sets show no seasonality component and have no trends associated with them. Therefore, the choice
of different nonlinear data sets having diverse sources of their origins are apt to test the forecasting capabilities
of these techniques. It has been observed that W-ANN gives the best prediction, when compared with the other
algorithms discussed in this paper. This is believed to be due to the use of non-linear activation function by
ANNs to produce regression that results in capturing the inherent non-linear dynamics of the process effectively.
The results also show the usefulness of discrete wavelet transform (DWT) coefficients as training features for
both linear and non-linear forecasting approaches. The better performance of the wavelet-based forecasting
algorithms can be attributed to the fact that DWT coefficients are wide-sense stationary sequences. Thus the
wavelet-based versions of these models like W-MMSE and W-Kalman provide better fit to these coefficients,
compared to the original time-series data itself.

1. Introduction

A thorough understanding of non-linear geophysical signals is es-
sential to get a deeper insight into the dynamics governing a complex
geophysical system generating such signals (Holloway Jr., 1958; Huang
et al., 1998; Percival and Walden, 2006). One way to infer the dynamics
of the system from a given time-series is to develop plausible statistical
models that display high degree of correlation with the signals under
study. However, different models with varying complexities can also
be fit to a given non-linear time-series. The quantitative assessment of
the suitability of the derived statistical model to the data in question
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essentially depends on the number of free parameters that the model
has. In other words, the number of free parameters in any statistical
model dictates the efficacy of the model in forecasting the signal with
least error. By free parameters we mean, the parameters that are varied
to find the optimum fit for a model, once the data is given.

Time-series forecasting is an important area of research, in which
past values of the data are used to predict future values by developing
a statistical model, which facilitates to develop a statistical framework
to predict the future values of the system with least predictable error.
This kind of modeling approach is useful, when there is little or no
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information available about different variables and relationship that
exists between them.

Earlier approaches to time-series forecasting involved fitting lin-
ear additive models like auto regressive integrated moving average
(ARIMA) model to the given time-series and using it to predict the
data (Wold, 1938; Box et al., 2015). These predictions are based on the
conditional expectation of ARIMA models and have shown to predict
with minimum mean squared error (MMSE) (Hamilton, 1994). That
means, if we have a set of finite observations, 𝑋1, 𝑋2,… , 𝑋𝑁 , in the
form of a time-series, and if 𝑋̂𝑁+1 denotes the prediction or forecast
of the true future value 𝑋𝑁+1, then the MMSE forecast is the one
which minimizes the conditional variance of error given by 𝐄[(𝑋𝑁+1 −
𝑋̂𝑁+1)2|𝑋1, 𝑋2,… , 𝑋𝑁 ]. Here 𝐄[.] is the expectation operator.

The state-space approach (Kailath, 1980) is a unified framework
to deal with different types of problems in time-series analysis. In
state-space approach, the relationship between the observations (time-
series),𝑋𝑡 = (𝑋1, 𝑋2,… , 𝑋𝑁 )𝑇 and the state-vector, 𝑧𝑡 = (𝑧1, 𝑧2,… , 𝑧𝑁 )𝑇

is governed by the state-space model. The state-space model for a
time-series is given by

𝑧𝑡+1 = 𝛷𝑧𝑡 +𝑤𝑡 (1)

𝑋𝑡 = 𝐶𝑧𝑡 + 𝑣𝑡 (2)

where, 𝛷 ∈ 𝐑𝑁×𝑁 is the state-transition matrix relating the current
state to future state and 𝐶 ∈ 𝐑1×𝑁 is the output matrix relating
the current value of the time-series to the current value of the state-
variable. 𝑤𝑡 and 𝑣𝑡 are uncorrelated (in time and with each other)
random sequences with zero mean and their respective covariances
are symmetric, positive semi-definite matrices 𝑄 and 𝑅 such that
𝐄[𝑤𝑡𝑤𝑇𝑡 ] = 𝑄 and 𝐄[𝑣𝑡𝑣𝑇𝑡 ] = 𝑅. The main aim of the state-space
analysis is therefore to find out the evolution of the vector, once
the observations from the system are given in the form of a time-
series (Durbin and Koopman, 2002, 2012). Once the description of
time-series under consideration is given in the state-space form, then
one can use recursive Kalman filter algorithm (Kalman, 1960) to de-
termine the states 𝑧𝑡 of the system, which in turn can be used to
forecast future values of the time-series (using Eq. (2)) (Kailath, 1980).
Kalman filter is an optimal state-observer that provides the estimate of
the state with minimum error co-variance (Kalman, 1960). This holds
true if the description of the system under consideration is given in
the form of a linear state-space model. So, linearity is an important
assumption, while implementing Kalman filter algorithm. Apart from
linearity, another important assumption is that the input noise 𝑤𝑡 and
measurement noise 𝑣𝑡 are second order stationary Gaussian sequences.

Artificial neural networks (ANNs) have proven to be very useful
in pattern classification and pattern recognition. ANNs are inspired
by biological network of neurons in a human brain and are capable
of learning patterns from the data. One of the important areas where
ANNs are very useful, is the time-series forecasting (Park et al., 1991;
Hill et al., 1994, 1996; Zhang et al., 1998). Several factors make ANNs
as very important tools to address the forecasting problem. Firstly,
while most of the forecasting techniques assume a certain underlying
model for the data under study, ANNs provide a data-driven self
adaptive approach for time-series forecasting without assuming any
apriori model (Hecht-Nielsen, 1992). Secondly, if the number of free
parameters in the network are chosen wisely to avoid the problem of
overfitting, then the ANNs give quite a good prediction for the test
data. Third, ANNs can approximate any continuous functional relation
that exists between the input and the output of the network with
a high degree of accuracy (Funahashi, 1989; Cybenko, 1989; Hagan
and Menhaj, 1994). Finally, forecasting algorithms based on ARIMA
models and Kalman filter approach work under the assumption that the
system generating the data is linear. Since most geophysical systems
have highly non-linear dynamics associated with them and since ANNs
use non-linear activation function to predict the output, forecasting
algorithms based on ANN can best capture the inherent non-linearity

in the system (Specht, 1991; Sarle, 1994). Since the advent of deep
learning, several modification to the basic multi layer perceptron (MLP)
architectures have been introduced for the purpose of time series analy-
sis (Längkvist et al., 2014; Qiu et al., 2014). Deep learning architectures
like RNN (recurrent neural network), LSTM (long–short term memory
networks) and GRU (gated recurrent units) are some of the popular
modifications in the existing MLP architecture of ANNs, which take
advantage of sequential nature of the time-series data (Coulibaly and
Baldwin, 2005; Gers et al., 2002; Yao et al., 2017).

