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Abstract

The Jurassic—Cretaceous East Vardar Zone (EVZ) is a NNW-SSE-directed NeoTethyan back-arc crustal amalgamation
that passes through Romania, Serbia, Bulgaria, North Macedonia, and Greece. This somewhat elongated Jurassic back-
arc ocean underwent early compression, “docking” and nappe-stacking in the latest Jurassic—earliest Cretaceous. The
Tithonian(Berriasian) limestones, which stratigraphically overlie the Middle Jurassic oceanic crust, are not only crucial
markers of the latest Jurassic contraction and exhumation but also bear significant implications for the NeoTethyan Vardar
developments (evidence of paleokarstification). During the latest Jurassic—earliest Cretaceous compressional event, the
oceanic crust belonging to the EVZ interacted with the Dacia Mega-Unit and its Serbo-Macedonian continental margin. By
introducing new structural observations, this study covers the interference character between the EVZ periphery and the
western Serbo-Macedonian Unit. Supported by previous mapping results, new structural data are extracted from several key
outcrops distributed across central Serbia (Dobroljupci, KurSumlija, Jastrebac Mt.). The analyses of geodynamic implica-
tions related to the NeoTethyan Vardar contraction have outlined the latest Jurassic-earliest Cretaceous accretionary-type
deformation embedded in the peripheral units (Tithonian-Berriasian limestones, mélanges, Serbo-Macedonian gneiss). These
findings are significant as they provide a deeper understanding of the geological processes that shaped this region during
the mid-Mesozoic. Despite Late Alpine overprinting, the latest Jurassic arc-type “soft collision” or “docking” (no evidence
of significant crustal thickening with a very limited obduction) produced the newly observed NNE-SW oriented folds. The
folds are observed within the Jurassic carbonate rocks and greenschist-facies rocks of likely similar age and origin (train of
steeply plunging synforms, D). The tectonic resetting and initiation of post-collisional progressive subduction remobilized
the stalled remnant of the Vardar marine corridor after the short-term Berriasian exposure and palaeokarstification. Such
tectonic developments triggered a foreland-type subsidence and accumulation of the clastic-carbonate Lower Cretaceous
“paraflysch” on top of the EVZ ophiolites/mélange/Tithonian limestones. However, the new depositional cycle and the oldest
Lower Cretaceous paraflysch sequence remain devoid of ophiolite inclusions.

Keywords Tithonian limestones - Paleotectonic reconstruction - Jurassic ophiolites - Vardar Zone - East Vardar Zone -
Serbo-Macedonian Unit - Latest Jurassic—earliest Cretaceous collision

Introduction

Remnants of ancient oceans recognized as on-land ophi-
P4 Darko Spahic . olites and deeper recrystallized equivalent magmatic suites
darkogeo2002 @hotmail.com are often observed along exhumed continental margins.

Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Such a combination of crustal fragments indicates a for-

Serbia merly active oceanic margin or suture zone and is often
2 Department of Geology, University of Vienna, referred to as the subduction-accretion complex (e.g., Bonev
Josef-Holaubek Platz 2, 1090 Vienna, Austria and Stampfli 2011; Festa et al. 2019; Mposkos et al. 2024;
3 Department of Earth Sciences, Indian Institute of Technology Okay et al. 2022; Bonev et al. 2023; SpahiC et al. 2023a).
Bombay, Powai, Mumbai, Maharashtra 400 076, India The three contrasting rock assemblages can be recognized
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as composite deep water oceanic-continental accretionary
amalgamations of former active margins: (a) sliced cut-off
fragments frequently accompanied by shallow-water car-
bonates (oceanic crust that is obducted onto a continental
margin), or the ophiolitic part, (b) dominantly clastic or tur-
biditic rocks, which often constitute a trench assembly, and
(c) their deeper, often exhumed igneous crustal domains that
are frequently exposed to a variety of metamorphic condi-
tions. Between the Carpathian-Balkan and Dinaric-Hellenic
Mesozoic accretionary ophiolite-turbidite assemblage lies
the composite collisional Vardar Zone (Fig. la—c). The
Vardar Zone represents the westernmost relic of oceanic
NeoTethyan affinity embedded into Alpine-Mediterranean-
Himalaya mountain system. The geodynamic context of the
NeoTethyan Vardar Ocean discussed in terms of subduction-
accretionary history has the protracted tectono-metamorphic
evolution spanning the Late Jurassic—earliest Cretaceous
event, lasting until the Late Cretaceous-Paleogene collision
(Anders et al. 2005; Saccani et al. 2008a, b; Meinhold et al.
2009; Sari¢ et al. 2009; Bonev and Stampfli 2011; Marroni
et al. 2014; Spahi€ et al. 2023a; Kydonakis et al. 2015; Rich-
ards 2015; Putis et al. 2019; Table 1). The latter collisional
event corresponds to its slab pull-driven “terminal closure”
(van Hinsbergen et al. 2015, and references therein), giving
rise to the Dinaride-Carpathian-Balkan-Rhodope-Hellenide
segments of the Alpine orogen (e.g., Ricou et al. 1998; Kara-
mata 2006; Schmid et al. 2008; Maffione and van Hinsber-
gen 2018; Fig. la—c; Table 1).

The Jurassic Neo-Tethys has a composite oceanic length
exceeding 3000 km (e.g., Robertson 2012; Jolivet 2023).
The exposed Jurassic lithospheric fragments of the (west-
ern) Balkan Peninsula represent the northwestern segment
of the NeoTethyan Vardar Ocean. Larger Jurassic litho-
sphere belts are widespread across a number of mountain
ranges (Fig. la—c, e.g., in Serbia, Zlatibor Mt—ZLA, Maljen
Mt.—MA), whereby smaller size fragments are exposed in
the eastern Kopaonik Block, Belgrade, Levaé/Zdraljica/
Dobroljupci, and KurSumlijska banja areas (Fig. 1, EVZ
ophiolites; KB, BG, L/ZD/DIj, KB, Fig. 2a, b). The residual
geometry and geochemical fingerprints are compatible with
either an obduction-driven single NeoTethyan Vardar ocean
on the Dinarides or with multiple Jurassic paleo-oceanic
developments (see, e.g., Schefer et al. 2010; Robertson et al.
2013; Bortolotti et al. 2013; Spahi¢ and Gaudenyi 2020a,
b; Kuko¢ et al. 2024; Jolivet 2023, for discussion; Tables 1,
2; Fig. 1).

To the east of the Dinarides is the NNW-SSE striking a
discrete East Vardar Zone (hereinafter EVZ; Figs. 1c, 2a, b).
The studied east-vergent EVZ (in Jurassic reference frame)
stretching across central Serbia is composed of shallow
intrusive-type gabbro-diabase with minor involvement of the
Jurassic volcanics of the acidic to intermediate compositions
(subduction-related volcanic arc magmatism; Resimié-Sarié
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et al. 2005; Sari¢ et al. 2009; Boev et al. 2018; Figs. 1c, 2,
3a). The EVZ assembly is frequently overlain by Tithonian
limestone. The EVZ segment in Romania can be interpreted
as an island arc affinity obducted on top of the Dacia unit
(Apuseni Mt., Romania; see Gallhofer et al. 2017, for a
discussion; Fig. 1). During the latest Jurassic—earliest Cre-
taceous, already subducting Western Vardar Zone (WVZ)
oceanic lithosphere was presumably tectonically transported
and contemporaneously with the marginal EVZ ophiolites
were obducted on top of the continental margin (eastward-
directed obduction accounting for the flip of subduction
polarity; Gallhofer et al. 2017; Fig. 1c, yellow arrow; Fig. 2a,
¢, d; Fig. 3a—c). On the other hand, mainly earlier reports
(e.g., Raki¢ et al. 1969, 1976; Dimitrijevi¢ 1997) inclusive a
few more recent contributions (e.g., Sari¢ et al. 2009; Boev
et al. 2018; Petrovi€ et al. 2015; Spahi¢ and Gaudenyi 2019;
Males et al. 2023), pointed out somewhat different latest
Jurassic—earliest Cretaceous crustal motions observed in
central Serbia. The proposed lithospheric motions between
the elements of the NeoTethyan ophiolite sequences and
the Serbo-Macedonian continental margin have rather a
descending lower oceanic plate configuration. The fol-
lowing discussion revisits these supra-crustal inconsisten-
cies revolving around the late Jurassic plate configuration.
The field observation focus are the spatial orientation of
oceanic and continental plates and deformations embedded
into the Tithonian limestone, inclusive configuration of their
equivalents exposed across central Serbia.

