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Abstract Constraining magnitudes of mechanical and

thermo-mechanical parameters of rocks and shear zones

are the important goals in structural geology and tecton-

ics (Talbot in J Struct Geol 21:949–957, 1999). Such

parameters aid dynamic scaling of analogue tectonic models

(Ramberg in Gravity, deformation and the Earth’s crust in

theory, experiments and geological applications, 2nd edn.

Academic Press, London, 1981), which are useful to unravel

tectonics in further details (Schultz-Ela and Walsh in J Struct

Geol 24:247–275, 2002). The channel flow extrusion of the

Higher Himalayan Shear Zone (HHSZ, = Higher Hima-

laya) can be explained by a top-to-S/SW simple shear (i.e. the

D2 deformation) in combination with a pressure gradient

induced flow against gravity. Presuming its Newtonian

incompressible rheology with parallel inclined boundaries,

the viscosity (l) of this shear zone along a part of the

Himalayan chain through India, Nepal and Bhutan is esti-

mated to vary widely between *1016 and 1023 Pa s, and its

Prandtl number (Pr) within *1021–1028. The estimates uti-

lized ranges of known thickness (6–58 km) of the HHSZ,

that of its top subzone of ductile shear of normal shear sense

(STDSU: 0.35–9.4 km), total rate of slip of its two bound-

aries (0.7–131 mm year-1), pressure gradient (0.02–6

kb km-1), density (2.2–3.1 g cm-3) and thermal diffusivity

(0.5 9 10-6–2.1 9 10-6 m s-2) along the orogenic trend.

Considering most of the parameters specifically for the Sutlej

section (India), the calculated viscosity (l) and the Prandtl

number (Pr) of the HHSZ are deduced to be l: *1017–

1023 Pa s and Pr * 1022–1028. The upper limits of the

estimated viscosity ranges are broadly in conformity with a

strong Tibetan mid-crust from where a part of the HHSZ

rocks extruded. On the other hand, their complete ranges

match with those for its constituent main rock types and

partly with those for the superstructure and the infrastructure.

The estimated mechanical and thermo-mechanical parame-

ters of the HHSZ will help to build dynamically scaled

analogue models for the Himalayan deformation of the

D2–phase.
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Prandtl number � Higher Himalaya � Higher Himalayan
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Introduction

‘As in other fields of knowledge the main approaches

in Geology to find explanations and understand the

mechanics behind geological phenomena have been

three: analytical, physical and numerical model-

ing.’—F. O. Marques (2012)

Due to its several critical structural, tectonic and meta-

morphic characters, the Higher Himalayan segment of the

entire Himalayan orogen (Fig. 1a, b) has received enor-

mous global attention (e.g. Yin 2006; Hatzfeld and Molnar

2010). Ever since the landmark paper by Beaumont et al.

(2001) on coupled thermal–mechanical channel flow

extrusion of the Higher Himalaya was published, there has

been an intense debate on the validity and modifications of

this extrusion mechanism (‘Appendix 1’; also see Grujic

et al. 1996). The channel flow model envisages tectonic

and/or climate controlled flow of partially molten rocks

through an inclined channel (the Higher Himalaya) either

in a single or in two pulses within *22–16 Ma (Hollister

and Grujic 2006). One of the major structural constraints
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that extensional ductile shear within the upper portion of

the Higher Himalaya took place simultaneous to the ductile

compressional shear within the base is explained efficiently

by the channel flow model. A linked subhorizontal feeder

channel at a mid-crustal depth still exists below the

southern Tibet (Fig. 1c; Beaumont et al. 2001, 2004, 2007;

Jamieson et al. 2004, 2006; Hollister and Grujic 2006; also

reviews by Burbank 2005; Mukherjee 2005, 2007; 2010a,

b, c; Godin et al. 2006; Grujic 2006; Hodges 2006; Jones

et al. 2006; Yin 2006; Harris 2007, 2008; Dewei 2008;

Mukherjee and Koyi 2010a, b; Searle et al. 2010; Streule

et al. 2010; Chen et al. 2011; Jamieson et al. 2011;

Imayama et al. 2011; Searle et al. 2011; Burbank and

Anderson 2012; Chatterjee et al. 2012; Mukherjee et al.

2012; Mukherjee and Mukherjee 2012; Streule et al. 2012;

Yakymchuk et al. 2012).

The channel flow model—as a combination of Couette

and Poiseuille flow (Fig. 2)—has been applied in various

modified forms over a vast spatial extent along the Hima-

layan chain—in the western—(Warren et al. 2008a, b, c;

Beaumont et al. 2009; Mukherjee 2010a, b, 2012a, b;

Mukherjee and Koyi 2010a, b; Mukherjee and Mulchrone

2012), and in the central, eastern, and the far eastern

Himalaya (Godin et al. 2006; Jessup et al. 2006; Searle

et al. 2006; Zhu et al. 2010; Guilmette et al. 2011; Gong

et al. 2012; Zhang et al. 2012). Thus, it appears that the

channel flow acted along the entire Himalayan chain but

excluding the two syntaxes due to a lack of leucogranite

melt at the upper structural level of the HHSZ (Searle and

Treloar 2010; Johnson and Harley 2012).

Since the Higher Himalaya has been reported to have

undergone a top-to-S/SW sense of ductile shearing (the D2

deformation event of Jain et al. 2002, also see Mukherjee

2012c, d, e) as revealed most profusely by S–C fabrics, the

terrain has been referred as the ‘Higher Himalayan Shear

Zone’ since 1988 (Jain and Anand 1988; Mukherjee 2007,

2010a, b; Mukherjee and Koyi 2010a, b; Mukherjee et al.

2012). Different parts of the HHSZ might have evolved

with finally different thermobarometric histories (compare

review by Jain et al. 2002 and Yin 2006 with Carosi et al.

2010). Alternative perspectives on their tectonics have

been indicated by referring the Higher Himalaya as an

‘orogenic wedge’ (Grasemann et al. 1999), a ‘Higher

Himalayan Crystalline Sequence’ (Vannay and Grasemann

2001; Vannay et al. 2004), an ‘orogenic channel’ (Beau-

mont et al. 2001), a ‘Greater Himalayan Sequence’ (Grujic

et al. 1996, 2002) and a ‘Higher Himalayan Slab’ (Searle

and Szulc 2005). This work describes the Higher Himalaya

as a shear zone, that is, it uses the phrase ‘Higher Hima-

layan Shear Zone’ (HHSZ) as a synonym for the ‘Higher

Himalaya’. That different subzones inside the ‘HHSZ’

were reactivated at different time spans and that there are

few undeformed subzones inside it are also appreciated.

While viscosity, a mechanical parameter, measures for

internal resistance of a fluid to flow, the Prandtl number

(Pr)—a unitless thermo-mechanical parameter (Fowler

2005)—represents how fast heat diffuses from a body

compared to its loss in momentum (Schlichting and Ger-

sten 1999). Whereas viscosity can be described as internal

friction of fluids to flow, a Pr C 10 of a ‘virtually infinite’

magnitude indicates negligible inertial force (Marsh 1989;

Lowrie 2007). A Pr [ 1 indicates a faster diffusion of

momentum than heat (Jaupart and Mareschal 2011). As for

example, water has a Pr of 8.1 (Turcotte and Schubert

2002). A higher Pr of a fluid in general indicates a thinner

thermal boundary layer (Oswald 2009). The Pr is also one

of the factors that governs thermal convection (Scheideg-

ger 1982a, b). Incorporation of thermal parameters for the

rocks as far as nearer to the natural prototype is needed to

generate realistic models (e.g. Maierová et al. 2012).