In recent years, wavelet analysis has proven to be an important
technique in the area of time-series analysis (Percival and Walden,
2006; Daubechies, 1992; Nason and Von Sachs, 1999; Chandrasekhar
and Rao, 2012; Sharma et al., 2013; Luo et al., 2016). Discrete wavelet
transform (DWT) can be directly applied to a time-series recorded at
discrete instances of times. DWT gives a multiscale decompositions of
the signal under consideration (Doucoure et al., 2016; Chen et al.,
2006). Mallat’s algorithm (Mallat, 1989) is widely accepted for numer-
ical implementation of DWT. At each level 𝑗 of the decomposition, one
can get an approximation of the data at 𝑗 denoted by the sequence
𝑎𝑗 , known as approximation coefficients. It is assumed that at scale
𝑗 = 0, 𝑎0[𝑛] ∼ 𝑋𝑛, 𝑛 ∈ {1, 2,… , 𝑁}, where 𝑎0[𝑛] represents the finest
approximation of the data. However, the sequence of coefficients 𝑎𝑗 , for
𝑗 > 0 represent coarser approximation of the data. The information lost
between any two consecutive approximations of the data is represented
by a set of detail coefficients 𝑑𝑗 . Accordingly, for 𝑗 > 0 we have;

𝑎𝑗+1[𝑛] =
∞
∑

𝑘=−∞
ℎ[2𝑛 − 𝑘]𝑎𝑗 [𝑘] (3)

𝑑𝑗+1[𝑛] =
∞
∑

𝑘=−∞
𝑔[2𝑛 − 𝑘]𝑎𝑗 [𝑘] (4)

Here, ℎ[𝑛] and 𝑔[𝑛] are quadrature mirror filters (QMF) related to
each other via 𝑔[𝑛] = (−1)𝑛ℎ[1 − 𝑛] (Mallat, 1989; Daubechies, 1992).
These coefficients are the optimum features extracted from the signal
at different decomposition levels and can be used as new features to
train a multilayer perceptron or ANN for time-series prediction (Yousefi
et al., 2005; Partal and Cigizoglu, 2009; Stolojescu et al., 2010).

In the present study, we show that if the data forecasting techniques
like MMSE of ARIMA, Kalman filter approach and ANN are used
together with wavelet analysis, then the performance of the predic-
tion models improves drastically, compared to the case, when these
techniques are directly implemented on the data for prediction. In
other words, the wavelet-based versions of the above techniques largely
improve the prediction accuracy of the time-series data. The metrics
used for comparison of the forecast performance are root mean squared
(RMS) error and correlation coefficient.

The organization of the paper is as follows: Section 2 explains the
database used for the performance analysis of the aforementioned fore-
casting algorithms. Section 3 describes various forecasting algorithms
and their wavelet-based formalism. Section 4 discusses the results
of different forecasting algorithms in the prediction of daily average
rainfall data, TEC data and geophysical well-log data. Finally, Section 5
provides the conclusions of this study.

2. Data

For the present study, GPS data corresponding to the solar minimum
(2008) and solar maximum (2014) years have been obtained from
Scripps Orbit and Permanent Array Centre (SOPAC), California (see
http://sopac.ucsd.edu/dataBrowser.shtml), where a repository of GPS
data from different IGS (International GNSS Service) stations (see http:
//www.igs.org/network) is maintained. Full description of the down-
loaded data and the procedure to calculate TEC values from GPS data
can be found in Klobuchar et al. (1996), Seemala and Valladares (2011)
and Chandrasekhar et al. (2016) (see also http://seemala.blogspot.in/).
TEC data from six different stations was collected. Every cycle (per day)
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Table 1
Description of different data-sets used for analysis in the current manuscript.

Data-set Number of
features

Number of samples
in training data

Number of samples
in test data

TEC data (all stations) 1 14 400 1440
Average rainfall data
(all stations)

1 2920 365

Well-log data 1 1950 50

of TEC data has 1440 points (with a sampling interval of one minute).
Data of past 10 days was used to predict the data points of 11th day.

Secondly, five different sets of daily average rainfall data were
collected from various geographical locations of India such as Goa,
Mumbai, Jaipur, New Delhi and Cherrapunji, having different rain-
fall patterns. Future prediction for the year 2017 was done by using
datasets from 2009–2016 for different forecasting algorithms. Also,
gamma-ray log data from an offshore well of ONGC (Oil and Natural
Gas Corporation), India, was used to test the performance of the fore-
casting algorithm. Table 1 gives a brief description of the time-series
data considered for analysis in the present manuscript.

3. Methodology

This section briefly describes different forecasting algorithms used
in the current study. In the first approach, some part of the observations
(known as training data) were used to train (i) ARIMA(p,d,q) models
(ii) Kalman filter and (iii) an ANN to predict the future values. These
values were then compared with the true values (referred to as the test
data) for calculating RMSE and correlation coefficient. In the second
approach, the wavelet-based version of the above techniques, namely,
(i) W-MMSE of ARIMA(p,d,q) models, (ii) W-Kalman and (iii) W-ANN
were introduced, wherein the ARIMA(p,d,q) models, Kalman filter and
ANN were trained using the wavelet coefficients of the training data to
predict the wavelet coefficient of the test data. Once the wavelet co-
efficients were predicted, then the inverse wavelet transform (Sharma
et al., 2013; Mallat, 1989) was performed to reconstruct the time-series.
The reconstructed time-series was then compared with the test data to
compute the RMSE and correlation coefficients. Detailed description of
these two approaches is given below.