To investigate the puzzling latest Jurassic—Cretaceous
NeoTethyan paleogeographic and structural configuration
of central Serbia (Table 2), we examine a rarely exposed
tectonic contact between the EVZ (Tithonian limestone)
and the gneissic high-grade Serbo-Macedonian base-
ment (Figs. 1, 2, 3). The study aims to find out if there
is any field evidence of the upward (eastward)-directed
obduction-type hanging wall motions imprinted on top
of the Jurassic microcontinent (Fig. 1, yellow arrow).
The kinematic observations were not intended to char-
acterize the entire deformation history of the contact
under study but to focus on the central Serbian Jurassic
developments characterized by Tithonian limestone. We
thus reevaluate the finite configuration, analyze regional
geodynamic setting, and discuss the genesis and tectonic
involvement of the EVZ Jurassic ophiolites. Several
transects crosscutting these two interacting NeoTethyan
lithospheric-scale systems are structurally mapped dur-
ing several field campaigns. The collected field data
provided new geometrical constraints on the orientation
of the overprinted Jurassic foredeep and accompanied
limestone relative to the Serbo-Macedonian overriding
plate (Figs. 3, 4). We studied several exposed outcrops
in central Serbia (Fig. 2b), looking for the exposed Neo-
Tethyan Vardar marginal configuration: (i) the contact
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exhumed metamorphosed NeoTethyan crustal segments
at the Jastrebac Mt. (Fig. 2b#2), whereby in the (iii)
KurSumlijska banja area we observed evidence of mid-
Mesozoic nappe-stacking (involving the Kopaonik Mt.
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East Vardar Zone interacted in a

General results on NeoTethys/Vardar Interpretation of the East Vardar Zone

Jurassic ophiolites, Sava Suture

Type of the study/approach
Overview of regional paleogeog-

SER, BiH, CRO, NMKD

Country

Table 1 (continued)

18

Spahi¢ and Gaudenyi (2020b, 2022);

Publications (author’s)
Spahi¢ (2022b)

Springer

strike-slip mode with Serbo-Mac-

Zone
edonian

raphy

New data bauxites

Overview of regional paleogeog-

ITA

Yu et al. (2022)

raphy

Country key as in Fig. 1

and EVZ ophiolites and southern segment of Tithonian
limestones; Fig. 1). There at KurSumlijska banja, the
latest Jurassic—earliest Cretaceous relationship between
the two supra-crustal ophiolite systems is also observed
(Western Vardar beneath East Vardar; Fig. 2b#3). The
new outcrop-scale structural mapping campaign in scale
1:50,000, sheet KruSevac 4 allowed us to reconstruct and
extrapolate these puzzling NeoTethyan Vardar affinities,
particularly the latest Jurassic—earliest Cretaceous con-
figuration of the EVZ.

Geology

Jurassic paleogeography, NeoTethyan ophiolites
and continental margin

The investigated NeoTethyan paleosuture system of central
Serbia involves the rocks of the Paleozoic, Jurassic, and
Cretaceous—Paleogene ages (Figs. 2a—c, 3a—c, 4a). The
NeoTethys represents either a rift or a Paleotethys-related
oceanic affinity that subducted (paleo)northwards (in Per-
mian-Triassic reference) underneath the Laurasian/Eura-
sian/Eocimmerian margin (former Paleotethyan mega-bay;
Vavvasis et al. 2000; Zulauf et al. 2015; Spahi¢ and Gaud-
enyi 2021; Spahié¢ 2022a, c). The landlocked northwest-
ern NeoTethyan oceanic basin or branch, which developed
within the previously amalgamated Variscan-Cimmerian
basement framework, strikes W-E linking Central Europe,
the Balkan Peninsula and the Hellenides with the eastern
Mediterranean region. The latest Jurassic—earliest Creta-
ceous oceanic closure of the latter landlocked basin is con-
necting the investigated northwestern NeoTethys with the
compressional and metamorphic event, well-documented
in the Balkan-Hellenic, Intra-Pontide Suture Zone, striking
further across Sanandaj-Sirjan Zone in Iran (e.g., Anders
et al. 2005; Mposkos et al. 2024; Sen 2024; Shabanian and
Neubauer 2024).

Across the Balkan Peninsula, the initial latest Jurassic—ear-
liest Cretaceous ophiolite obduction, “docking”, “soft colli-
sion”, including the latest Jurassic—Lower Cretaceous thrust-
ing was overprinted by the latest Cretaceous—Paleogene
west-vergent nappe stacking and tectonic exhumation of the
three ophiolite-bearing zones (Table 2): (i) Inner Dinaric
Zone, located within the northeastern margin of Apulia/
Adria and west of the Pelagonide Massif (e.g., Ili¢ and Neu-
bauer 2005; Mikes et al. 2008; Schmid et al. 2008; Sre¢kovi¢-
Batocanin et al. 2012), (ii) Western Vardar Zone ultramafic
rock distributed along the Apulia/Adria northeastern edge
(on top of former passive margin or Jadar and Drina-Ivanjica
nappes; Pami¢ 2002; Pami¢ et al. 2002a, b; Karamata 2006;
Faul et al. 2014; Schmid et al. 2008; Yu et al. 2022), and
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here investigated (iii) the NNW-SSE striking trench-parallel
the EVZ, which plunges into Aegean sea; e.g., Zachariadis
et al. 2006; Sari¢ et al. 2009; Gallhofer et al. 2017; Boev et al.
2018; Mposkos et al. 2024; Tables 1, 2). A segment of the
southern EVZ limb strikes as the Circum-Rhodope belt (e.g.,
Spahic et al. 2020a, b; Bonev et al. 2022) and abuts around
the south of Rhodopean massif (Figs. 1, 2a, b). To the north of
the Rhodope is the adjoining early Paleozoic gneiss-bearing
Serbo-Macedonian Unit of central Serbia. Together with the
Rhodopean massif, the Serbo-Macedonian Unit represents
a western realm of the Mesozoic continental margin (e.g.,
Bonev and Stampfli 2008; Michail et al. 2016; Males et al.
2023; Table 1). The Serbo-Macedonian Unit was a segment
of the latest Jurassic—earliest Cretaceous southern Euroa-
sian continental margin. This position was succeeded by the
developing rift/back-arc Triassic Meliata-Maliac oceans (e.g.,
northern Greece, eastern Bulgaria, Bonev and Stampfli 2008;
Ferriére et al. 2012, 2016; Spahi¢ and Gaudenyi 2021; Spahié
2022c). This Alpine extension is consistent with the rest of the
peri-Moesian Variscan basement units, including the opening
of the southern limb of Alpine Tethys (eastern Serbia; Kriu-
tner and Krsti¢ 2002; Anti€ et al. 2017; Spahi¢ and Gaudenyi
2018; Figs. 1, 2d, 3b). During the latest Cretaceous—Paleo-
gene collisional late Alpine wedging and crustal thickening
event, the previously amalgamated Serbo-Macedonian Unit
and EVZ had the overriding plate position (e.g., Schmid et al.
2008; Fig. 1).

Central segment of the East Vardar Zone (Serbia
and surroundings)

The central EVZ crops out near the city of Belgrade (e.g.,
Tolji¢ et al. 2018; Sokol et al. 2019; Marinovi¢ and Rundié¢
2020) and is further prominent in central Serbia (Resimic-
Sarié et al. 2005; Sari¢ et al. 2009; Maffione and van Hinsber-
gen 2018; Males et al. 2023; Figs. 1, 2a—). In central Serbia
and North Macedonia, the EVZ, as a former oceanic plate, is
cut off to the east by the western Serbo-Macedonian margin,
which, generally, is juxtaposed with Tithonian limestones
(e.g., Raki€ et al. 1969, 1976; Spahi¢ and Gaudenyi 2019;
Males et al. 2023). The Jurassic ophiolites in central Serbia
exhibit no metamorphic sole (Schmid et al. 2008; Maffione
and van Hinsbergen 2018), though a recent study indicates the
presence of a lower-grade greenschist facies overprint (Males
et al. 2023).