This work aims to estimate the dynamic viscosity and

the Prandtl number of the Higher Himalaya during its

channel flow (Fig. 2) by taking account a range of mag-

nitudes for its (i) geometry, (ii) size and (iii) physical

properties of the constituent rocks; (iv) slip rates of its

boundaries (the Main Central Thrust Zone: MCTZ, and the

South Tibetan Detachment System-Upper: STDSU); and

(v) the thickness of the STDSU. In one particular case,

many of those parameters from one of the well-studied

transects of the Sutlej section of the Higher Himalaya

(India) were used to calculate a section-specific viscosity

and a Prandtl number. These results were then compared

with standard values for the rocks that constitute the

HHSZ. The present work therefore considers only the

channel flow model and makes no attempt to evaluate the

suitability of any alternate extrusion models of the Higher

Himalaya—most notably the critical taper mechanism.

This work does not aim to establish any along strike var-

iation of tectonic parameters in the orogen (Grujic et al.

2004; Carter and Foster 2009; Roberts et al. 2011a, b;

Arora et al. 2012; Giambiagi et al. 2012; Johnson and

Harley 2012; Mouthereau et al. 2012 etc.) in the Himalaya

(i.e. unlike review of Hindle 2003).

Geology and tectonics—Higher Himalayan

Shear Zone (HHSZ)

The Himalayan mountain chain is a manifestation of con-

tinent–continent collision between the Indian and the

Eurasian plates since their collision *55 Ma onwards.

Since then, crustal shortening along the chain, deduced

from cross-section balancing, varied from *500 to

1,000 km under a variable rate of shortening of

10–20 mm year-1 (reviews by Piffner 2006; Yin 2010;

Long et al. 2011). The mountain developed either by
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Fig. 1 a The Himalayan mountain chain as a number of longitudinal

stripes of lithologies (reproduced from fig. 1 of Godin et al. 2006).

The ‘Greater Himalayan Sequence’ of Godin et al. (2006) is presented

here as the Higher Himalayan Shear Zone (HHSZ), and their ‘Main

Central Thrust Zone’ as the ‘Main Central Thrust-Lower’ (MCTL).

b A simplified NE–SW cross-section of the Himalaya (reproduced

from fig. 1 of Leech et al. 2005). Abbreviations: IGP, Indo Gangetic

Plane; MFT, Main Frontal Thrust; SHZ, Sub Himalayan Zone; MBT,

Main Boundary Thrust; LHZ, Lesser Himalayan Zone; MCTL, Main

Central Thrust-Lower; HHSZ, Higher Himalayan Shear Zone; MHT,

Main Himalayan Thrust; STDSU, South Tibetan Detachment System-

Upper; THZ, Tethyan Himalayan Zone; TMC, Tso Morari

Crystallines; IYSZ, Indus Yarlung Suture Zone; LBC, Ladakh

Batholith Complex; SSZ, Shyok Suture Zone; KBC, Karakoram

Batholith Complex. Notice that the Greater Himalayan Zone (GHZ)

of Leech et al. (2005) is written here as the Higher Himalayan Shear

Zone (HHSZ), Main Central Thrust (MCT) as the MCTL and the

South Tibetan Detachment System (STDSU) as the South Tibetan

Detachment System-Upper (STDSU). c Schematic presentation of

channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ).

Parabolas represent velocity profiles. MHT, Main Himalayan Thrust;

STDSU, South Tibetan Detachment System-Upper; MCTL, Main

Central Thrust-Lower; neither to scale nor angle. Reproduced from

fig. 12a of Mukherjee et al. (2012)
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progressive accretion or by ‘protracted’ (continuous?)

deformation (White and Lister 2012’s review; also see

fig. 2 of Streule et al. 2010). Inside a sub-horizontal

channel with the base defined by the Main Himalayan

Thrust, the mid-crustal rocks (*10–30 km depth) of the

Tibetan plateau are partially molten to 5–14 % by volume,

and persists as a ‘jelly-sandwich model’ (Johnson and

Harley 2012) where the viscosity falls drastically up to

three order of magnitudes (Liu and Yang 2003; as repro-

duced in fig. 10.26 of Keary et al. 2009). The subhorizontal

channel defines a flat segment of the channel that links to

the inclined HHSZ ramp where there is only 2–4 % by

volume partial melt (Fig. 1c; Beaumont et al. 2001; Hauck

et al. 1998; review by Rosenberg et al. 2007; Caldwell

et al. 2009). Layers of subhorizontal mica foliations and

lineations less abundantly defined by amphiboles manifest

a seismic anisotropy inside the near horizontal channel

(Guo et al. 2012). Overall geodynamics of the HHSZ may

be nearly the same over hundreds of kilometres (Corrie and

Kohn 2011). Variations in geometry and orientation of the

ramp and the flat along the Himalayan trend have been

discussed by Robert et al. (2011a, b) that seem to have no

spatial pattern. Based on geochronologic studies of the

HHSZ rocks of the Garhwal Himalaya and literature sur-

vey, Spencer et al. (2011) concluded that the HHSZ rocks

were originally derived from sediments of clastic origin

during the late Precambrian along with that from a volcanic

arc. Geochemistry of titanites from the HHSZ at Marsyandi

section (Nepal) indicate that rocks at a mid-crustal depth

were in a partially molten state for *[10 Ma before the

boundaries of the HHSZ were sheared (Kohn and Corrie

2011). Initially, this molten material spread laterally

(‘tunnelling’), and later, due to monsoonal erosion, it

extruded upwards along the HHSZ (Clift et al. 2010;

review by Burbank and Anderson 2012). The monsoonal

erosion was nonuniform over the HHSZ (Brewer et al.

2006).

The Archean–Proterozoic lithology of the HHSZ (along

with few Ordovician granitoids: Lombardo et al. 1993;

Carosi et al. 1999) that might be of aluminus composition

(Harris 2008) could either be (i) a high-grade metamor-

phosed equivalent of the Lesser Himalaya or (ii) that of the

upper unit of Tethyan Himalaya or even (iii) a mixture of

various crustal elements with Greater India due to an early

Palaeozoic tectonic event (reviews by Robinson et al. 2006;

Chakungal et al. 2010; also Gehrels et al. 2011). Except in

the eastern Himalaya, where they are metamorphosed to

granulite facies (see Zhang et al. 2010), the HHSZ rocks

elsewhere are of greenschist to amphibolite facies (review

by Yin 2006).

In the Sutlej section, the HHSZ consists of dominantly

schists in the lower part, and gneisses, migmatites and

granites in the upper part (Mukherjee and Koyi’s 2010a

simplification of lithologies). Larson et al. (2010) presented

from central Nepal a similar classification of an upper part

of the HHSZ with migmatites and kyanite–slilimanite zone

rocks and a lower part with garnet–staurolite–kyanite zone

(similar review by Wang et al. 2012). A similar classifi-

cation was also followed by Yakymchuk and Godin (2012)

from the far eastern Nepal. These authors identified the

contact between the two units both as a metamorphic and a

tectonic discontinuity, which could in fact be an out-of-

sequence thrust.

In the Annapurna–Manaslu section of the Nepal Hima-

laya, the HHSZ is divisible into three formations or units—

pelitic rocks, calc silicates and augen-gneiss (review by

Searle and Godin 2003). Besides, minor amounts of calc

silicates, metabasites and retrogressed granulitized eclog-

ites have also been reported from the HHSZ from Sikkim

(India) and in parts of Nepal (reviews by Neogi et al. 1998;

Carosi et al. 2002, 2007; Rolfo et al. 2008; Gehrels et al.

2011). These rocks of negligible volume will not be con-

sidered further in this work.

Inside the HHSZ, an important tectonic unit named as

the ‘Everest Series’ (Searle et al. 2003; Jessup et al. 2008;

Streule et al. 2012)/‘North Col Formation’ (Carosi et al.

1999)/‘Chekha Formation’ (also spelled as ‘Cheka For-

mation’: Kellett et al. 2010; Kellett and Grujic 2012)/

‘Kumaon Schists’ ? (Gansser 1964) has been recognized

from different river sections, which consists mainly of calc

silicates, marbles and schists with or without high-grade

metamorphic minerals, which escaped Cenozoic meta-

morphism (Carter and Foster 2009). Whereas in the Mt.