(i) Let 𝑋1, 𝑋2,… , 𝑋𝑁 denote a set of observations in the form of
time-series corresponding to a geophysical process. Then, a fore-
cast of the process at a forecast horizon ℎ is denoted as 𝑋̂𝑁+ℎ and
can be thought of as an outcome of a functional relation relating
𝑋̂𝑁+ℎ to the past forecasts 𝑋̂𝑁+1, 𝑋̂𝑁+2,… , 𝑋̂𝑁+(ℎ−1) and to the
given data, 𝑋1, 𝑋2,… , 𝑋𝑁 i.e., 𝑋̂𝑁+ℎ = 𝑓 (𝑋1, 𝑋2,… , 𝑋𝑁 , 𝑋̂𝑁+1,
𝑋̂𝑁+2,… , 𝑋̂𝑁+(ℎ−1)). Depending upon the model imposed on the
data, the function 𝑓 (.) can be either linear or non-linear. Paramet-
ric approaches like MMSE forecast using ARIMA(p,d,q) models
and Kalman filter method assume that there is an underlying
linear model, which is responsible for generating the observed
data. However, ANN does not assume any such constraint on the
model to generate the data. In the first approach, different fore-
casting algorithms were applied to the data directly for prediction
and their individual performances were assessed subsequently.
Next, the results of individual techniques were compared using
their respective metrics like root mean-squared error (RMSE) and
correlation coefficient.

(ii) In the second approach, wavelet-based formulation for the above
techniques were developed for forecasting the data. Given the
data 𝑋𝑛, 𝑛 ∈ {1, 2,… , 𝑁} one can obtain the wavelet decomposi-
tion of the data. This wavelet decomposition is characterized by
the scaling and detail coefficients, 𝑎𝑗 and 𝑑𝑗 , respectively. If we
have the knowledge of scaling and detail coefficients at the scale

𝑗0, then one can re-construct the original data using the inverse
discrete wavelet transform (IDWT),

𝑋𝑛 =
1

√

𝑁

∑

𝑘
𝑎𝑗0 [𝑘]𝜙𝑗0 ,𝑘[𝑛] +

1
√

𝑁

∑

𝑗≤𝑗0

∑

𝑘
𝑑𝑗 [𝑘]𝜓𝑗,𝑘[𝑛] (5)

Here 𝑎𝑗0 [𝑘] and 𝑑𝑗 [𝑘] were obtained using Eqs. (3) and (4) re-
spectively are called as the approximation coefficients at the scale
𝑗0 and detail coefficients at the scale 𝑗 ≤ 𝑗0. Also, 𝜙𝑗0 ,𝑘 and
𝜓𝑗,𝑘 are discrete scaling and wavelet functions defined on the
interval [1,𝑀], 𝑀 ∈ 𝐑 such that, 𝜙𝑗0 ,𝑘 = 2

𝑗0
2 𝜙(2𝑗0𝑛 − 𝑘) and

𝜓𝑗,𝑘 = 2
𝑗
2 𝜓(2𝑗𝑛 − 𝑘). Scaling and wavelet functions are generated

using the quadrature mirror filter (QMF) 𝑔[𝑘] and ℎ[𝑘] and using
the dilation equation

𝜙(𝑡) =
√

2
∞
∑

𝑘=−∞
ℎ[𝑘]𝜙(2𝑡 − 𝑘) (6)

𝜓(𝑡) =
√

2
∞
∑

𝑘=−∞
𝑔[𝑘]𝜙(2𝑡 − 𝑘) (7)

Now, it can be noticed that at every resolution the number of
wavelet coefficients decreases to half of the number of coefficients
at finer resolution. Once a data is given, the task is to identify
the best combination of the wavelet and scaling functions that
best describe the data. Hence, different combinations of filters
or different wavelet decompositions are tested on the data to
check which wavelet function together with its respective scaling
function gives the best reconstruction of the data in terms of error.
Also, the level of decomposition is an important parameter that
might affect the performance of the reconstruction. It is noticed
that as the level of decomposition increases, the error in the re-
construction decreases. Also, this decrease in reconstruction error
assumes a constant value after a certain level of decomposition,
if this level is denoted by 𝑗0, then, the wavelet decomposition is
performed up to this level. Now, if one requires to predict ℎ step
ahead forecast then this translates to predicting

⌈

ℎ
2

⌉

coefficients

at level 1,
⌈

ℎ
4

⌉

coefficients at level 2 and finally
⌈

ℎ
2𝑗0

⌉

coefficients
at level 𝑗0, where ⌈(.)⌉ is the ceiling function. Then Eq. (5) is
used to reconstruct the time-series. This reduction in the number
of coefficients as discussed above holds true for univariate time-
series data. In the case of multivariate time series, the reduction
in the number of coefficients might not follow this pattern.

The underlying theory behind these forecasting algorithms is briefly
discussed below. For different methods, the results obtained by fore-
casting using direct time-series values are compared with the forecast
obtained by wavelet transform-based approaches.

3.1. MMSE and W-MMSE time-series forecasting using ARIMA(p,d,q) mod-
els

To generate the forecast using conditional mean models, firstly an
ARIMA (p,d,q) model was fitted to the data and then using past 𝑝
values of the process and past 𝑞 values of the innovation sequence,
𝜖𝑡, the forecasts were generated iteratively. If 𝑋𝑡 is represented by an
ARIMA(p,d,q) model, then

𝜙(𝐵)▽𝑑𝑋𝑡 = 𝜃0 + 𝜃(𝐵)𝜖𝑡 (8)

Here, 𝐵 is a backward shift operator, that is, 𝐵𝑋𝑡 = 𝑋𝑡−1 and ▽ is the
difference operator given by ▽ = 1 − 𝐵. Also,

𝜙(𝐵) = 1 + 𝜙1𝐵 + 𝜙2𝐵
2 +⋯ + 𝜙𝑝𝐵𝑝 (9)

𝜃(𝐵) = 𝜃1𝐵 + 𝜃2𝐵2 +⋯ + 𝜃𝑞𝐵𝑞 (10)

𝑑 is the integer order differencing and 𝜖𝑡
𝑖𝑖𝑑∼  (0, 𝜎2). Estimation of the

parameters of an ARIMA (p,d,q) process is done in two steps:
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Fig. 1. Results of MMSE and W-MMSE forecast for (a) TEC data for ALGO-2008 (b) rainfall data for Mumbai (c) geophysical well-log data.