The Jurassic back-arc ophiolites of the EVZ differ in size:
the exhumed limited-size ophiolites are spread across cen-
tral Serbia, and the larger ones are in its southern limb in
North Macedonia and Greece (e.g., Sari¢ et al. 2009; Michail
et al. 2016; Bozovié et al. 2013; Kukoc et al. 2015). The size
of the EVZ ophiolites was probably controlled by the lim-
iting Pelagonian/Korabi - Pelagonian Massif in front of its
southern limb (e.g., Robertson et al. 2013). In central Serbia,

the metamorphosed deep trench NeoTethyan Vardar crustal
equivalents are exposed in the Veliki Jastrebac Mt. tectonic
window (Marovi€ et al. 2007a; Erak et al. 2017; Spahi¢ and
Gaudenyi 2019; Fig. 3). In eastern Bulgaria, within the Neo-
Tethyan Vardar Jurassic framework, there is a Triassic to
Early Cretaceous low-grade metamorphic Circum-Rhodope
sequence (Bonev et al. 2023). These pre-Jurassic sequences
are lacking in the EVZ in central Serbia. The EVZ segment
in central Serbia consists of the following composite units:
(i) Middle-Late Jurassic (pre-Kimmeridgean) ultramafic and
mafic gabbro-basalts-serpentinites with the MORB-type oce-
anic lithosphere (Schmid et al. 2008). This igneous assembly
includes (ii) the ophiolite mélange (also widespread across the
Dinaride-Hellenide belt; e.g., Dimitrijevi¢ and Dimitrijevi¢
1973, 1975; Gawlick and Missoni 2019; Fig. 2¢); (iii) The top-
seal belongs to the Tithonian(-Berriasian) limestone sequence
(Petrovi¢ and Jankicevi¢ 1990; Dimitrijevi¢ and Dimitrijevié
2009; Sari¢ et al. 2009). The Jurassic EVZ assemblage in
Serbia is interrupted by a lowermost Cretaceous unconform-
ity (Males et al. 2023; Spahic et al. 2023a), which is further
attested by the Tithonian limestone occasionally exposing
evidence of paleokarstification (Dimitrijevi¢ and Dimitrijevi¢
2009; Spahi€ et al. 2023a). Indeed, previous and some recent
authors have pointed to the involvement of the latest Juras-
sic—lowermost Cretaceous contraction and nappe-stacking
event (e.g., Sandulescu 1984; Bonev and Stampfli 2011;
Males et al. 2023).

The investigated EVZ Jurassic ophiolite- and limestone-
bearing paleotectonic amalgamation was discordantly succeeded
by the depositional onset and formation of a 250 km-long N-S
striking Lower Cretaceous “paraflysch” (Dimitrijevi¢ and
Dimitrijevi¢ 2009). Regionally, the Lower Cretaceous “parafly-
sch” carbonate and clastic foreland sequences (Dimitrijevi¢ and
Dimitrijevi¢ 2009) have significant similarities with a shallow
marine system in western Bulgaria (Getic unit; Krdutner and
Kirsti¢ 2006; Ivanova and Chatalov 2022). Nevertheless, this
Cretaceous system differs from the Lower Cretaceous overstep
sequences that overlies Jurassic ophiolites across the Dinarides
(Nirta et al. 2020). The foreland-type “paraflysch” sequences
in central Serbia are overlain by the unconformable Upper Cre-
taceous deep-water sediments and Maastrichtian to lowermost
Paleogene pre-collisional turbidites (e.g., Tolji¢ et al. 2018,
2020; Spahic et al. 2023a; Fig. 4a).

Dobroljupci, Jastrebac Mt., and KurSumlijska banja
area, field relationships

Dobroljupci and its surroundings (Levac¢, Males et al. 2023;
Fig. 1) represent a rare spot in central Serbia where the
investigated tectonic contact between the two main geotec-
tonic units is exposed (Figs. 3, 4, 5, 6). The Dobroljupci area
exposes the tectonic contact connecting the composite Juras-
sic rock assemblage (greenschists, mélange, and Tithonian
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«Fig. 2 a Modified regional tectonic sketch map (Schmid et al. 2008,
inset from Gallhofer et al. 2017). b Tectonic units and ophiolites
belts according to the concept of Karamata (2006; inset from Bazylev
et al. 2009). The geotectonic subdivision of central Serbia, including
the study area of the East Vardar Zone. ¢ Synthesized East Vardar
ophiolites column with their respective cumulative thicknesses (after
Maffione and van Hinsbergen 2018). d According to the mainstream
tectonic model, both ophiolite-bearing belts originate from the same
Jurassic Ocean. In contrast, the Jurassic obduction is replaced by the
Serbo-Macedonian passive margin (inset from Gallhofer et al. 2015,
slightly modified). A red rectangle with a question mark emphasizes
the problem of the slab configuration and associated processes

limestones; Fig. 3a, b), overlain by older rocks belonging
to the (Neoproterozoic) Cambrian Serbo-Macedonian Unit.
The latter top-sealing gneiss is in the Veliki Jastrebac Mt.
area pierced by the intrusion of the Paleogene-Neogene core
complex (Fig. 3c, 4a—d). From the east of the Dobroljupci
outcrop, a small part of the syncline exposes the steeply
plunging greenschist-facies rocks of likely Middle Jurassic
age (Doli¢ et al. 1978), i.e. meta-basic rocks, which are over-
lain by the marker Tithonian limestones (Fig. 3d, see posi-
tion on Fig. 4b). The ca. 200-300 m long E-W striking sec-
tion of the Dobroljupci outcrop further exposes the inverted
tectonic configuration of the two crustal domains, wherein
the older metamorphic rocks (Serbo-Macedonian gneisses)
are structurally overlying these younger sediments (Jurassic
composite unit with Tithonian limestones on top; Fig. 4b).

The central section of the outcrop exposes some strongly
foliated footwall sediments (not metamorphites) with the
almost vertically orientated foliation and schistosity, thus
additionally marking an intensive tectonic interference along
this segment of the paleosuture (Fig. 4c, d). Nevertheless,
immediately to the south of the outcrop (Fig. 2b), the well-
preserved set of basaltic rocks is exposed (Fig. 7). In addi-
tion, the Dobroljupci outcrop has no record of the Upper
Cretaceous paleosuture turbidites.

These latest Cretaceous—Paleogene collisional (meta)
turbidites are, in turn, widespread across the Jastrebac Mt.
abutting its eroded granodiorite core (Fig. 3c). Structurally
below the Upper Cretaceous—Palaeogene turbidites are the
Boljevac-Vukanja greenschists, which contain (meta)gabbro,
calcschists and marbles (Fig. 3c, #3,4,5). According to the
structural superimposition, the Boljevac-Vukanja assembly
could represent an exhumed remnant of the subducted Neo-
Tethyan oceanic crust (Spahi¢ 2006; Marovi¢ et al. 2007a,
b) or could be interpreted as the metamorphosed pre-obduc-
tion assembly (Males et al. 2023). Interestingly, the tec-
tonic window of the Jastrebac Mt. shows the same inverted
position, which is identical to the configuration exposed at
the Dobroljupci outcrop: gneiss of the Serbo-Macedonian
positioned on top of the Boljevac-Vukanja greenschists,
including gabbro, calcareous schists, and marbles. The lat-
ter magmatic and sedimentary sequences are most likely

Table 2 The comparison between several NeoTethyan tectonic-paleogeographic models proposed in the last 20 years.