Everest region in Nepal, it occurs at the structurally top-

most part of the HHSZ and did not take part in channel

flow (Jessup et al. 2008), in western Bhutan it is present

inside the HHSZ as a *1-km-thick zone. It underwent a

top-to-NE sense of ductile shear and presumably was

affected by the extrusive flow as a ‘coherent unit’ (Kellett

et al. 2010; also see Tobgay et al. 2012), or its melting

Fig. 2 Velocity profiles for a channel flow: red parabola: Poiseuille

flow; green straight line: Couette flow or simple shear; blue parabola:

a combination of Couette flow and Poiseuille flow
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contributed to the Higher Himalayan leucogranites/mig-

matites (Searle et al. 2010).

Throughout the HHSZ, except local folds, the main

foliations (and the stretching lineations) dip (and plunge)

dominantly towards N/NE. The NW–SE trending HHSZ is

bound by the 1 to 10 km-thick ‘Main Central Thrust Zone’

(MCTZ: reviews by Searle et al. 2003; Godin et al. 2006

and Yin 2006; also see Heim and Gansser 1939; Hubbard

and Harrison 1989; Edwards 1995; Gupta et al. 2010; Bell

and Sapkota 2012 etc.) in the south as the base and a

ductile extensional shear zone: the South Tibetan Detach-

ment System-Upper (STDSU; reviews by Godin et al. 2006;

also see Carosi et al. 1998; = ‘Inner-South Tibetan

Detachment System’: Kellett and Godin 2009; Kellett et al.

2010; Kellett and Grujic 2012) in the north within the top

(Fig. 3). The MCTL and/or the MCTU have been defined

based on various tectonometamorphic and geochemical

methods (review by Yakymchuk and Godin 2012).

Recently, Gray and Pysklywec (2012) proposed based on

mathematical modelling of mature continental collision

that delamination of the Indian lower crust gave rise to

extensional shear near the upper boundary of the HHSZ.

Characterized by mylonitization and bound by the Main

Central Thrust-Upper (MCTU) in the north and the Main

Central Thrust-Lower (MCTL) in the south, the MCTZ could

be a tectonic mélange between the Lesser and the Higher

Himalayan rocks (reviews by Martin et al. 2005; Godin et al.

2006; and Kohn 2008; Corrie and Kohn 2011; Mottram et al.

2011; Webb et al. 2011). The MCTL has also alternatively

been called as the MCT1 and the MCTU as the MCT2 by

many (such as Searle et al. 2008). The MCT(Z) played a

crucial role in the Himalayan tectonics, especially after

*25 Ma, by absorbing a significant amount of the India–

Eurasia convergence, but possibly the degree of absorption

varied along the Himalayan trend (Godard and Burbank

2011; Tobgay et al. 2012). Other than the STDSU as the upper

boundary, a second ductile extensional shear zone—the

‘South Tibetan Detachment System-Lower’ (STDSL =

Outer-South Tibetan Detachment System: Kellett and Godin

2009; Kellett et al. 2010; Kellett and Grujic 2012)—has been

documented inside the HHSZ (Fig. 3) rather discontinuously

along the orogenic trend (review and original work by

Mukherjee and Koyi 2010a). Along the Himalayan chain, the

top-to-S/SW ductile shear of the MCTL was active between

*15 and 0.7 Ma, the MCTU at *25–14 Ma, and the

extensional top-to-N/NE ductile shear during *19–14 Ma

within the STDSU and *24–12 Ma within the STDSL

(compiled by Godin et al. 2006). Based on available new

geochronologic data, Kellett and Grujic (2012) revised the

activation span to be 12–11 Ma for the STDSU in some

sections and 22–12 Ma for the STDSL. While the total

amount of slip of the STDSU varies between 42 and 255 km

(review by Leloup et al. 2010), for the MCT between 100 and

200 km for the MCT (Johnson and Harley 2010’s review),

that for the STDSL has probably remained unconstrained.

Unlike the previously held view that the South Tibetan

Detachment System developed by continuous deformation

of a low-angle normal fault system, it has its genesis linked to

both channel flow and extrusion (Kellett and Grujic 2012).

Possibly, the MCTU, the MCTL and the STDSU together

were active during a brief span of *15–14 Ma. The exact

timing and slip of these tectonic boundaries/zones varied

along the entire Himalayan chain. For example, Leloup et al.

(2010) deciphered that the extensional shearing inside the

STDSU at the western Himalaya stopped*5 Ma earlier than

in the eastern Himalaya.

Fig. 3 Summary of the first-order structures on a SW–NE section of

the HHSZ. Symbols: ‘1’: top-to-SW shear; ‘2’: top-to-N/NE shear

inside the STDSU; ‘3’: that inside the STDSL; HHSZ: Higher

Himalayan Shear Zone; TSZ: Tethyan Sedimentary Zone, STDSU:

South Tibetan Detachment System-Upper; STDSL: South Tibetan

Detachment System-Lower; OOST: out-of-sequence thrust; LH:

Lesser Himalaya; MCTL: Main Central Thrust-Lower, MCTU Main

Central Thrust-Upper; neither to scale nor to dip. Reproduced from

fig. 2 of Mukherjee et al. (2012). Timing of activation of the MCT(Z),

OOST, STDSL and the STDSU are also presented from Godin et al.

(2006) and Mukherjee et al. (2012)
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Metamorphism within the HHSZ took place either in

two events—in the Eo-Himalayan ([44–33 Ma) and the

Neo-Himalayan (*mid-Miocene) periods (reviewed as

fig. 7a in Streule et al. 2010), or as a protracted single

phase (review by Yakymchuk and Godin 2012). A regional

metamorphism during 32–20 Ma up to kyanite to sillima-

nite grade was reached in the HHSZ (St-Onge et al. 2006).

A recent but rather unpopular view has been that the HHSZ

underwent a HP metamorphism when it was at a depth of

*80–100 km (Yang et al. 2011). Northward from the

MCTL, an inverted metamorphic gradient gives way

northward to a normal sequence of metamorphism (Vannay

and Grasemann 2001). Jain et al. (2002) considered a top-

to-S/SW ductile shear from *25 Ma affected the HHSZ. A

delay of *30 Ma in initiating this major phase of defor-

mation starting from the India–Asia collision at *55 Ma

could be due to intensification of erosion rate by the

monsoon at *25 Ma (Clift and Plumb 2008). An out-of-

sequence thrust (OOST: Morley 1988’s abbreviation)

ranging from 22 Ma until Holocene has been deciphered

inside the HHSZ based on faster extrusion of its northern

part (Fig. 4; review by Mukherjee et al. 2012; in addition,

possibly the ‘Laya Thrust’ in Nepal: Argles 2011; Warren

et al. 2011; Grujic et al. 2011). However, Robert et al.

(2009) showed that one of these so-called OOSTs—the

‘physiographic transitions’ in the Nepal Himalaya—is

actually a manifestation of overthrusting of a crustal ramp

in the subsurface, and therefore should not be considered

strictly as OOSTs. Recently, Mukherjee and Bandyopad-

hyay (2011) documented numerous NE verging backthrusts

from the Bhagirathi section of the HHSZ in India.

The geometric and the kinematic parameters—that

could be related to extrusion of the HHSZ—varied drasti-

cally along the Himalayan trend. For example, (i) the

structural thickness of the HHSZ vary from 6 km at the

Lower Dolpo in western Nepal (2 km as the lowest

thickness of the ‘Higher Himalayan Crystallines’: Godin

et al. 2006; Carosi et al. 2007, 2010; plus 4 km is the

thickness of the MCT Zone: Carosi, personal communi-

cation) up to 58 km at the Sutlej section (India, Jain and

Anand 1988). (ii) Out of eight locations along the Hima-

layan chain where the thickness of the STDSU has been

reported, the minimum is 350 m in the Annapurna section

(Nepal; Searle and Godin 2003), and the maximum is

9400 m in the Sutlej valley (India; Mukherjee and Koyi

2010a) (Fig. 5). (iii) The slip rate of the MCT(Z) at any

portion inside it shows a minimum magnitude of

0 mm year-1 in the Annapurna section (Nepal, Whipp

et al. 2005) and a maximum of 8.4 cm year-1 from a

portion of Bhutan (Tobgay et al. 2012) (Fig. 6). (iv)

Likewise, the slip rate of the STDSU varies from

0.7 mm year-1 in the Sutlej section (India, Vannay et al.