• Given the observations, 𝑋𝑡, we assume that the observations are
derived from the ARIMA(p,d,q) process as described in Eq. (8).
Under this assumption, the differencing of 𝑋𝑡 is carried out
𝑑 times to make it stationary autoregressive moving average
(ARMA) process 𝑍𝑡

𝜙(𝐵)𝑍𝑡 = 𝜃(𝐵)𝜖𝑡 + 𝜃0

where, 𝑍𝑡 = ▽𝑑𝑋𝑡.
• Use conditional likelihood maximization (Box et al., 2015; Hamil-

ton, 1994) to estimate the parameters of the ARMA model.

Once the parameters are estimated, the forecasts are then generated
iteratively. For example consider ARIMA(2,0,0) process

𝑋𝑡 = 𝐶 − 𝜙1𝑋𝑡−1 − 𝜙2𝑋𝑡−2 − 𝜖𝑡

the MMSE forecasts are generated as

𝑋̂𝑁+1 = 𝐶 − 𝜙1𝑋𝑁 − 𝜙2𝑋𝑁−1

𝑋̂𝑁+2 = 𝐶 − 𝜙1𝑋̂𝑁+1 − 𝜙2𝑋𝑁

𝑋̂𝑁+3 = 𝐶 − 𝜙1𝑋̂𝑁+2 − 𝜙2𝑋̂𝑁+1

⋮

For a wide sense stationary AR(2) process, this recursion converges to
the unconditional mean of the process (Box et al., 2015)

𝜇 = 𝐶
1 − 𝜙1 − 𝜙2

In W-MMSE, the DWT coefficients of the training data are used
to train an ARIMA(p,d,q) model. Then the estimated model is used
to predict the DWT coefficients of the test data using the procedure
described above. Once the DWT coefficients are predicted, then the in-
verse wavelet transform (Eq. (5)) is used to reconstruct the time-series.
Fig. 1 and Tables 2–4 show the results of the forecasting of different
geophysical data sets based on MMSE and W-MMSE techniques. It is
evident from this figure that W-MMSE produces better forecast than
ordinary MMSE.

MMSE forecasting minimizes the 𝐄[(𝑋̂𝑁+ℎ − 𝑋𝑁+ℎ)2], where 𝑋̂𝑁+ℎ
is the predicted value of the process at ℎ𝑡ℎ instant. These forecast
values are generated by finding the parameters of an appropriate
ARIMA (p,d,q) process that fits the given data. Maximum likelihood-
based parameter estimation (Hamilton, 1994) can be used to obtain the
parameters of the ARIMA model. The value of the likelihood function

indicates the goodness of the fit of the ARIMA model to a given
data. To address the issue of goodness of the fit to the data, one
can use Akaike information criteria (AIC) (Akaike, 1969) or Bayesian
information criteria (BIC) (Posada and Buckley, 2004). If 𝑁 designates
the length of the data, ̂, the value of the likelihood function and 𝑘,
the number of free parameters in the model, then the AIC and BIC are
respectively given by

𝐴𝐼𝐶 = 2𝑘 − 2 log ̂ (11)
𝐵𝐼𝐶 = (log𝑁)𝑘 − 2 log ̂ (12)

The forecast is generated from the model that has the minimum AIC or
BIC. Fig. 6 shows the result of forecasting of TEC data corresponding
to the site ALGO in the year 2008. Note that when the MMSE forecasts
were generated based on direct time-series values, then different mod-
els were selected by AIC and BIC and hence different forecasts were
generated. However, in the case of W-MMSE, when ARIMA models
were trained using the DWT coefficients of training data to produce
the DWT coefficients of test data, then, both AIC and BIC selected the
same model and gave the same predictions. In general, for a given
ARIMA(𝑝, 𝑑, 𝑞) model the number of free parameters, 𝑘, is given by
𝑘 = 𝑝 + 𝑞 + 2. Here, 𝑝 is the number of AR coefficients 𝑞 is the number
of MA coefficients. The variance of innovation sequence (𝜖𝑡) (Eq. (8))
along with an additive constant was estimated using the maximum like-
lihood based parameter estimation. For generating the MMSE forecast
in Fig. 1a–c the values of 𝑝 and 𝑞 were varied between (1–3) and (0–
3) respectively while the values of the differencing parameter 𝑑 was
varied between (0–2). The value of the differencing parameter was 0
in all the cases. This is because, the non-zero value of the differencing
parameter indicates the presence of increasing or decreasing trends in
the data. Since all the data sets considered in the present work contain
no trends whatsoever, the ARIMA(p,d,q) models with 𝑑 = 0 are used
for forecasting.

3.2. Kalman filter and W-Kalman algorithms for time-series forecasting

Kalman filters assume that the process under analysis has a state-
space model (see Eqs. (1), (2)). Given the knowledge of initial state
(𝑧0), the measurement of input (𝑤𝑡) and the output (𝑋𝑡), they generate
the prediction of the states 𝑧̂𝑡, such that the trace of the error covariance
matrix 𝑃 = 𝐄[(𝑧𝑡 − 𝑧̂𝑡)(𝑧𝑡 − 𝑧̂𝑡)𝑇 ] is minimized. Hence, the variance
associated with each component in the error vector 𝑒𝑡 = (𝑧𝑡 − 𝑧̂𝑡) is
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Table 2
Prediction results, RMS error and correlation coefficients for TEC data.