Study Geotectonic units of Vardar Zone Jurassic NeoTethyan ~ “Cretaceous Ocean”
Ocean(s)
Western Vardar east-  East Vardar- Western Vardar west-
ern belt ern belt or Dinaric
Tethys
Schmid et al. (2008)  West Vardar Zone East Vardar Ophi- Dinaric and Mirdita-  Single Vardar Ocean  relic “Sava Ocean”
ophiolites olites Pindos ophiolites

Dimitrijevi¢ (1997,

External Vardar

Internal Vardar

2001) subzone and Central subzone
Vardar subzone
Karamata (2006) Vardar Zone Western ~ Main Vardar Zone

and Karamata et al.
(2000)

Tolji¢ et al. (2019)

Pamié (2002)

belt

Western Vardar Zone

“Sava—Vardar Zone”

Eastern Vardar Zone

Prelevi¢ et al. (2017)  Western Vardar Ophi- East Vardar Ophiolitic
and Sokol et al. olitic Unit Unit
(2019)

Spahi¢ and Gaudenyi  Western Vardar Zone East Vardar Zone

(2022)

Ophiolite belt

Inner Dinaric Ophi-
olite belt

Dinaride Ophiolite
belt

Dinande-Hellenide
Ophiolite Zone

West Vardar Ophi-

olitic Unit

Inner Dinaric Ophi-
olite belt

Vardar
Ocean + “Dinaric
Tethys”

Vardar Ocean as suc-
cessor of Paleo-
Tethys + “Dinaric
Tethys”

Single Vardar Ocean,

Vardar
Ocean + “Dinaric
Tethys”

Single Vardar Ocean/
Cretaceous Basalts
are localized in
continental crust

Vardar
Ocean + “Dinaric
Tethys”

No oceans

“Relic Sava ocean”
belongs Vardar Zone
Western belt

Relic “Sava Ocean”

Relic “Sava Ocean”

No oceans, narrowing
pull-apart corridor,
no oceanic crust of
Upper Cretaceous
age
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the subducted analogs of the Tithonian limestone sequence
(Figs. 3c, 4a; e.g., Rakic et al. 1969, 1976; Spahi¢ 2006;
Marovi¢ et al. 2007a; Erak et al. 2017). The Jastrebac tec-
tonic window does not contain pure limestones but mainly
reveals calc-schists and rare marbles of unknown, but most
likely Mesozoic (Tithonian?) age (Spahi¢ 2006; Marovié
et al. 2007a, b).
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Further to the south of the EVZ, the Tithonian lime-
stones observed at the Dobroljupci area crop out in the
Kur§umlijska banja area (Petrovi¢ and Jankicevi¢ 1990;
Fig. 2c). Importantly, at the Kur§umlijska banja area, the
Tithonian limestones contain the redeposited cm-scale dia-
base inclusions. These EVZ diabases, in turn, record several
inclusions embedded in Tithonian limestone. The contact
between diabase and limestone is mylonitized (Petrovié¢
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«Fig. 3 a Geological column of the East Vardar ophiolites (inset from
Maffione and van Hinsbergen 2018, significantly modified). b Syn-
thetic geological column of the wider study area (inset from Spahié
2022c¢, modified). ¢ Geological sketch map of Mt. Jastrebac (inset
from Spahi¢ and Gaudenyi 2019, slightly modified). Numbers: 1.
Eocene granodiorite; 2. Veliki Jastrebac metaturbidites (note that for
simplicity, we use the same color and hatching for the western Veliki
Jastrebac Upper Cretaceous flysch-bearing system); 3. Calcschists
and marbles; 4. Greenschists: Actinolite schists, phillites, marbles,
calcschists, sericite schists, quartzites; 5. Metagabbro; 6. Amphibolite
and amphibolitic schists; 7. Triassic granitoid; 8. Mylonitic rocks; 9.
Green schists: chloritic schists; 10. gneiss, mica schists with garnet
and migmatite; 11. minor faults; 12. mica-rich quartzite; 13. gneiss
with staurolite and mica schists; 14. graphite-bearing gneiss; 15. Con-
tact-type metamorphism, core center of Veliki Jastrebac. Continuing
from the Dobroljupci area, the Jurassic subduction assembly is con-
sistent with numbers 3, 4, and 5. d Dobroljupci outcrop exposes a
large metre-scale syncline, its eastern branch (see position in Fig. 4b).
The photo shows a steeply dipping assemblage of greenschist-facies
rocks (lower greenschist facies), meta-basic rocks, overlain by the
limestones. The greenschist-facies rocks of the Dobroljupci area can
be considered Middle Jurassic in age, similar to the nearby northern
Levac area (palynomorphic dating; Doli¢ et al. 1978). These green-
schist facies are in contact with Jurassic meta-basic rocks, metamor-
phosed limestones, identical to the contact in the Levac area (Males
et al. 2023)

and Jankicevi¢ 1990). Furthermore, the primary Tithonian
limestone marker occurs as fragmented inclusions with even
meter-sized boulders embedded in the overlying Lower Cre-
taceous paraflysch (Dimitrijevi¢ and Dimitrijevi¢ 2009).
Nearby mylonites, including a non-pervasive subvertical
mylonitic zone, ophiolites are exposed for several meters
(Petrovi¢ and Jankicevi¢ 1990; Fig. 8a; Table 3). However,
mylonites in the Tethyan realm are frequently associated
with the extensional exhumation and uplift of the formerly
entrenched Tethyan rocks (e.g., Ricou and Godfriaux 1994;
Kydonakis et al. 2014; Grop et al. 2020). The same is true for
the tectonic window of Mt. Jastrebac (Marovic et al. 2007a,
b; Erak et al. 2017). Alternatively, intrusions of isolated
dykes penetrating the EVZ gabbro-diabase ophiolitic sec-
tions record a similar mylonitic contact (garic’ et al. 2009).

Structural record

Several transects were studied in the field to understand the
superposition relations and associated deformation. The
structural study was conducted within the largest outcrop
areas, exposing the Tithonian limestone markers and the
Jurassic mélanges across the eastern EVZ central Serbia
region. The limestones and Jurassic (earliest Cretaceous?)
mélange exposed along this particular zone underlie the
Serbo-Macedonian medium- to high-grade suite (including
the nearby Levac area; Males et al. 2023, including the area
near KurSumlijska banja; Fig. 2b). The transect-based struc-
tural profiling involved the measurement campaigns within

the key outcrops that are striking along the W-E direction.
Data were collected from several km of transect or from sur-
face reaching ~ 100 km?. In this manner, we collected the data
perpendicular to the exposed N—S-directing contact between
the EVZ and the western Serbo-Macedonian Unit. Most
structures received the new measurements of bedding planes
in the sediments (Figs. 4, 5a, b, 6). The field measurements
include the two newly mapped folds (Fig. 5a, b). The most
prominent structure observed is the west-vergent Alpine-age
thrust comprised of overriding Serbo-Macedonian gneissic
suite (Figs. 4a, 5b). The bedding measurements are collected
from Late Jurassic limestones, mudstones, and sandstones of
the Tithonian age, including Early Cretaceous sandstone and
mudstone sediments of the Valangian/Hauterivian age. The
spatial data (dip-direction/dip) from the Jurassic limestone
sequence are in line with the observed underlying metamor-
phic sequence (dip-direction/dip has the same position despite
the developed foliation; Fig. 3d). Additionally, the structural
analysis included an extensive database which involved the
previously measured foliations (dip and dip direction). These
are collected from the available geological maps (extracted
from Raki¢ et al. 1969, 1976, and others). The extracted and
measured dip data were manually sorted out to get the best
fit statistically, whereby folds and their axis were analyzed
separately. For that purpose, we separated trends of layer-
ing data, which follow two shortening directions, the same
for Lower Cretaceous rocks and Serbo-Macedonian foliation
trends (Figs. 3a, 4a, 6a—d). Conventional open-source struc-
tural geology software for statistical analysis, Stereonet (v.
11, 2020), is used for data presentation, whereas the direct
inversion methods of Angelier (1984) were also undertaken.
Data were stereo-plotted as poles of the measured planes with
the resulting statistical « belts (Fig. 6).

Shear-sense criteria, e.g., drag folds (Mukherjee 2014)
that occur close to the litho-contacts represent the older
shortening episode (as per Dimitrijevi¢ and Dimitrijevié
2009). This compression happened during the latest Juras-
sic—lowermost Cretaceous (Dimitrijevi¢ and Dimitrijevi¢
2009; Spahi¢ et al. 2023a). This event was has also been
interpreted as the E-vergent nappe-stacking event (e.g.,
Males et al. 2023; Mposkos et al. 2024). The relative timing
of the initial shortening was additionally derived from the
observed folding patterns and unconformities/paleokarstifi-
cation episodes (Fig. 4a). The two generations of folds are
observed. In contrast, the older population is embedded into
the younger and larger syncline (Fig. 4a, b).