2004) up to 47 mm year-1 at Mansalu area (Nepal, Hodges

et al. 1998) (Fig. 6). (v) During its genesis, the proto-

HHSZ had a maximum slope of 60� at *24 Ma (fig. 2 of

Jamieson et al. 2004). With time, as the HHSZ extruded

towards S/SW, it developed a gentle dip of 30� (fig. 2b of

Vannay and Grasemann 2001) or 40� (fig. 6 of Yin 2006;

also see Carosi et al. 2010). However, in rare cases, a

steeper dip of 60� still persists at places in the central

Himalaya (Yin 2006). (vi) Ten magnitudes of pressure

gradients available at eight locations reveal a minimum of

*0.02 kb km-1 east to La Kang valley (Bhutan, Grujic

et al. 1996) and a maximum of 6 kb km-1 in the Langtang

section (Nepal, Kohn 2008) (Fig. 7). Some of these

parameters are the metamorphic pressure gradient, which

could be correlated tentatively with lithostatic/tectonic

pressure gradient (review by Huetra et al. 1999; Larson

Fig. 4 The out-of-sequence

thrust inside the Higher

Himalayan Shear Zone (HHSZ).

Reproduced from fig. 1 of

Mukherjee et al. (2012). The

map of the Himalayan chain is

reproduced from fig. 1 of Godin

et al. (2006). PT: Physiographic

Transition; Hi: High Himal

Thrust.Additionally ‘La’: ‘Laya

Thrust’, plotted from fig. 1b of

Warren et al. (2011), also see

Grujic et al. (2011)
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et al. 2010). (vii) A component of pure shear was invoked

to account for the presence of either shear bands or flat-

tened folds in the HHSZ found at least at four locations

(Bhattacharya 1999; Goscombe et al. 2006; Cottle et al.

2007; Mukherjee 2007, 2010a; Mukherjee and Koyi 2010a)

along the Himalayan trend. In addition, the kinematic

vorticity number (Wk: ‘a nonlinear ratio between simple

shear to pure shear deformation’: Johnson et al. 2009) has

been constrained within nine ranges at five different loca-

tions. The Wk values vary from 0.57 (i.e. more of pure

shear component than simple shear) up to 0.85 (=more of

simple shear component than pure shear; Rongbuk section,

Nepal, Jessup et al. 2006) (Fig. 8). All these magnitudes of

pressure gradients, strain rates and rates of slip (Figs. 5, 6,

7, 8) hold true only for different shorter time intervals that

fall within 0–25 Ma. The displacement (slip) across the

STDSU was [50 km (Burchfiel et al. 1992) and the MCT

was 200–210 km (reviews by Johnson 2002; Yin 2006)—

but these data were not utilized in the present model.

(viii) Bound at south by (meta/)sediments of Lesser

Himalaya and at north by the Tethyan Himalaya (Fig. 3) of

much lesser thermal conductivity (Grasemann 1993), the

HHSZ releases considerable heat (4–5 lW m-3: at Sikkim,

India: Faccenda et al. 2008). The Dalhousie group of

researchers in their coupled thermal mechanical model

implicitly assumed a geothermal gradient of

18–28 �C km-1 for the HHSZ (as estimated by Spencer

et al. 2012). Out of merely seven locations where the

geothermal gradient has been constrained, an anomalously

low magnitude of 5.5 �C km-1 was reported from Sikkim

(India, Neogi et al. 1998) and a high apparent thermal

gradient of 420 �C km-1 during Miocene Period from the

Sutlej section (Francsis 2012) (Fig. 9). From three known

magnitudes, the HHSZ rocks vary in thermal conductivity

from 1.5 W m-1 K-1 at Garhwal (India, Ray et al. 2007)

up to a maximum of 5.3 W m-1 K-1 at the Marsyandi

basin (Nepal, Annen et al. 2006) (Fig. 9), which is *1.5

times greater than the average value of *3.45 W m-1 K-1

for the average conductivity value for the Indian subcon-

tinental crust (as referred by Sarkar and Saha 2006; Maj

2008). In general, for a channel flow to occur in rocks that

are a partially molten, a high heat production of Cc.

2 mW m-3 is expected (Kohn and Corrie 2011). Viscous

dissipation due to ductile shear in the HHSZ must have

varied significantly along the orogenic trend (Mukherjee

2012b).

Fig. 5 Thickness of the South Tibetan Detachment System-Upper (STDSU) reported from different sections of the Higher Himalayan Shear

Zone compiled from previous authors. The map of the Himalayan chain is reproduced from fig. 1 of Godin et al. (2006)
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An analytical model

A channel with very long and rigid parallel inclined

boundaries is considered to be filled with an incom-

pressible Newtonian fluid. The coordinate axes are chosen

such that the positive side of the Z-axis is along the up-

dip direction (Fig. 10). A ‘component of gravity’,

expressed as the product of density, acceleration due to

gravity and the sine of the dip of the shear zone, tends to

subduct the fluid (Eqs. 1 and 2 in the ‘Appendix 2’). A

component of pressure gradient tends to counteract the

‘component of gravity’ and extrude the fluid. The ‘Pois-

son equation’ of flow (Eq. 1 in ‘Appendix 2’) is solved to

obtain the velocity profile (see Beaumont and Ings 2012,

Natarov and Conrad 2012 etc. for alternate but effectively

the same expressions). The channel is now equated with

the HHSZ with an N/NE dip direction. The model con-

siders that deformation and extrusion of the HHSZ is

governed by (i) slip of its boundaries; (ii) a pressure

gradient; and (iii) a gravity component. What has been

reported as ‘pressure gradient’ in the literature (reviewed

in Fig. 7) must be the ‘resultant pressure gradient’ (=‘qP/

qz - d g Sinh’ in Eq. 1 in ‘Appendix 2’), which is the

component of pressure gradient minus the gravity com-

ponent. It is certainly not the ‘qP/qz’ of equation in

‘Appendix 2’, as in that case, (qP/qz - d g Sinh)

becomes less than zero leading to subduction and no

extrusion at all.

Across the vertex (Fig. 10), opposite shear senses

develop simultaneously within the two subzones. Under a

certain algebraic relation among the flow parameters, the

vertex lies inside the shear zone (in Eq. 4 in ‘Appendix 2’),

and the parabolic profile tapers towards the up-dip direc-

tion. In the context of the HHSZ, the reverse shear subzone

formed at the upper portion equates with the STDSU with a

top-to-N/NE sense of ductile shear. The location of the

vertex depends on the following flow parameters: (i) the

absolute velocities of the two boundaries; (ii) thickness of

the shear zone; (iii) resultant pressure gradient along the

shear zone; and (iv) viscosity of the rock (expressions

between Eqs. 3 and 4 in ‘Appendix 2’). The resultant

pressure gradient is in turn dependent on (iiia) the pressure

Fig. 6 Slip rates of the Main Central Thrust Zone (MCTZ) and the

South Tibetan Detachment System-Upper (STDSU) estimated for the

Higher Himalayan Shear Zone compiled from previous authors.

a, b As referred in Vannay and Grasemann (2001). c, d Exhumation

rate of the MCT(Z) of the authors is written as slip rate in this work.

The map of the Himalayan chain is reproduced from fig. 1 of Godin

et al. (2006)
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Fig. 7 Pressure gradient estimated for the Higher Himalayan Shear Zone (HHSZ). Data by previous authors have been compiled. The map of the

Himalayan chain is reproduced from fig. 1 of Godin et al. (2006)

Fig. 8 The ‘kinematic vorticity number’ (Wk) and the ‘mean

kinematic vorticity number’ (Wm) estimated for the Higher Himala-

yan Shear Zone compiled from previous authors. In few cases, pure

shear was deciphered qualitatively based on the presence of shear

bands and are indicated by ‘qualitatively’. The ‘strain ratio’ is the

ratio between the minimum to the maximum stretch (Park 1997). The

map of the Himalayan chain is reproduced from fig. 1 of Godin et al.