ALGO 2008 ALGO 2014 BRAZ 2008 BRAZ 2014 QIKI 2008 KELY 2014

MMSE (RMS err.) 0.2245(AIC) 0.3485(AIC) 0.1962(AIC) 0.2029(AIC) 0.1805(AIC) 0.1759(AIC)
0.2344(BIC) 0.3845(BIC) 0.1962(BIC) 0.2328(BIC) 0.1805(BIC) 0.1759(BIC)

Corr. Coeff. 0.8976(AIC) 0.9761(AIC) 0.8909(AIC) 0.9071(AIC) 0.8929(AIC) 0.9304(AIC)
0.8879(BIC) 0.9461(BIC) 0.8909(BIC) 0.8783(BIC) 0.8929(BIC) 0.9304(BIC)

W-MMSE (RMS err.) 0.1076 0.1113 0.1083 0.1097 0.1065 0.1261
Corr. Coeff. 0.9762 0.9656 0.9791 0.8960 0.9943 0.8800

Kalman (RMS err.) 0.1885 0.1554 0.1423 0.2005 0.0993 0.1062
Corr. Coeff. 0.8686 0.9808 0.9966 0.9690 0.9961 09576

W-Kalman (RMS err.) 0.1612 0.0816 0.0941 0.1096 0.1043 0.1343
Corr. Coeff. 0.9856 0.9434 0.9561 0.8962 0.9943 0.8913

ANN 0.0521 0.1088 0.0997 0.1227 0.0985 0.1278
Corr. Coeff. 0.9747 0.9426 0.9867 0.9042 0.9438 0.8800

W-ANN (RMS err.) 0.0204 0.0796 0.0921 0.1127 0.0955 0.1259
Corr. Coeff. 0.9980 0.9666 0.9971 0.8906 0.9943 0.8800

Table 3
Prediction results, RMS error and correlation coefficients for rainfall data.

Cherapunji Goa Jaipur Mumbai Delhi

MMSE (RMS err.) 0.2229(AIC) 0.3110(AIC) 0.1464(AIC) 0.1474(AIC) 0.0973(AIC)
0.2229(BIC) 0.3110(BIC) 0.1542(BIC) 0.1474(BIC) 0.0961(BIC)

Corr. Coeff 0.7456(AIC) 0.3241(AIC) 0.4188(AIC) 0.5168(AIC) 0.6488(AIC)
0.7456(BIC) 0.3241(BIC) 0.4050(BIC) 0.5168(BIC) 0.5561(BIC)

W-MMSE (RMS err.) 0.1669 0.1243 0.1134 0.0742 0.0932
Corr. Coeff. 0.7074 0.9358 0.8976 0.9316 0.8135

Kalman (RMS err.) 0.3343 0.2969 0.1336 0.1714 0.0924
Corr. Coeff. 0.9155 0.9431 0.9067 0.6622 0.7434

W-Kalman (RMS err.) 0.1589 0.1163 0.1034 0.0724 0.0911
Corr. Coeff. 0.7744 0.9538 0.8766 0.9136 0.8315

ANN (RMS err.) 0.1599 0.0700 0.1216 0.0715 0.1267
Corr. Coeff. 0.7604 0.9588 0.8639 0.9162 0.5638

W-ANN (RMS err.) 0.1569 0.0535 0.1805 0.0542 0.0901
Corr. Coeff. 0.7704 0.9708 0.8896 0.9256 0.8085

Table 4
RMS error and correlation coefficient for well-log data.

Well-log

MMSE (RMS err.) 0.1412(AIC)
0.1382(BIC)

Corr.Coeff. 0.9910(AIC)
0.9912(BIC)

W-MMSE (RMS err.) 0.1400
Corr.Coeff. 0.9931

Kalman (RMS err.) 0.3866
Corr.Coeff. 0.9758

W-Kalman (RMS err.) 0.1284
Corr. Coeff. 0.9946

ANN (RMS err.) 0.1038
Corr. Coeff. 0.9919

W-ANN (RMS err.) 0.0972
Corr. Coeff 0.9906

minimized. Given the observations up to time 𝑡 − 1, if 𝑧̂𝑡|𝑡−1 denotes
the prediction of 𝑧𝑡 (𝑧̂𝑡|𝑡 has the analogous meaning) and 𝑃𝑡|𝑡−1 is the
error covariance matrix at time 𝑡, then given the state-space model for
the time-series under consideration along with the initial estimate of
the vector 𝑧̂0|0 and initial error covariance matrix 𝑃0|0, the following
steps are needed to generate the forecast of the process using Kalman
filter (Kalman, 1963).

• Prediction
𝑧̂𝑡|𝑡−1 = 𝛷𝑧𝑡−1|𝑡−1 (13)

𝑃𝑡|𝑡−1 = 𝛷𝑃𝑡−1|𝑡−1𝜙
𝑇 +𝑄 (14)

• Kalman gain computation
𝐿∗
𝑡 = 𝑃𝑡|𝑡−1𝐶

𝑇 [𝐶𝑃𝑡|𝑡−1𝐶
𝑇 + 𝑅

]−1 (15)

• Update
𝑒𝑡 = {𝑋𝑡 − 𝐶𝑧̂𝑡|𝑡−1} (16)

𝑧̂𝑡|𝑡 = 𝑧̂𝑡|𝑡−1 + 𝐿∗
𝑡 𝑒𝑡 (17)

𝑃𝑡|𝑡 = {𝐼 − 𝐿∗
𝑡 𝐶}𝑃𝑡|𝑡−1 (18)

Here 𝐼 designates the identify matrix. The ℎ-step forecast is obtained
by

𝑧̂𝑡+ℎ|𝑡 = 𝛷ℎ𝑧̂𝑡|𝑡 (19)

𝑃𝑡+ℎ|𝑡 = (𝛷ℎ)𝑃𝑡|𝑡(𝛷ℎ)𝑇 +𝑄 (20)

Here ℎ is kept fixed and 𝑡 is varied in integer steps. In the offline
analysis or in the situation, where one has access to the recorded data,
the error covariance matrix 𝑃𝑡+ℎ|𝑡 plays an important role as the entries
in the main diagonal represents the variance in the error, 𝑒𝑡 = 𝑧𝑡 − 𝑧̂𝑡
during the prediction of states and hence the future outputs through
the state-space model (Eqs. (1), (2)). Whereas, the quantity 𝑧̂𝑡+ℎ|𝑡 is of
more importance in the online estimation or in the situation, where one
has to predict the behavior of the system in real time. Fig. 2 depicts the
schematic of a block diagram of forecasting using Kalman filter.