In addition to the spatial data extraction, the investigated
geological and tectonic setting of the latest Jurassic—earli-
est Cretaceous interface was studied by using the available
basic geological maps of the SFRY on a 1:100,000 scale
and the accompanying explanatory booklets Sheet KruSevac.
Data and results were collected from several publications:
Dimitrijevi¢ and Dimitrijevi¢ (2009), Spahi¢ and Gaudenyi
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Fig.4 a Geological sketch-map showing gneisses (Serbo-Macedo-
nian Unit) in the overriding position over the East Vardar "ophiolites"
(after Raki¢ et al. 1969, modified). The thick grey line in the mid-
dle shows the position of the studied lithospheric-scale contact in
the Dobroljupci area, and the photographs taken here are b—d. b The
pictures of the key Dobroljupci area (central Serbia, 43° 25" 16" N,
021° 26’ 24" E) with the outline interpretation of the tectonic contact

(2019), Petrovi€ et al. (2015), Males et al. (2023), Spahié¢
et al. (2023a), eventually comparing the results of this with
the larger-scale studies of Schmid et al. (2008, 2020) and van
Hinsbergen et al. (2020). The obduction-related compres-
sive Jurassic deformation is compared with the proposed
Apuseni Mt. (Romania; Gallhofer et al. 2017). The compos-
ite study also incorporates the subsurface data derived from
the reflection seismic/magnetic/gravity 3D model interpre-
tations (Petrovié et al. 2015). Field kinematic and superpo-
sition criteria (including a borehole in KurSumlijska banja

@ Springer

expose a large EVZ syncline in which the precursor folding is embed-
ded (positions of the folds shown in Figs. 3a, 5b, 7a). The area photo
also exposes the fontal thrust level of the Serbo-Macedonian gneiss,
which lies above the EVZ limestone, ophiolitic mélange, and low-
grade greenschist. ¢, d Photos exposing the contact clean the thrust:
steep foliation marking high stresses that continue eastwards for the
next 50 m in the Serbo-Macedonian gneiss

piercing Tithonian limestone repeated section; Petrovi¢ and
Jankicéevi¢ 1990) were used to extrapolate the configura-
tion with a nearby Jastrebac tectonic window (Spahi¢ 2006;
Marovi¢ et al. 2007a; Erak et al. 2017). The extrapolated
data were subsequently incorporated into the resulting crus-
tal profiles.
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Statistical analysis

The structural survey of primary importance within the
Dobroljupci area included the surface bedding observations
in limestone sequence and the exposed foliation elements
in gneiss (Figs. 3a, 4a). Two directions of the tectonic con-
traction have been found: (i) Jurassic compression, hav-
ing the E-W shortening direction (Fig. 4a, 5a), and (ii) the
Cretaceous compression, having the WSW-ENE direction
(Fig. 5a, b, 6). As will be shown, these tectonic shorten-
ing parameters, including their timing, are consistent with a
recent study by Males et al. (2023). Mylonites are observed
in the nearby KurSumlijska banja and Jastrebac Mt. area
(Petrovié¢ and Jankicevi¢ 1990; Spahi¢ 2006; Erak et al.
2017; Fig. 3b, ¢).

The S, and S, diagrams represent the statistical bedding
configurations (poles) taken from the Jurassic sediments.
The diagrams exhibit the two principal trends (Fig. 6a, b).
The S, diagram has the & belts or statistical maximum with
the following elements: dip direction/dip of 077/26 and
270/30. Most of these measurements outline the westward
direction of the plunging layers. The S, diagram has the
belts with a maximum dip direction/dip 061/32 and 234/53,
with most measurements having a SW direction. The two
statistical maxima likely exhibit a single shortening event,
with the changing principal maximum stress: initially hav-
ing E-W and then the NE-SW direction (probably due to
minor rotation). S; and S, diagrams contribute to the same
interpretation. Diagrams S; and S, show the same trends but
have a slightly more significant dip than S, and S, (Fig. 6c,
d). The S5 = belts have the maximum dip direction/dip of
082/39 and 266/27, indicating the presence of westward dip-
ping structures. The S, has = belts with the maximum dip
direction/dip of 052/47 and 234/44. Most of the statistical
measurements indicate the SW-ward dip. The hinge line data
exhibit the NE-SW trending (Fig. 6e). Statistical analysis of
the F, and F, diagrams uses foliation data from the Serbo-
Macedonian Unit (Fig. 6f, g). The F, diagram presents the
E-W foliation pattern, with the two & belts with a maximum
of 267/35 and 088/44. The majority of the measurements are
directed to the east. The F, diagram represents the statistical
foliation pattern with a NE-SW direction, consisting of the
7 belts with a maximum of 234/39 and 057/32 (mostly NE
dip direction).

B, diagram represents the hinge line measurements col-
lected exclusively from Jurassic carbonates (not observed
in the Dobroljupci Cretaceous surroundings), which have
the NE-SW orientation. One & belt with the SW orientation
corresponds to S, and S, (perpendicular to the younger N-S
hinges). Such consistency of the trends involving different
data types and ages (Jurassic fold hinge fitting with domi-
nant post-Jurassic bedding trend; Figs. 6b, d, e) indicates the
presence of a strong overprint affecting the original layering

(S,-S,). The two similar trends, S; and S,, as well as S; and
S, are in line with the Late Cretaceous northeast-directed
subduction of the “remnant Vardar Ocean” (Western Var-
dar Zone; Table 1), inducing shortening of the Cretaceous
Adria-Europe aquatic corridor (Chiari et al. 2011; Bortolotti
et al. 2013; Spahi¢ and Gaudenyi 2022). Males et al. (2023)
are of a similar opinion, highlighting the severity of the
postdating overprint. However, there is a noticeable differ-
ence in the statistical trends that separate the Jurassic and
Cretaceous data.

Interpretation: deformation stages and folding

Older smaller-scale folds in the Jurassic rocks of the EVZ
are documented for the first time in this study (Figs. 4a, 5a).
The proposed redefinition of the contractional structures of
the Alpine age and their kinematics in the Dobroljupci area
is explained by introducing the D,—D; deformation phases.
Until recently, the well-accepted brittle or ductile Alpine
compressional deformation stages are mainly related to the
D, phase or the latest Cretaceous—Paleogene shortening
(e.g., Schmid et al. 2008; Kopping et al. 2019). Unlike the
Levac area (Males et al. 2023), the observed foliation pat-
tern in the westernmost Serbo-Macedonian Unit is consistent
with a younger generation of statistical elements collected
within the Tithonian limestones of the EVZ (Fig. 6f, g). A
foliation pattern is evident from the dip-direction-dip meas-
urements and the N-S-directed fold hinges (Fig. 3c, red-
white arrows, and a segment of the Serbo-Macedonian Unit
that lies west of the Veliki Jastrebac Mt., Raki¢ et al. 1969).
As shown in Fig. 6, the main difference between the meta-
morphic and the exposed sedimentary units is between the
F, and F, foliations dip, which has mostly E-ward trending,
whereas the S,-S, have a W-ward dip. All these structural
imprints and their trending are related to D,. This termi-
nal stage is often interpreted as the base for the subsequent
late Alpine D5 extension and related extensional exhuma-
tion (e.g., Jastrebac and nearby Toplica area; e.g., Spahi¢
2006; Marovi¢ et al. 2007a, b; Erak et al. 2017; Spahi¢ et al.
2023a).

Even though the oldest D, stage was not previously
mapped in the Dobroljupci region, the collected composite
data show that the latest Jurassic — lowermost Cretaceous
contraction may have tentative analogous deformations
in the area itself (e.g., Male§ et al. 2023). Interestingly,
Marovi¢ et al. (2007a) observed intense folding and the
formation of the “intrafolial folds” in a subducted segment
of the same Tethyan sequence (exposed by the exhumed
Jastrebac Mt. domain). However, their study could not
connect the folding vergence related to the initial or pre-
Late Cretaceous shortening stage. The fold hinges, meas-
ured across Dobroljupci area demonstrate a pre-Cretaceous
deformation embedded into the eroded limbs of a larger
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syncline. Fold hinges are best depicted in the Tithonian
limestones (Figs. 4b, 5a). Consequently, the measurements
taken across the broader area of Dobroljupci (Figs. 2b,
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4a) yielded the two compressional stages that have almost
orthogonal orientation: (i) the latest Jurassic D; deformation
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«Fig.5 Detailed structural interpretations of the Dobroljupci area.
a Photomicrograph showing evidence of the latest Jurassic—earli-
est Cretaceous folding (top-south shear sense): the red line shows a
shorter limb of the small syncline (sheath fold), while the blue line
represents the geometry of the extended syncline limb. The latter is
oriented toward the present-day south. The white-green under the fold
highlights the geometry of the large syncline in which the ancestral
fold is embedded. b The larger syncline is obviously under the Serbo-
Macedonian thrust. ¢ Analog model of different strain regimes dur-
ing developing the sheath fold (slightly modified after Dell'Ertole and
Schellart 2013). Left: In the initial stage, the dashed line indicates the
axial line of the fold, and the dark blue outline marks the undeformed
posterior and anterior limbs (symmetrical configuration); right: the
axial line shows an apparent rotation from the initial vertical position,
while the posterior limb (in red) shortens and the anterior limb (in
light blue) elongates. Half arrow indicates shear direction from top
to right. d Schematic drawing of the oblique collision zone with the
position of central tectonic units (Fossen 2010, modified). e Meter-
scale folds with the sub-vertical fold axis embedded in the large syn-
cline

with E-W fold hinges and (ii) D, deformation with a NNW-
SSE strike of the axial surface (Figs. 4b, 6).