(2006)
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gradient that pushes the rock upward; (iiib) dip of the shear

zone; (iiic) acceleration due to gravity; and (iiid) density of

the rock (Eq. 1 in ‘Appendix 2’).

Notice that (i) the location of the vertex and the flow

equation from which it was derived (expressions between

Eqs. 3 and 4 in ‘Appendix 2’) are independent of total

time taken for channel flow extrusion (no ‘t’ term exists

in Eq. 1 in ‘Appendix 2’) and the extrusion rate of the

shear zone; (ii) as in Grujic et al. (1996, 2002) and

Mukherjee and Koyi (2010a), kinematic vorticity num-

bers and erosion rates were not incorporated in the flow

equation; (iii) the thickness of the MCT Zone is absent in

the flow equation; and (iv) the dip of the HHSZ does

appear in the flow equation (‘h’ in Eq. 1 in ‘Appendix

2’), unlike the model horizontal channels by Mukherjee

and Koyi (2010a, b). However, since along with other

magnitudes, that for the ‘resultant pressure gradients’

(‘qP/qz - d g Sinh’ in Eq. 1 in ‘Appendix 2’) were

inserted to estimate the viscosity (Table 1), the magni-

tudes of dip did not find any direct use. Field-studies on

the HHSZ can delineate the STDSU, and hence estimate

its thickness. The other parameters such as lithostatic

pressure gradient comes from metamorphic studies (e.g.

Neogi et al. 1998) and the slip rate of the boundaries

from geochronology (such as Catlos et al. 2001).

Application of a single model to different sections of the

Higher Himalaya is certainly a simplification where the

second order tectonic features of individual sections had

to be ignored.

Fig. 9 Thermal parameters for the Higher Himalayan Shear Zone compiled from previous authors. The map of the Himalayan chain is from

fig. 1 of Godin et al. (2006)

Fig. 10 Extrusion of the Higher Himalayan Shear Zone (HHSZ) by

means of a channel flow mechanism shown in a cross-section along

N/NE–S/SW geographic directions. A combination of simple shear at

the boundaries (half arrows) and a resultant pressure gradient that

drives rock upwards is represented. Green profile: gravity-induced

flow. Orange profile: a flow component that tries to extrude. Red

profile: the resultant of the previous two profiles. Blue profile: the

grand resultant profile between simple shear and the red profile. Sizes

of the two full arrows: rigour of the respective flows given by their

colours. V: Vertex, through which a dash line parallel to the

boundaries represent the lower boundary of reverse ductile shear
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Not all the flow parameters are available for any indi-

vidual section across the Higher Himalaya. For example, in

the Sutlej section of the HHSZ, (i) the slip rate of the

MCTZ and (ii) the resultant pressure gradient are

unavailable (compare Figs. 5, 6, 7, 8). Taking the maxi-

mum and minimum values of slip of the MCT(/Z) from

other Himalayan sections (i.e. 0 mm year-1 from Annap-

urna section, Nepal: Whipp et al. 2005; and 8.6 cm year-1

in Bhutan: Tobgay et al. 2012) and those for the STDSU

from the Sutlej section itself (i.e. 0.7–1.6 mm year-1:

Vannay et al. 2004), the approximate minimum and the

maximum total slip rates (the ‘U1 ? U2’ in Eq. 7 in

‘Appendix 2’) for the Sutlej section of the HHSZ are cal-

culated to be 0.7 and 87.6 mm year-1, respectively. That

the minimum slip rate for the absolute movement of the

MCTZ in the Sutlej section could be very low is supported

by the presence of an out-of-sequence thrust (OOST;

review by Mukherjee et al. 2012). This is because Herman

et al.’s (2010) tectonic modelling demonstrated that for an

OOST to occur inside the HHSZ, the slip rate in the MCTZ

needs to be �1 mm year-1. The two extreme values of

pressure gradient were considered from some other sec-

tions, for example 0.02 kbar km-1 from east to La Kang

(Bhutan, Grujic et al. 1996) and 6 kbar km-1 from Lang-

tang valley (Nepal, Kohn 2008) (Fig. 7). Using figs. 1 and

3 of Mukherjee and Koyi (2010a), the thickness of the

Sutlej section of the HHSZ and those of the STDSU were

found to be *58 and *9.4 km when the HHSZ is con-

sidered to have a 60� dip, and 34 and 5.5 km when the dip

is 30�.
A comparison between the data obtained for the Sutlej

section and those from all other sections can now be made.

The highest known thickness of 9.4 km of the STDSU

comes from the Sutlej section (Fig. 5; Mukherjee and Koyi

2010a). The slip rate of the STDSU of 0.7–15 mm year-1

(Vannay and Grasemann 2001; Vannay et al. 2004) is

much below the maximum known rate of 47 mm year-1

from the Manaslu section (Nepal; Hodges et al. 1998; see

Fig. 6). The highest mean kinematic vorticity number

(Wm = 0.98: Law et al. 2011) in the HHSZ has been

deduced from the Sutlej section. The highest geothermal

gradient of 45 �C km-1 (Thiede et al. 2009) and a highest

apparent thermal gradient of 420 �C km-1 (Francsis 2012)

were also deciphered from this section. Likewise, the

maximum thermal conductivity of the HHSZ rocks at this

section of 3.5 W m-1 K-1 (Thiede et al. 2009) is less than

the deciphered maximum magnitude of 5.3 W m-1 K-1

from the Marsyandi section (Annen et al. 2006).

A review on density (d), thermal diffusivity (j) and

dynamic viscosity (l) of the five types of rocks—schists,

gneisses, migmatites, granites and granulites of the HHSZ

(second to sixth rows in Table 1)—reveal that those

parameters for all these rocks taken together range between

d: 2.2–3.1 gm cm-3, j: 0.6 9 10-6–2.1 9 10-6 m s-2,

and l: 103–1021 Pa s. Calculation of Prandtl number (Pr)

of these rocks using the formula Pr = l d-1 j-1 gives a

range of magnitudes for all these rocks from *5.1 9 107

to *1.5 9 1024 (sixth column in Table 1). These ranges of

‘d’ and ‘j’ were taken for the HHSZ to estimate its vis-

cosity and Prandtl number (rows 15 and 16 in Table 1).

Thus, in this process of calculation, the set of magnitudes

chosen to estimate viscosity and Prandtl number may not

match with any single rock type (compare rows 1–14 with

15–16 in Table 1). The final set of parameters and their

ranges of magnitudes used to estimate the viscosity and the

Prandtl number are shown in Table 2. Various possible

ranges of values taken in this study are shown in Table 3.

Notice that the calculation of viscosity is not possible if the

thickness of the STDSU (=9.4 km) is considered to be more

than that of the HHSZ (=4 km). The STDSU being a zone

inside the HHSZ, the former must be considered thinner

than the latter.

Now consider magnitudes for parameters related to

extrusion of the HHSZ along the trend of the Himalaya that

is not specific to any section. Since the slip rate of the MCT

along the Himalayan trend vary between 0 and

8.4 cm year-1 and that of the STDSU between 0.7 and

47 mm year-1 (Fig. 6), the total slip rate of these two units

along the Himalaya ranges from 0.7 to 131 mm year-1

(0 ? 0.7 = 0.7; 84 ? 47 = 131). The thickness of the

STDSU was taken to vary from 0.35 km (data at Annap-

urna section, Nepal: Searle and Godin 2003) to 9.4 km (at

Sutlej section, India: Mukherjee and Koyi 2010a), and that

of the HHSZ from 6 (Lower Dolpo, Nepal: Carosi et al.