For generating the forecast using Kalman filter algorithm, a sec-
ond order state-space model of the form given in Eqs. (21), (22) is
constructed.

𝐳𝐭 =
[

𝜙1 𝜙2
1 0

]

𝐳𝐭−𝟏 + 𝐰𝐭 (21)

𝑋𝑡 =
[

1 0
]

𝐳𝐭 + 𝑣𝑡 (22)
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Fig. 2. Block diagram representing the estimation and forecasting by Kalman filter.

Fig. 3. Results of forecasting based on Kalman filter and W-Kalman for (a) TEC data for ALGO-2008 (b) rainfall data for Mumbai (c) geophysical well-log data.

Here 𝐳𝐭 =
[

𝑋𝑡
𝑋𝑡−1

]

is the vector with 𝑋𝑡 being the value of the time-series

at the time instant 𝑡. 𝜙1&𝜙2 are the coefficient of the lag terms in the
general AR-2 model given by

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + 𝜖𝑡, 𝜖𝑡
𝑖𝑖𝑑∼  (0, 𝜎2) (23)

and 𝐰𝐭 =
[

𝜖𝑡
0

]

. Once the state-space model is formulated, we can then

apply Eqs. (13)–(20) to generate the forecast of the vector 𝐳𝑡 and hence

the future values of the process with 𝛷 =
[

𝜙1 𝜙2
1 0

]

and 𝐶 =
[

1 0
]

. In

all the examples considered here, the initial value of the vector (𝐳̂0|0) is
equal to the initial value of the time-series, the value of the initial error

covariance matrix, 𝑃0|0, is given by 𝑃0|0 =
[

0 0
0 𝜎2

]

and the covariance

of input noise 𝐰𝐭 is Q, defined as 𝑄 =
[

𝜎2 0
0 0

]

, where 𝜎2 is the value

of the innovation variance in the AR model.

In W-Kalman, a state-space model was estimated for the DWT
coefficients of the training data. Using this state-space model, DWT co-
efficients of the test data were generated. The inverse wavelet transform
algorithm was then used to reconstruct the time-series. The recon-
structed time-series was then compared with the test data for the
computation of RMSE and correlation coefficients. Fig. 3 and Tables 2,
3, 4 show the results of the forecast of different geophysical data sets
obtained using Kalman filter and W-Kalman. It is evident from the
results that W-Kalman produces better forecast than the general Kalman
filter.
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Fig. 4. A typical feedforward MLP neural network.

3.3. ANN and W-ANN algorithms for time-series forecasting

In ANN, the task of information processing is accomplished by
neurons. Each neuron linearly combines several inputs it receives from
other neurons in the network and processes the output by a non-
linear transfer function (Sarle, 1994). ANNs are fast and are capable of
learning important features from the training data set and generalizing
the results for the test data. Among different architectures of ANN that
have been proposed since their inception (Hopfield, 1982), the MLP
architecture is the most suited one for forecasting (Park et al., 1991;
Hill et al., 1994, 1996). MLP is used in a variety of contexts especially
in forecasting problems because of their inherent capability of learning
arbitrary input–output mapping that exist in the training data. Fig. 4
shows a schematic sketch of an MLP architecture that is generally used
for forecasting. A typical MLP is composed of many layers. The first
layer is called the input layer, which receives the external information.
The last layer is the output layer, where the solution to the problem
is obtained. Between the input and output layers, there may be one
or more hidden layers. Different nodes in the adjacent layers are fully
connected. For time-series forecasting the inputs to the network consist
of the past values of the time-series 𝑋𝑡, 𝑋𝑡−1, 𝑋𝑡−2 … , 𝑋𝑡−𝑝+1 and the
output is the future value 𝑋𝑡+1. So, the ANN performs the following
input/output mapping

𝑋𝑡+1 = 𝑓 (𝑋𝑡, 𝑋𝑡−1,… , 𝑋𝑡−𝑝+1)

Thus, the ANN implements a non-linear autoregressive model for the
time-series under consideration. The training procedure of an MLP,
which is called supervised learning is as follows:

First, the examples of a training set are entered into the input nodes.
The activation values of the input nodes are linearly combined and
then a non-linear transformation takes place at each node in the first
hidden layer. After transformation, these values become the input to
the nodes in the next adjacent hidden layer. This process is repeated
until the output activation values are found. The training algorithm
is used to find the appropriate connecting weights such that a certain
measure of error like sum of squared error (SSE) or mean squared error
(MSE) is minimized. Hence, the training algorithm is used to solve an
unconstrained optimization problem.

Some of the important functions used in the transformations carried
out by the neurons are:

• The sigmoid(logistic) function: 𝑓 (𝑥) = 1
1+𝑒−𝑥

• The hyperbolic tangential function: 𝑓 (𝑥) = tanh 𝑥 = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥

• the sine or cosine function: 𝑓 (𝑥) = sin 𝑥 or 𝑓 (𝑥) = cos 𝑥
• linear function: 𝑓 (𝑥) = 𝑥

In the present study, the procedure for training and testing of the ANN
is done as follows. Given the time series data 𝑋 = [𝑋1, 𝑋2,… , 𝑋𝑁 ], we

divide it into 𝑘 non-overlapping segments of length 𝐿𝑤, where 𝑘 = 𝑁
𝐿𝑤

.
Next, we derive four different vectors from the given time-series data
to train the network, namely,

𝑋𝑡𝑟𝑎𝑖𝑛 = [𝑋1, 𝑋2,… , 𝑋𝑁(𝑘−2)
𝑘

]𝑇

𝑦𝑡𝑟𝑎𝑖𝑛 = [𝑋𝑁
𝑘 +1, 𝑋𝑁

𝑘 +2,… , 𝑋𝑁(𝑘−1)
𝑘 +1]

𝑇

𝑋𝑡𝑒𝑠𝑡 = [𝑋𝑁(𝑘−2)
𝑘 +1, 𝑋𝑁(𝑘−2)

𝑘 +2,… , 𝑋𝑁(𝑘−1)
𝑘

]𝑇

𝑦𝑡𝑒𝑠𝑡 = [𝑋 (𝑘−1)𝑁
𝑘 +1, 𝑋 (𝑘−1)𝑁

𝑘 +2,… , 𝑋𝑁 ]𝑇

Then, the 𝑖𝑡ℎ input–output data pair during training will be of the form,

(𝑋𝑡𝑟𝑎𝑖𝑛)𝑖 = 𝑋 (𝑖−1)𝑁
𝑘 +1 ⇔ (𝑦𝑡𝑟𝑎𝑖𝑛)𝑖 = 𝑋 𝑖𝑁

𝑘 +1 for, 𝑖 = 1,… , 𝑘 − 1.