Folding patterns

The younger D, folding is a typical Alpine compressional
large syncline with an axis that is parallel to the Serbo-
Macedonian N-S-directed frontal thrust (Figs. 4b, 5b;
Dimitrijevi¢ and Dimitrijevi¢ 2009). This footwall rotation
and buckling (D,) is related to a progressive and diachronous
emplacement of the Serbo-Macedonian front towards the
west (over EVZ). The two lithospheric-scale intra-Mesozoic
compressional episodes affecting the EVZ have just recently
been introduced (Dimitrijevi¢ and Dimitrijevi¢ 2009; for the
nearby Levac area, see Males et al. 2023; and for the wider
Belgrade area, see Spahic et al. 2023a).

The older or latest Jurassic-earliest Cretaceous D; com-
pression produced a non-planar cylindrical polyclinal fold-
ing pattern in the Tithonian limestones (Haify 2019; Nabavi
and Fossen 2021). The geometry resembles a sheath fold
(Fig. 5a, c). Notably, the sheath folds resemble the succes-
sively developed folds (Srivastava 2011). The observed
older folds have an arcuate axial trace exposed in a steep
fold axis (Fig. 5e). Sheath folds may originate from simple
shear and develop in the elevated strain regimes (Dell’Ertole
and Schellart 2013; review in Mukherjee et al. 2015; Fig. 5¢
of this paper). The folds observed in the Dobroljupci area
exhibit no tight isoclinal precursory folding (Figs. 5a, 7a).
The non-planar cylindrical folds are comparable with earlier
stage, slightly leaning towards the subsequent curvilinear
folding episode introduced by Alsop and Carrerad (2007).
Alternatively, the initial folding was formed in a strike-slip
oblique convergence zone that forms an acute angle within
the large shear zone, which in this case could be interpreted
as underplating structure (Fig. 5d). Strike-slip motions have

recently been reintroduced to explain the mid-Mesozoic and
late Alpine kinematics of this part of the NeoTethyan Ocean
(e.g., Ratschbacher et al. 1993; Grubi¢ 2002; Kopping et al.
2019; Sokol et al. 2019; Spahi¢ and Gaudenyi 2022).

In addition, we observed the irregular fold hinges asso-
ciated with the refolded steeply-plunging (>70°) D, folds
(Fig. 5a, e). Such structures are not typical for the fold-and-
thrust belts (e.g., Steiner and Hickey 2022; Fig. 5e). This
information is consistent with the proposed compressional
event occurred during Jurassic (with no significant crustal
thickening): (i) limited-extent nappe stacking episode or (ii)
regional obduction-related shortening event (Sandulescu
1984; Males et al. 2023). A similar event with a pronounced
unconformity is observed in the same Late Jurassic interval
of Alpine Tethys (Steiner et al. 2021). At a basic geometric
level, there are three ways to create steeply plunging folds in
thrust belts (Steiner and Hickey 2022): (i) curved hinges with
local steep plunges generated through heterogeneous strain
along the hinge (Fig. 5e), (ii) through the rotation or re-folding
of pre-existing folds to a steep geometry, and alternatively,
(iii) layering previously steepened by tilting/folding can be
folded by layer-parallel shortening or non-coaxial shear. The
Dobroljupci fold connotes top-to-south shear (Fig. 5a).

Discussions and interpretations

Deformational history: implications for latest
Jurassic-earliest Cretaceous lithospheric-scale
processes

The deformation history of the Mesozoic NeoTethyan
EVZ sequences is obtained from (i) field structural geo-
logical studies (Tables 1, 2), (ii) existing geological maps
(e.g., Raki¢ et al. 1969) involving depositional history of
the Jurassic sedimentary formations (paleokarstification
episode; Spahi¢ et al. 2023a). Study also introduces con-
straints on the age of the low-grade metamorphic imprint
(greenschist-facies; Doli€ et al. 1978; Marovic et al. 2007a,
b). Apart from the two types of greenschist-facies rocks
(Dobljupci and Jastrebac; Fig. 3a—d), the fieldwork yielded
two generations of the locally exposed Mesozoic folds and
their rotated hinges embedded in the deformed Tithonian
limestone (Figs. 4b, 5a, b). Such multidirectional contrac-
tional structures are often interpreted as the result of tem-
porally distinct shortening episodes (e.g., Tolji¢ et al. 2018;
review in Héja et al. 2022).

The observed top-to-south shear, indicated by the out-
crop-scale folds, provides essential evidence for the early
interaction between the EVZ narrow oceanic system and
the western Serbo-Macedonian margin (Fig. Sa, e; see
also in Dimitrijevi¢ and Dimitrijevi¢ 2009; Spahic et al.
2023a). These folds contain a minimal exposure of the
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«Fig. 6 Statistical data were extracted from the wider lithospheric con-
tact area. Data were extracted from the field log and geological maps
of the SFRY. a, b The statistical polar trends measured/extracted from
the Jurassic rocks. ¢, d The statistical polar trends measured/extracted
from the Jurassic rocks. e Axial plane of more minor folds of the
older generation. f, g Statistical trends in foliation. See the main text
for interpretation

greenschist-facies rocks (Fig. 3d); thus, we interpreted
that the very limited obduction might have occurred. This
event took part slightly before or simultaneously with the
“docking” and the formation of these meter-scale folds
(Table 3). The original location of these folds was along
the Serbo-Macedonian margin. In contrast, the presumed
underlying slab in the late Jurassic configuration is con-
sistent with top-to-foreland shear (or, in this case, top-to-
(paleo)south, comparable to the nearby Alpine Tethys and
its subduction zone, e.g., Grof et al. 2020; Fig. 5a).

Late Cretaceous-Paleogene configuration

The observed and extracted statistical orientation of the prom-
inent late Cretaceous—Paleogene spatial elements allowed the
identification of the more prominent W—E-directed folds (D,)
(Fig. 4b). The eastern section of the Dobroljupci exposes a
localized high-angle foliation pattern intervening between
the Mesozoic structural elements and beneath the Serbo-
Macedonian upper plate (Fig. 4b—d). This ~50 m long sec-
tion represents a former rooting or the higher-angle segment
of the thrust fault itself. Chronologically, the Serbo-Macedo-
nian west-vergent nappe (Fig. 4b) correlates with the widely
accepted latest Cretaceous—early Paleogene D, deformation
(e.g., Tolji¢ et al. 2018; Males et al. 2023). This ongoing latest
Cretaceous—early Paleogene regional E-W-directed shorten-
ing (Figs. 4, 5a—e, 6a—d) perturbed and overprinted the older
latest Jurassic—earliest Cretaceous generation of the m-scale
non-planar cylindrical folds (Figs. 4b, 5a, b). Consequently,
the preserved rare outcropping meter-scale folds result from
the precursory latest Jurassic—earliest Cretaceous contraction
(Figs. 5a, b, 6e). The resulting finite configuration places the
Serbo-Macedonian hanging wall overlying the EVZ lime-
stones, basalts, mélanges, and greenschists (Figs. 3d, 4b,
7a—c).