2007, Carosi et al. 2010) up to 58 km (Sutlej valley, India:

Jain and Anand 1988). The ranges of magnitudes for the

pressure gradient (0.02–6 kb km-1), dip (30–60�), density

(2.2–3.1 gm cm-3) and thermal diffusivity (0.5 9 10-6–

2.1 9 10-6 m s-2) of the HHSZ (compiled in Table 4) are

same as the case considered for the Sutlej section. Thermal

Table 2 The maximum and the

minimum magnitudes of

parameters to estimate the

viscosity and Prandtl number of

the Sutlej section of the Higher

Himalayan Shear Zone (HHSZ)

Slip rate

(U1 ? U2) in

mm year-1

Thickness of

HHSZ (2y0)

in km

Resultant pressure

gradient

(qP/qz - d g Sinh)

in kbar km-1

Density of

HHSZ (d)

in gm cm-3

Thickness

of the STDSU (T)

in km

Thermal

diffusivity (j)

in m s-2

0.7 34 0.02 2.2 5.5 0.5 9 10-6

87.6 58 6 3.1 9.4 2.1 9 10-6
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diffusivity can vary with depth (Nabelek et al. 2010) and

with temperature (Nabelek et al. 2012), but for the sake of

simplicity, this variation is not considered in this work. A

number of combination of magnitudes to estimate viscosity

and Prandtl number are shown in Table 5.

The estimated range of viscosities of the HHSZ (and not

of its constituent individual rock types) along the studied

Himalayan trend comes out to be *1016–1023 Pa s (row 15

in Table 1) and that for only the Sutlej section within

*1017–1023 Pa s (row 16 in Table 1). The ranges of Pra-

ndtl numbers in these two cases are estimated to be

*1021–1028 and *1022–1028, respectively. As expected,

the calculated ranges of viscosity and Prandtl number for

the Sutlej section of the HHSZ falls within the respective

ranges for the HHSZ along the Himalayan trend.

Discussions

Whereas the ramp-flat geometry of the HHSZ might vary

along the Himalayan chain (Robert et al. 2011a, b), the

ramp alone defines the model channel through which

Table 3 Calculation of

viscosity ‘l’ of the Higher

Himalayan Shear Zone (HHSZ)

in the Sutlej section

The maximum (1.3 9 1023

Pa s) and the minimum

estimates (8.7 9 1017 Pa s) are

shown in bold

Sl no Slip rate

(U1 ? U2) in

mm year-1

Thickness of

HHSZ (2y0)

in km

Resultant

pressure gradient

(qP/qz - d g Sinh)

in kbar km-1

Thickness of

the STDSU (T)

in km

Viscosity of

HHSZ (l)

in Pa s

1 87.6 34 0.02 5.5 2.6 9 1020

2 87.6 34 6 5.5 8.7 3 1017

3 87.6 58 0.02 9.4 7.5 9 1020

4 87.6 58 6 9.4 2.5 9 1018

5 0.7 34 0.02 5.5 3.8 9 1021

6 0.7 34 6 5.5 3 9 1019

7 0.7 58 0.02 9.4 1.3 3 1023

8 0.7 58 6 9.4 8.5 9 1019

Table 4 The maximum and the

minimum magnitudes of

parameters used to estimate the

viscosity and Prandtl number of

the Higher Himalayan Shear

Zone (HHSZ) along the studied

Himalayan trend

Slip rate

(U1 ? U2)

in mm year-1

Thickness

of HHSZ

(2y0) in km

Resultant

pressure gradient

(qP/qz - d g Sinh)

in kbar km-1

Density of

HHSZ (d)

in gm cm-3

Thickness of

the STDSU (T)

in km

Thermal

diffusivity

(j) in m s-2

0.7 6 0.02 2.2 0.35 0.5 9 10-6

131 58 6 3.1 9.4 2.1 9 10-6

Table 5 Calculation of

viscosity ‘l’ of the Higher

Himalayan Shear Zone (HHSZ)

along the studied Himalayan

trend

The maximum (1.3 9 1023

Pa s) and the minimum

estimates (1.2 9 1016 Pa s) are

shown in bold

Sl

no

Slip rate

(U1 ? U2) in

mm year-1

Thickness of

HHSZ (2y0) in

km

Resultant pressure gradient

(qP/qz - d g Sinh) in kbar

km-1

Thickness of the

STDSU (T) in

km

Viscosity of

HHSZ (l) in

Pa s

1 0.7 6 0.02 0.35 3.7 9 1020

2 0.7 6 6 0.35 2.7 9 1019

3 0.7 58 0.02 0.35 3.2 9 1017

4 0.7 58 6 0.35 1.1 9 1020

5 131 58 0.02 0.35 3.3 9 1020

6 131 58 6 0.35 1.1 9 1018

7 131 6 0.02 0.35 3.6 9 1018

8 131 6 6 0.35 1.2 3 1016

9 131 58 0.02 9.4 1.3 3 1023

10 131 58 6 9.4 3.6 9 1020

11 131 58 0.02 9.4 2.1 9 1020

12 131 58 6 9.4 4.2 9 1018
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extrusive flow is defined. The present approach of model-

ling ductile deformation in terms of boundary conditions

and rheology of the shear zone is similar to those adopted

by many previous workers (e.g. Beaumont et al. 2001;

Grujic et al. 1996, 2002; Ramsay and Lisle 2000; Stüwe

2007; Mancktelow 2008). However, any possible temporal

variation in the amount and the rate of extrusion of the

HHSZ (Kellett et al. 2010) vis-à-vis its rheologic hetero-

geneity are not considered in the flow model (Eq. 1 in

‘Appendix 2’). Also not considered are the pre-Himalayan

D1, and the post-Himalayan D3 and the D4 deformations (of

Jain et al. 2002) that gave rise to folding and brittle faulting.

Rather, the model considers only the Himalayan D2 defor-

mation phase when a top-to-SW ductile shear sense devel-

oped inside the HHSZ along with a channel flow.

The viscosity ranges deduced in this work falls well

within 1017–1025 Pa s of all the rock types as referred by

Gerya and Meilick (2011). The viscosities and Prandtl

numbers estimated for the HHSZ in two cases have rather

wider ranges since the input parameters such as pressure

gradient, thickness of the HHSZ and that of the STDSU,

and the total slip rates of the MCT and the STDSU them-

selves vary widely in magnitudes. By contrast, since the

density (d: 2.2–3.1 gm cm-3) and the thermal diffusivity

(j: 0.5 9 10-6–2.1 9 10-6 m s-2) of the HHSZ were

considered to vary within much narrower limits, they were

not responsible for yielding those wide ranges.

As calculated for the Sutlej section here, using specific

magnitudes of parameters for any particular section of the

HHSZ, one can estimate viscosity and Prandtl number of

the HHSZ at that transect. The range of viscosity deduced

for the HHSZ of Sutlej section has a little tighter range of

106 than that of 107 as estimated for the HHSZ along the

complete Himalayan trend. This is because while the

maximum total slip rate (the ‘U1 ? U2’ in Eq. 7 in

‘Appendix 2’) for the HHSZ along the Himalayan trend is

131 mm year-1 (as entered in first column in Table 4), that

for the Sutlej section is merely 87.6 mm year-1 (in

Table 2). Since the same range of density (d: 2.2–3.1 gm

cm-3) and thermal diffusivity (j: 0.5 9 10-6–2.1 9 10-6

m s-2) were considered to estimate the Prandtl number in

both the cases, the range calculated for the Sutlej section

was narrower than that for the complete HHSZ. Signifi-

cantly narrowing the estimates of the pressure gradient, the

thicknesses of the HHSZ and STDSU and the slip rates of

the MCT and the STDSU in any section would significantly

shorten the calculated range of viscosity and Prandtl

number for that section. The upper limit of viscosity of the

HHSZ of *1023 Pa s matches with the high magnitude as

predicted by Copley et al. (2011) beneath Tibet. The

Tibetan middle crust extruded from a subhorizontal chan-

nel that was connected with the inclined HHSZ. However,

whereas Copley et al. (2011) concluded that such a high

viscosity cannot favour a channel flow, the present work

inputs the existing extrusion parameters into the flow

equation to reach the high magnitude as one of the possi-

bilities. Based on the experimental rock mechanical data,

Rutter et al. (2011) estimated the viscosity of the Tibetan

mid-crust to range widely between 1015 and 1021 Pa s. On

the other hand, 3D mechanical modelling along with GPS

studies led He et al. (2012) to reach a tighter range of 1019–

1023 Pa s for the lower crust of the Tibetan plateau. Thus,

keeping in mind the uncertainties in estimating viscosity in

the present work, the deduced viscosity range of the HHSZ

broadly conforms with the recent findings (Copley et al.