Next, the MLP architecture is constructed, where the input and output
layer has 1 neuron. The architecture contains 𝑀 hidden layers, each
containing ℎ1, ℎ2,… , ℎ𝑀 number of neurons. The tanh activation func-
tion is used for all hidden layers except for the output layer, which has
linear activation function. The output of such a network for an input
𝑋𝑖 is given by,

𝑦̂𝑖 = 𝐹 (𝑊 |𝑋𝑖) (24)
𝑦̂𝑖 = 𝑊𝑀0(tanh(..𝑊23(tanh(𝑊12(tanh(𝑊𝐼1𝑋𝑖 + 𝑏1)) + 𝑏2)) + 𝑏3)..) + 𝑏0 (25)

where, 𝑊𝐼1, 𝑏1 ∈ 𝐑ℎ1 , 𝑊12 ∈ 𝐑ℎ2×ℎ1 , 𝑏2 ∈ 𝐑ℎ2 , 𝑊23 ∈ 𝐑ℎ3×ℎ2 , 𝑏3 ∈ 𝐑ℎ3 ,
. . . , 𝑊𝑀0 ∈ 𝐑1×ℎ𝑀 , 𝑏0 ∈ 𝐑. 𝑊 represents the set containing all the
free parameters (weights and biases). Once the network is trained using
𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑦𝑡𝑟𝑎𝑖𝑛, then the entries of 𝑋𝑡𝑒𝑠𝑡 vector are used to test the
network. The results are compared to the entries of the vector 𝑦𝑡𝑒𝑠𝑡
which is the ground truth. During training, the following cost function
is minimized

𝐽 (𝑊 |𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) =
1

(𝑘 − 2)𝑁𝑘

(𝑘−2)𝑁𝑘
∑

𝑖=1
(𝑦𝑡𝑟𝑎𝑖𝑛 − 𝑦̂𝑡𝑟𝑎𝑖𝑛)2

where, 𝑦̂𝑡𝑟𝑎𝑖𝑛 = 𝐹 (𝑊 |𝑋𝑡𝑟𝑎𝑖𝑛), The parameters 𝑊 are adjusted till the
above cost function is minimized. Therefore, the optimal parameter 𝑊 ∗

is defined as

𝑊 ∗ = argmin
𝑊

𝐽 (𝑊 |𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)

The above parameters are optimized using Levenberg–Marquardt opti-
mization algorithm. During testing, the entries of the 𝑋𝑡𝑒𝑠𝑡 vector are
used for generating the output 𝑦̂𝑡𝑒𝑠𝑡, which is compared with the vector
𝑦𝑡𝑒𝑠𝑡 to calculate the RMSE and correlation coefficients.

For generating the forecast of TEC, rainfall and geophysical well-
log data using ANN, a fully connected multilayer feed forward ANN
was used. ANN for TEC data has four hidden layers with 5, 12, 15 and
7 neurons along with an input and output layer. During the training
process, first 1440 (1-day cycle) values of TEC time-series were used
as input and the second 1440 (2nd day cycle) values were used as
target values. The connection weights were adjusted till the minimum
2 norm of error was achieved. Then the values of the 2nd cycle were
used as input and the values of the 3rd cycle as target. This process
was repeated for the first nine cycles as input. Once the training was
completed, then the neural network was simulated using the tenth cycle
as input to produce the forecast for the eleventh cycle. Similar process
was followed for predicting the values of rainfall data and well-log data.

In W-ANN the training and testing is analogous to normal ANN,
wherein, the DWT coefficients of the training data are used to predict
the DWT coefficients of the testing data. Inverse wavelet transform is
then used to generate the values of the time domain samples.

Fig. 5 shows the results of the forecast of different geophysical
data sets obtained using ANN and W-ANN. It is evident that W-ANN
produces better forecast than the simple ANN. Also, from Figs. 1, 3,
5 and Tables 2, 3, 4, it is evident that the wavelet versions of differ-
ent forecasting algorithms produce better forecasts than their regular
counterparts. More details of these results are discussed in the next
section.
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Fig. 5. Results of forecasting based on ANN and W-ANN approach for (a) TEC data for ALGO-2008 (b) rainfall data for Mumbai (c) geophysical well-log data.

4. Results and discussion

ANN being a non-linear data driven approach, is better suited to
capture the non-linearity present in the system generating the data,
since it performs the non-linear auto regression of the past values
to predict the future values of the process. One way to enhance the
performance of the non-linear regression is to use the wavelet coef-
ficients of the data as the input feature, rather than discrete values
of the raw time-series data. This is because, the wavelet coefficients
efficiently capture the discontinuities and other high frequency features
present in the data. Therefore, if the feed forward ANN is trained using
the wavelet coefficients of the training data to predict the wavelet
coefficients of the test data, then the prediction might be able to possess
all the features present in the original data.

Figs. 1a, 3a and 5a show the results of different forecasting tech-
niques on the TEC data for ALGO 2008. Here different forecasting al-
gorithms were used to forecast 1440 (1 day) observations (test data) for
TEC using past 14,400 (10-days) observations (training data). Figs. 1b,
3b and 5b show the results of different forecasting techniques on the
daily rainfall data of Mumbai. Here different forecasting algorithms
were used to forecast 365 (1 year) observations (test data) for the
amount of rainfall values using past 2920 (8-years) observations (train-
ing data). Similarly, Figs. 1c, 3c and 5c show the results of different
forecasting techniques applied to the gamma-ray log data of an offshore
oil basin. Here 50 values corresponding to data up to a depth of
16.3 meters (test data), were predicted using the past 1950 values
corresponding to a depth of 650 meters (training data).