Restoring the Late Jurassic—earliest Cretaceous
near-margin configuration: subduction, carbonate
production, and convergence

The study also identified the two structural levels of Neo-
Tethys-related deformations using the data on the recog-
nized metamorphic grades. The east-vergent unmetamor-
phosed slab segments initially interacted within Western
and East Vardar Jurassic geodynamic framework (Table 3;
Fig. 8b, c¢). This brittle rather shallow deformation level of

the proposed Jurassic NeoTethyan Vardar paleosuture is
identified by the observed diabase and limestone fragments/
inclusions exposed in the KurSumlija area (Fig. 8a; Table 3).
Diabase and limestone inclusions indicate a syndepositional
and relatively shallow interaction between the EVZ oceanic
lithosphere (diabase) and the top-sealing oceanic bottom
Tithonian limestone sediments. Deformations in diabase
and limestone were probably produced by the compressional
interference between these Tithonian limestones and the
EVZ oceanic crust (Fig. 8a, b). In addition, a single borehole
“BKB-2” (Petrovi¢ and Jankiéevi¢ 1990) that penetrates the
KurSumlija diabase reveals a repeated section configuration
(for definition of repeated sections see e.g., Williams et al.
1989). The vertical borehole profile exposes the underly-
ing but younger Tithonian limestones positioned beneath
the diabase. The absence of Cretaceous sedimentary record
further correlates with the late Jurassic compression and
earliest Cretaceous nappe stacking. This early or pre- Late
Creataceous nappe-stacking configuration indicates the tim-
ing of initial deformation which is the latest Tithonian to
earliest Cretaceous age.

The spatially aligned with the Dobroljupci along N-S direc-
tion is nearby Zdraljica ophiolite of central Serbia (Fig. 1). The
Zdraljica EVZ oceanic crustal remnants contain a bimodal fin-
gerprint involving the Jurassic peraluminous granite character-
ized by post-collisional volcanic arc signatures (168.4+6.7 Ma
on quartz-diorite; Resimié-Sarié et al. 2005; Sarié et al. 2009).
The geochemical fingerprint (including adakite-like features)
shows that some of the Jurassic central Serbian EVZ granites
were formed by melting immature volcanoclastic sediments
(éarié et al. 2009). These melts represent a mafic/intermedi-
ate volcanoclastic debris originating in an island-arc setting that
is restrained to the east (or towards Serbo-Macedonian) by the
Tithonian limestones (Resimié-garié et al. 2005). Such a setting
fits well with the proposed Jurassic supra-subduction-related
configuration or oceanic over oceanic slab situation (two Juras-
sic slabs) topped by the Tithonian carbonate sequence. Similar
rocks exposed in the southern Dobroljupci area represent the
analog Jurassic assembly (Fig. 3d, see #1 in Fig. 8c). However,
if we presume the presence of Jurassic obduction, it appears
that both Dobroljupci or Levac greenschist-facies rocks have the
same low-grade imprints equal to the slab segment beneath the
internal Serbo-Macedonian margin (Boljevac—Vukanja system
of the Jastrebac Mt.; Marovic et al. 2007a; Erak et al. 2017).

Underneath the internal Serbo-Macedonian margin (Jastre-
bac Mt. Figure 3c), there is a deeper Neotethan crustal sec-
tion uncovering formerly subducted Jurassic oceanic WVZ
assembly (opposite structural level to the highest or obducted
section;Marovic et al. 2007a; Spahic et al. 2023b; Fig. 8c). The
Jastrebac Mt. tectonic assembly in its lower sections experi-
enced greenschist-type metamorphic overprint (including
calc-schist or rocks with limestone protolith), which is most
pronounced at the Boljevac—Vukanja subsystem (Marovié
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Fig.7 a—c Configuration of
basaltic rocks and mélange
exposed near the large syncline
in the Dobroljupci area. The
ages are taken from Resimic
Sari¢ et al. (2009) and Maffione
and van Hinsbergen (2018).
The VZ black basalts spatially
occupy a very high angle
relative to the adjacent nappe
front. White arrows indicate the
position of the nearby nappe
(SMU—Serbo-Macedonian
Unit)

et al. 2007a). In turn to Dobroljupci EVZ exposure, the Bolje-
vac—Vukanja greenschists can be interpreted either as both: (i)
a segment of the Western Vardar plate and the “Sava Zone”
by Schmid et al. (2008), Marovi¢ et al. (2007a), or (ii) as the
segment of the EVZ by Petrovi¢ et al. (2015).

As there is no visible evidence of the significant lat-
est Jurassic—earliest Cretaceous crustal thickening in the
Dobroljupci area, we believe that the obduction path of
the EVZ ophiolites (if any) may have solemnly affected
the underlying greenschist-facies rocks that have limited
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exposure (similar to Males et al. 2023). Progressive sub-
duction and shortening produced non-planar cylindrical
meter-size top-to-the-south folds (latest Jurassic—earliest
Cretaceous deformation at the Dobroljupci area or D;). Once
such folds propagate and amplify, fold axes may behave
passively and rotate toward the shear direction (Fig. Sa—e).
This allows the fold hinges to rotate progressively toward
the transport direction, resulting in highly curvilinear folds
(Alsop and Carrerad 2007). The shape of these non-planar
cylindrical folds in this context can indicate the proximity
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of the latest Jurassic tensor. The shape of the exposed folds
may pinpoint the presence of previously reported transpres-
sion-type underplating (Grubi¢ 2002; Spahi¢ and Gaudenyi
2022; Fig. 5d). Such a regional shear direction is marked by
a syncline-related limb elongation (Fig. 5a, blue line). Con-
sequently, the latest Jurassic—earliest Cretaceous deforma-
tion front comprised the Serbo-Macedonian plate (Fig. 5a;
Boev et al. 2018). The folds are positioned below an uncon-
formity in the Tithonian limestones (Fig. 5a).

The extracted latest Jurassic-earliest Cretaceous
compressional markers

The proposed new kinematic interpretation yields sev-
eral processes: the Western Vardar underplating under
the EVZ, limited obduction of the EVZ ophiolite, “dock-
ing,” and collision (uplift, tectonic exhumation, and ero-
sion/paleokarstification). The underplating of the active
Western Vardar slab temporarily ceased in the latest
Jurassic—earliest Cretaceous (contractional stage). In
contrast, the production of EVZ oceanic crust ceased in
the uppermost Kimmeridgian (Boev et al. 2018), while
the uplifting type of tectonism terminated the Tithonian
(Berriasian) carbonate production. By the earliest Creta-
ceous, the proposed intra-Mesozoic contraction, limited
ophiolite obduction, and regional uplift (Berriasian) are
moreover depicted by several additional suture-related
imprints:

(1) There is a subaerial paleokarstification episode in the
latest Jurassic eroding the Tithonian limestones (see
point vii). Notably, the latest Jurassic - earliest Creta-
ceous paleokarstification episode is consistent with
the mid-Mesozoic compressional event observed
in the region (e.g., Bulgaria/Rhodopean Massif,
Bonev and Stampfli 2011; Greece/Inner Hellenides,
Mposkos et al. 2024) and in the nearby Alpine Tethys
(Steiner et al. 2021);

(ii)) The presence of the tectonically exhumed meta-
morphic rocks with the Jurassic protoliths, absence
of sediments of Cretaceous age (e.g., Karamata et al.
1994; Marovié et al. 2007a, b; Bonev et al. 2023;
Males et al. 2023). The metamorphic greenschist-
facies rocks near the Serbo-Macedonian margin
(Levac and Dobroljupci) margin may indicate a lim-
ited initial obduction during the latest Jurassic short-
ening. Further testing of the Leva¢ and Dobrolju-

(iii)

@iv)

)

(vi)

(vii)

pci protoliths and the exact age is a must (including
Jastrebac Mt. assembly);

The newly observed overprinted meter-scale folds
(D)) are the critical marker of the latest Jurassic—
earliest Cretaceous shortening and uplift episode;
The statistical analyses show the eastern vergence
of the EVZ and its underlying configuration beneath
the west-vergent Serbo-Macedonian thrust;

The subsurface geophysical data additionally sup-
port the EVZ downwards configuration beneath
the Serbo-Macedonian thrust (Fig. 8b, ¢). The 3D
model is based on the survey lines perpendicular to
the investigated tectonic interface (Petrovi¢ 2015;
Petrovié et al. 2015). Such a configuration may sug-
gest that the initial minimal obduction was likely
succeeded by the EVZ underplating underneath the
Serbo-Macedonian. The geophysical subsurface vis-
ualization of the same ophiolites in North Macedonia
additionally outlines a similar tectonic interfinger-
ing with the Paleozoic basement (including the older
gneissic 'Eastern Veles Series'/Serbo-Macedonian
Unit; Petrovi¢ 2015; Petrovié et al. 2015; Spahié
et al. 2019);