2011; Rutter et al. 2011; He et al. 2012) for the mid- to

lower crustal materials of Tibet.

The estimated variation in viscosity of the HHSZ in two

cases nearly encompasses the magnitudes for its constitu-

ent rocks, viz. schists, migmatites and granulites (compare

rows 2–6 with 15–16 in Table 1). However, the lower limit

for hot molten granites (*103 Pa s) falls far outside the

deduced ranges for the HHSZ. This was anticipated since

as the HHSZ also includes schists of higher viscosity. The

representative viscosity of the HHSZ is expected to be

higher than that of a pure granitic melt. The volume of

granitic melt produced along the Himalayan chain might

have varied. Similarly, while the ranges for the HHSZ

cover those for the Earth, the continental crust and the

‘weak mantle lithosphere (infrastructure)’, it partly mat-

ches with the ‘strong mantle lithosphere (superstructure)’

and partly with the ‘weak mantle lithosphere (infrastruc-

ture)’ (compare rows 10–14 with 15–16 in Table 1). As

partially molten rocks at ‘mid-crustal depth’ were a sig-

nificant contributor for the channel flow extrusion of the

HHSZ, it is expected to be mechanically weak and pre-

sumably similar to an infrastructure.

The estimated range of Prandtl number (*1021 to

*1028) for the HHSZ embraces those for schists, mig-

matites, granulites, continental crust and the entire Earth,

but greatly exceeds the lower limit for the granite melts

(*107), for magmas in general (*104–108: Lappa 2010),

and the highest limit exceeds that for mantle ([1020 to

*1024: Jarvis and Peltier 1989; Olson 1989; Matyska and

Yuen 2007; Lappa 2010 etc.) by five orders of magnitudes

or so. Note that the upper limit of Prandtl numbers of the

HHSZ nearly equals that estimated for the Tso Morari

gneiss (*1028: Mukherjee 2011d; Mukherjee and Mulch-

rone 2012). A relatively faster rate of heat diffusion from

the HHSZ might be assisted by intrinsically a very high

thermal conductivity of the gneisses in the HHSZ (Ray

et al. 2007) as well as heat flow augmented by a number of

hot springs (Derry and Evans 2002; Derry et al. 2009). The

geothermal gradient data from the HHSZ (Fig. 9) should

not be compared with the Prandtl number since they are

independent to each other.
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Any temporal variation in extrusion of the HHSZ along

the orogenic trend was not considered in the flow model in

this work (Eq. 1 in ‘Appendix 2’). In their flow models, the

Dalhousie research group also maintained a constant

1 mm year-1 of extrusion rate of the HHSZ (review by

Zhang et al. 2004). Along strike variation in structure,

topography, precipitation rate, convergence rate, etc. in the

Himalaya (e.g. Arora et al. 2012) has no direct bearing on

the presented model. Several heterogeneities in deforma-

tion at the same location, for example any vertical variation

in mechanical property of the rocks (Flesch and Bendick

2012) of the HHSZ as well as its slip rate (see Ponraj et al.

2011) were not taken account. Modern thermal mechanical

model of shear zones (e.g. Beaumont et al. 2004; also

Kellett et al. 2010—as the latest example) consider a

number of other parameters, viz. (i) geothermal gradient,

(ii) radioactive heat production at depth, (iii) thermal

expansion coefficients of rocks, (iv) change in density

during extrusion of rocks and (v) the influence of focused

erosion in extrusion. However, following Grasemann et al.

(2006), this work neglects these constraints since those do

not affect the ductile shear sense (as practiced by Ramsay

1980; Ramsay and Lisle 2000 etc.). Also neglected are (vi)

rates of gravity spreading (cf. Ramberg 1981) and erosion

of the extruded materials; (vii) kinematic dilatancy (see

Fagereng 2012), strain partitioning, strain hardening/soft-

ening during shearing (Hobbs et al. 2010); (viii) any vari-

ation in slip rate and the resultant pressure gradient over

time; (ix) changes in dip amounts of the boundaries of the

HHSZ (Jamieson et al. 2004); (x) the upper brittle regime

of the HHSZ; (xi) tectonics of any individual unit inside the

HHSZ such as the ‘Everest Series’ and its equivalent units;

(xii) pure shear component on the HHSZ; (xiii) structural

and thermometric complicacies of the STDSU (e.g. Carosi

et al. 1998; Kellett and Grujic 2012); (xiv) strain locali-

zation induced by shear heating (Vauchez et al. 2012) and a

possible melt-related weakening (Gerya and Melilick

2011); (xv) any correlation between width of the shear

zone and depth (Platt and Behr 2011); and (xvi) the com-

plex interaction between any deformation partitioning and

metamorphism (Bell et al. 2012). A similar simplified

analytical modelling of ductile shearing was adopted by a

number of previous authors (e.g. Koyi 1997; Talbot and

Aftabi 2004; Grujic et al. 2002; Mancktelow 2008; Muk-

herjee and Mulchrone 2012 as few examples).

As depth increases, due to a normal geothermal gradient,

density and viscosity are expected to fall. However,

assigning a constant viscosity and density of the HHSZ

during its extrusion for each set of calculations can be

justified at sections where a very low geothermal gradient

has been documented such as *5.5 �C km-1 at Sikkim

(India, Neogi et al. 1998). But at other sections, where a

normal gradient and an abnormally high gradient have been

noted (summarized in Fig. 9), the present approach is a

simplification.

This work does not produce any new data on the

geometry nor slip/extrusion/erosion rates of the HHSZ.

Rather, the pre-existing magnitudes of some of these

parameters were inserted into the flow equation to estimate

a range of viscosity and the Prandtl number of the shear

zone. In this calculation, the density and the thermal dif-

fusivity magnitudes were collected from the literatures

since their actual ranges of magnitudes in the HHSZ are not

known. Using those data along with deduced viscosities,

the Prandtl number was obtained. Estimation of a particular

geologic parameter with others—one of which is deduced

and the other obtained from literatures—is customary in

geosciences, such as estimating the exhumation rate from

the calculated cooling rate, and a geothermal gradient

collected from literature (Bartolini et al. 2003). The pre-

sented model accounts for the ductile deformation only and

not the shallow-crustal brittle deformation.

Conclusions

The Dalhousie research group proposed and nurtured sig-

nificantly the concept of channel flow of the Higher

Himalayan Shear Zone (HHSZ). Accepting this model as

useful, this work estimates the viscosity of the HHSZ along

the orogenic trend to be *1016–1023 Pa s and a Prandtl

number of *1021–1028. The estimated parameters specif-

ically for the Sutlej section of the HHSZ are *1017–

1023 Pa s and *1022–1028. Thus, requirement of a very

low viscosity of *1019 Pa s for channel flow of south

Tibet, as followed by many (e.g. Beaumont et al. 2001; Rey

et al. 2010 etc.), from a mid-crustal depth does not hold

true. Unlike non-Newtonian rheology assumed in their

tectonic models by Whitney et al. (2009), these estimations

assume the HHSZ to be a single incompressible Newtonian

viscous lithology (similar to many tectonic models as

reviewed by Graveleau et al. 2012), bound by parallel

boundaries, and use known ranges of slip rates of the

boundaries—the Main Central Thrust (Zone) in the south

and the ductile shear subzone—South Tibetan Detachment

System-Upper (STDSU) in the north, pressure gradients,

thicknesses of the HHSZ and that of its subzone STDSU,

and the density and the thermal diffusivity of the HHSZ.