Figs. 1b, 3b, 5b show the comparison of forecast generated using
Kalman filter and W-Kalman. It is evident from the above figures and
Tables 2–4 that, W-Kalman performs better than its regular counter-
part. The better performance of W-MMSE and W-Kalman over their
respective regular counterparts can be attributed to the fact that these
models are trained using the DWT coefficients of training data set. If the
DWT is performed using a properly chosen wavelet basis, then the DWT
coefficients are wide-sense stationary processes. Since ARIMA processes
are inherently wide-sense stationary, one would expect ARIMA models

Fig. 6. Results of forecasting of TEC data corresponding to the station ALGO in the
year 2008.

to provide a better fit for the DWT coefficients. Since Kalman filters are
based on the state-space models derived from the ARIMA models, the
W-Kalman produces better forecast than their regular counterparts.

Fig. 5 shows the comparison of forecasting performances of ANN
and W-ANN. While the values of the time-series were directly used for
training and testing the performance of ANN, the DWT coefficients of
part of the time-series were used to predict the DWT coefficients of
the consecutive part of the data with the same length in case of W-
ANN. The inverse wavelet transform was then used to reconstruct the
predicted time-series. Haar wavelet decomposition coefficients at level-
6 were used in W-ANN to predict TEC and Rainfall data and level-1
decomposition coefficients were used to predict the well-log data. In
ANN, although a large number of free parameters may increase the
accuracy of the prediction, it may sometimes lead to over-fitting. In
the present study, we have selected such an architecture, which has
given the best results with least error on the test-data. Therefore, the
problem of overfitting of the data does not arise in our present analysis
of forecasting.
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For a time-series data of length𝑁 and a given forecast horizon ℎ, the
performance measure of different forecasting techniques was compared
using the metrics, RMS error (RMSE) and correlation coefficient (𝑟).

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
ℎ

ℎ
∑

𝑖=1
(𝑋̂𝑁+𝑖 −𝑋𝑁+𝑖)2 (26)

𝑟 =
∑𝑁+ℎ
𝑖=𝑁+1(𝑋̂𝑖 − 𝜇𝑋̂ )(𝑋𝑖 − 𝜇𝑋 )

√

∑𝑁+ℎ
𝑖=𝑁+1(𝑋̂𝑖 − 𝜇𝑋̂ )2

√

∑𝑁+ℎ
𝑖=𝑁+1(𝑋𝑖 − 𝜇𝑋 )2

(27)

where 𝜇𝑋̂ = 1
ℎ
∑ℎ
𝑖=1 𝑋̂𝑁+𝑖 and 𝜇𝑋 = 1

ℎ
∑ℎ
𝑖=1𝑋𝑁+𝑖 are the sample means

for the predicted and the original data over the prediction horizon.
Tables 2–4 show the values of the RMSE and the correlation coefficient
for the TEC, rainfall and well-log data respectively.

5. Conclusions

Most of the geophysical systems are highly non-linear and chaotic
in nature. As a result, the data generated by these processes display
a complicated correlation structure between successive observations.
From the results it is evident that, forecasting using ARIMA(p,d,q)
models and the Kalman filter exhibits poor performance, when the
direct time-series values are used to forecast the data. This is because
of the underlying assumption that the data under consideration has a
linear additive model and a linear state-space model. Also, the nature
of the innovation sequence in the case of ARIMA process and the input
noise and the observation noise sequences in the Kalman filter model
have simple statistics. They represent wide-sense stationary Gaussian
process. These assumptions sometimes lead to over simplification of
the complex dynamics that a geophysical system exhibits. However,
when ARIMA (p,d,q) models with W-MMSE and W-Kalman were used
to generate the forecast of the wavelet coefficients, their forecasting
performance improved significantly, as can be seen from the values of
the RMSE and correlation coefficients. This can be attributed to the
fact that wavelet transform decorrelates the data and removes the non-
stationary features of the data in the wavelet domain. Also, since the
Kalman filter is based on the state-space models derived from ARIMA
models, the performance of W-MMSE and W-Kalman improves over
their regular counterparts. If one wants to predict ℎ points ahead in
the time-series, then this translates to predicting ⌈ℎ∕2⌉ points at level-
1, ⌈ℎ∕4⌉ points at level-2 and so on. Generally, as the forecast horizon
increases, the variance of the prediction error also increases. However,
in case of wavelet-based methods, the prediction accuracy improves
because of the inherent short horizon forecasting. ANN on the other
hand being a self-driven data adaptive methodology, contains hidden
layers with a lot of connecting weights, which along with the incor-
poration of the non-linear transfer function enables ANN to effectively
capture the non-linearity in the geophysical system generating the data.
These features are enhanced further using W-ANN, where the wavelet
coefficients are considered as input features instead of the raw time-
series data for the purpose of training a feed-forward ANN. Finally, we
believe that W-ANN gives the best prediction of nonlinear data, when
compared with all other algorithms discussed in this paper.

6. Computer code availability

All the necessary codes for implementing different forecasting al-
gorithms were developed in MATLAB 2018. The econometrics toolbox
of MATLAB was used for developing an ARIMA(p,d,q) model for a
given time-series data. AIC and BIC were also calculated using the
econometrics toolbox. Kalman filter algorithm was implemented in
MATLAB using the elementary linear algebra subroutines. The deep
learning toolbox of MATLAB 2018, was used to construct and train the
feed forward neural network. Wavelet toolbox of MATLAB 2018 was
used to implement the discrete wavelet transform. Different functions
from econometrics toolbox and wavelet toolbox were jointly used to im-
plement wavelet-based version of the different forecasting algorithms.
All the subroutines developed in MATLAB are available for download
at https://github.com/shivamjaipurwale/PAPER2.
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