The arc-type latest Jurassic—earliest Cretaceous
collision has regional analogs within the Circum-
Rhodope belt of eastern Bulgaria (vicinity of Rho-
dope Massif). The magmatism and metamorphism
occurred at~ 168—-154 Ma (Resimic’—garic’ et al.
2005; Bonev and Stampfl 2011; Bonev et al. 2023
and references cited). The eastern Balkans sector, or
the Strandja Massif, subducting entity was exhumed
during the late Jurassic-early Cretaceous, inclusive
its western part (c. 156—123 Ma; Elmas et al. 2011;
Sunal et al. 2011). This event also corresponds to
the Middle Jurassic-Early Cretaceous plutons intrud-
ing to the western sector of the Rhodope Massif (c.
164-135 Ma; Turpaud and Reischmann 2010);

The proposed latest Jurassic—earliest Cretaceous
contraction, collision, “docking,” and a very lim-
ited regional obduction are imprinted within the
latest Jurassic limestones and the “paraflysch"”
sequence of the EVZ (Fig. 4a). Namely, the lower-
most sequence of “paraflysch” is characterized by
the rarely exposed transgressive breccia. The ‘Basal
series’ composed of breccia carrying the evidence
of paleokarstification (Dimitrijevi¢ and Dimitrijevié
2009). The lowermost ‘Basal series’ of the Lower
Cretaceous “paraflysch” comprise eroded calcareous
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«Fig.8 Tectonic reconstructions outlining paleo-subduction zones
(inset after Robertson et al. 2008, significantly modified). Please
use Table 3 for interpretation. a The KurSumlijska banja outcrop,
Fig. 2b#3 (Petrovi¢ and Jankicevi¢ 1990, modified). The outcrop
reveals two important tectonic boundaries: 1. Limestones with dia-
base inclusions and vice versa, including the repeated section rep-
resented by a vertical section of borehole “BKB-2”, and 2. The
mylonite zone which is on the opposite side of the inclusions, indi-
cating a post-Jurassic exhumation. b Early-Middle Jurassic tectonic
reconstruction, with the two east-vergent paleosubduction slabs and
the observed non-planar folds in Dobroljupci (Fig. 2b, #1). The num-
bers in the yellow rectangle indicate the position of the outcrops in
Fig. 2b. Once the Western Vardar slab stopped its downgoing sub-
duction (orange arrow), the EVZ slab was able to start its downgo-
ing movements (green arrow; slab dynamics modified according to
Boev et al. 2018). ¢ The Middle-Late Jurassic configuration of the
EVZ, exposing the latest Jurassic-Early Cretaceous Neotethyan clo-
sure, early collision, and metamorphism (Jastrebac area, Fig. 2b, #2)
with regional nappe stacking (repeated section in the KurSumlija area,
Fig. 2b, #3)

crystallized breccia, microconglomerate, including
abundant large fragments of the Tithonian limestone
(Petrovi¢ and Jankicevi¢ 1990; KuresSevié et al.,
2022; Spahi€ et al. 2023a). This stratigraphical low-
ermost sequence of the latest Jurassic—earliest Cre-
taceous age exposes somewhat chaotic olistolith-
like feature discovered in the vicinity of Belgrade
(Dimitrijevi¢ and Dimitrijevi¢ 2009; Kuresevic et al.
2022; Fig. 4a). The recent survey of the “Ropocevo
breccia” indicated, however, the presence of the lat-
est Jurassic—lowermost Cretaceous Berriasian uncon-
formity (breccia is covered by the Late Cretaceous
turbidites belonging the EVZ; Spahic et al. 2023a;
Fig. 3a). The paleokartstification observed within the
“Ropocevo breccia” is outlining the tectonic uplift,
which is defined as the D,_, stage (Table 3; similar to
a segment of Alpine Tethys; Steiner et al. 2021). The
latest Jurassic—earliest Cretaceous collision or “dock-
ing” and subsequent erosion were succeeded by a
prompt extension and subsidence, which lasted up
to the Cenomanian (Table 3) (similar to the North
Macedonian segment; Robertson et al. 2013).

On the other hand, the absence of any ophiolite fragments
in the ‘Basal Series’ of the”paraflysch” and the “Ropocevo
breccia” itself (Dimitrijevi¢ and Dimitrijevi¢ 2009; Spahi¢
et al. 2023a) is questioning the obduction. Moreover, the
‘Basal Series’ lies directly on the top of the crystalline

Serbo-Macedonian basement (Dimitrijevi¢ and Dimitrijevi¢
2009). The absence of ophiolite and its fragments (which
should be on top of Serbo-Macedonian crystalline schists),
with the presence of greenschist-facies rocks beneath the lat-
ter, requires a new attempt to provide more solid evidence of
obduction. The observed absence of thickened Jurassic crust
indicates that the latest Jurassic—earliest Cretaceous obduc-
tion was limited in length. The results from central Serbia
show that the model of the two slabs obducted on top of the
Jurassic continental margin can be excluded (no similarities
with the Apuseni Mts. (Gallhofer et al. 2017).

The renewed post-Jurassic subduction of the shortly stag-
nating trench (same Jurassic oceanic crust) restarted during
Lower Cretaceous (Berriasian). The renewed movements of
the Jurassic oceanic crust generated by a slab pull is respon-
sible for the ultimate latest Cretaceous—Paleogene suturing
of the remnant aquatic corridor (Table 2) and the final oro-
genic wedging. The collision allocated the western Serbo-
Macedonian Unit in the highest structural position (collision
is related to the second contractional deformation D, event).

Conclusions

New structural data collected within the EVZ and the Serbo-
Macedonian rocks from Dobroljupci, KurSumlijska banja
(and Kopaonik Mt.) and Jastrebac Mt. areas, including a lim-
ited number of published data for central Serbia, permitted
constituting a cross-lithospheric the mid-Mesozoic regional-
structural-tectonic relationship. We trace and reconstruct the
NeoTethyan Jurassic oceanic crustal segments and follow their
interaction with the Serbo-Macedonian margin, emphasizing
the mode of the latest Jurassic-Early Cretaceous tectonics and
paleogeography. The widespread topping Tithonian limestone
sequence is of particular importance (“tubiditic limestone”
per Dimitrijevi¢ and Dimitrijevi¢ 1975), as it shows both the
unconformity-related paleokartstification, and the exposed
nappe-staked mid-Mesozoic configuration traceable along
the entire EVZ.

The NeoTethyan Western Vardar Zone and the EVZ col-
lided in the latest Jurassic, terminating the carbonate-produc-
ing paleoenvironment, further resulting in the tectonic exhu-
mation of the continental margin. The collision did not result
in significant crustal thickening, though there could be some
evidence of the precursory very limited obduction in the form
of Jurassic greenschists (Males et al. 2023). The successor, or
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slightly postdating compressional episode (D,, D;—;), induced
the regional uplift (unconformity; Males et al. 2023; Spahic¢
et al. 2023a). After a short uplift episode, the entire area sub-
sided during the Lower Cretaceous, producing the mixed
clastic-carbonate “paraflysch” (D,_,).

Contrary to several obducted ophiolite belts distributed
across the Mediterranean area (e.g., Schmid et al. 2008; Jol-
ivet et al. 2016), the study results show that the latest Juras-
sic obduction on top of the Serbo-Macedonian continental
margin in central Serbia has a limited amount of evidence.
The exposed greenschist-facies rocks (Levac¢ and Dobrolju-
pci areas) lie beneath this Central Serbo-Macedonian Unit as
a suspected obduction-related footwall assembly. The latter
hangingwall unit was tectonically placed (west-vergent nappe)
above the bulk mid-Mesozoic - Late Cretaceous- Paleo-
gene EVZ-related subduction-accretion complex of central
Serbia (D, stage, Late Cretaceous—Paleogene). The distinctive
Jastrebac Mt. greenschist is likely a volcanic arc assembly that
descended into the Jurassic-Cretaceous trench, being lifted and
exhumed much later during the Neogene. The KurSumlijska
banja area exposes a mid-Mesozoic nappe-stacked configu-
ration with tectonically deformed and crushed diabase rocks
embedded into the Tithonian limestone and vice versa. Such
a configuration confirms that the EVZ crustal segments were
in the supra-subduction setting with the WVZ (D,_; and D, _,);
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