The last two parameters of the shear zones are taken to

range between the maximum and the minimum values of

its constituent rocks. The range of viscosity of the HHSZ is

broadly in accordance with Copley et al.’s (2011), Rutter

et al.’s (2011) and He et al.’s (2012) recent finding of a

strong Tibetan mid-crust. The estimated viscosity and the

Prandtl number of the HHSZ conform to those for its

constituent rocks, the Earth, the continental crust, partly

Int J Earth Sci (Geol Rundsch) (2013) 102:1811–1835 1825

123



with the superstructure and party the infrastructure, but not

with a granite melt. The high Prandtl number deduced for

the HHSZ may be justified by a very limited data on high

thermal conductivity of the gneiss of the shear zone.

Wide ranges of thermal and thermo-mechanical parame-

ters of the HHSZ arise due to vast limits on most of its

fundamental flow parameters. The present work neglects

temporal variation in flow parameters in individual sections.

Since this work considers a segment of the HHSZ along the

NW–SE trending segment of the Himalayan chain passing

through India, Nepal and Bhutan, it does not use extrusion-

related parameters from the two syntaxes. Unlike those

applied by the Dalhousie school, the present model ignores

thermo-mechanical complicacies of the HHSZ. Temporal

widening of shear zones (Goncalves et al. 2012) and rela-

tionship between deformation and metamorphism (Williams

and Jarcinovic 2012) were not investigated for the HHSZ.
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Appendix 1

Questions raised about the channel flow extrusion

mechanism of the HHSZ

(i) The ‘hairpin’ P–T-t path of the Higher Himalaya could

also be generated by burial followed by extrusion by any

other mechanism (review by Harris 2007). More specifi-

cally, the thermal, metamorphic and the chronologic evo-

lution of the Langtang section of the HHSZ in central

Nepal fit with the critical taper model. In contrast, the P–T

evolution of the Barun Gneiss inside the HHSZ, and the

temperature profile from the Karnali section (Nepal) of the

HHSZ fit with a channel flow model (Groppo et al. 2012;

Yakymchuk and Godin 2012). (ii) The vertical extents of

the major Himalayan thrusts at depth are speculative for

two reasons. First, the depths that the two faults bounding

the HHSZ, viz. the Main Central Thrust (MCT) and the

South Tibetan Detachment System-Upper (STDSU),

reached and confined the channel flow has remained

unconstrained (Sharma 2009). Secondly, whereas in the

western Himalaya, the Main Himalayan Thrust (the base of

the subhorizontal channel) is well established, its presence

in the eastern Himalaya has been questioned by Kayal

(2008) based on studies on micro-earthquakes. Finally, at

the Kathmandu klippen, the MCT and the leucogranites

indicative of channel flow are not observed (Jhonson and

Harley 2012); (iii) The geographic extents of partially

molten rocks within the Asian as well as the Eurasian

plates have remained indeterminate. This is because (iiia)

Sudha et al. (2011) deciphered low density materials within

fractures near the MCT in the Alaknanda river section

(India), and Seshunarayana et al. (2011) from the Bhagi-

rathi section (India); (iiib) based on geochemical studies,

Guo and Wilson (2011) recently proposed that the Higher

Himalayan leucogranites are derived from a melt of[80 %

from the HHSZ itself and \20 % from the Lesser Hima-

layan rocks by metasomatic replacements. (iiic) a lower

crustal zone of low viscosity (of the order of 1016 to 1017

Pa s) has been envisaged in Mongolia (Vergnolle et al.

2003) but that is *2,000 km northeast to the HHSZ. (iv)

Seismic studies of southern Tibet revealed that the low

velocity zones in mid-crust, a possible indicator of rocks

in a partially molten state (Zhao et al. 2004), occur as

discontinuous pods and cannot support channel flow

throughout the Himalaya (Hetényi et al. 2011; Zhang et al.

2012). A ‘soft Tibet’ model required for channel flow is not

supported by geophysical evidences (Tapponnier 2012).

(v) A low Poisson’s ratio of 0.24 below NE Tibet possibly

indicates a felsic rheology devoid of any flow (Pan and Niu

2011). (vi) Crustal thickness of the Tibet can be explained by

Cenozoic shortening and channel flow is not a requisite (Lease

et al. 2012 and references therein). Harrison (2006) argued

that (viia) the crustal low velocity zone could be due to

aqueous phases rather than partially molten rocks (also,

reviews by Unsworth 2010, Yang et al. 2012); and (viib) no

zircon from the Gangdese batholith, characteristic of the

partially molten rocks, has been documented from the HHSZ.

However, Jamieson et al. (2006) negated the second argument

by using the ‘material tracking method’ of modelling to show

that *30 Ma of channel flow could not expose the Asian

materials on the surface. Though it is still unclear whether the

low velocity zone below the southern Tibet is a genuine

indication of partially molten rocks (Bai et al. 2010’s review),

a mixture of aqueous phases and partially molten rocks can

also sustain a flow (Unsworth 2010).

(viii) Finite element modelling of the Tibetan tectonics

reveals a high viscosity of *5 9 1023 Pa s at mid-crustal

depth, much higher than a previous estimate of 1019–

1021 Pa s by Hilley et al. (2005), which has been consid-

ered to be unsuitable for channel flow (Copley et al. 2011).
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(ix) Considering the rate of uplift and the elevation of the

Tibetan plateau, Rey et al. (2010) deduced a Moho tem-

perature of 500–600 �C before the plateau thickened. This

temperature was considered by them unsuitable for a long-

distance channel flow. (x) Based on U-Th–Pb monazite

dates, it has been shown that the HHSZ in the eastern

Himalaya extruded by channel flow and critical taper

mechanisms in a flipping mode (Beaumont and Jamieson

2010; Chambers et al. 2011). This could hold true for the

Himalayan orogen where protracted erosion between

*16–18 Ma and at *3 Ma led to channel flow, and

waning of erosion in the intervening phases allowed a

critical taper situation (Beaumont and Jamieson 2010; Clift

2010). Even if one considers that channel flow operated

within certain time intervals, whether it is persisting at

present is unknown (Kohn 2008; Imayama et al. 2010). (xi)

Lithological correlation between the Indian basement and

the Himalaya led Yin et al. (2007) to conclude that unlike

channel flow, the eastern Himalaya underwent thick skin-

ned tectonics. (xii) Integrating structural, metamorphic and

tectonic data, Herman et al. (2010) favoured the ‘duplex

model’ over the channel flow model. (xiii) Carosi et al.

(2010) argued that merely 2- to 4-km-thick Higher Hima-

layan Crystalline in Lower Dolpo (western Nepal) cannot

support channel flow. Secondly, activation of the Toijem

Shear Zone inside the Higher Himalaya at *26 Ma much

before than that of the MCTZ and the STDSU at

*23–17 Ma does not fit with a simple channel flow of the

Higher Himalaya there. (xiv) The channel flow model

assumes that flow takes place inside rigid boundaries.

However, Mandal et al. (2009) argued that phyllites of the

Daling Group as the lower boundary of the channel in the

Sikkim–Darjeeling Himalaya is deformed ductilely and did

not act as a rigid block; (xv) A zone of flexure slip fold

inside the HHSZ in the Dhauliganga section (India) indi-

cated that mere channel flow probably did not operate in

that section (Mukherjee 2010c). (xvi) Whether the channel

flow can model explain the genesis of sigmoidal, paral-

lelogram and lenticular shear fabrics inside the HHSZ has

been questioned (Mukherjee 2009; Mukherjee and Koyi

2010a, b) but not investigated. (xvii) In their fig. 11c,

White et al. (2012) demonstrated that slab rollback can

well explain Himalayan gneiss domes without any need to

introduce channel flow.

Appendix 2

The ‘Poisson equation’ of rectilinear flow of an incom-

pressible Newtonian viscous fluid in the z-direction through

a very long parallel rigid boundary inclined shear zone is

given by (Eq. 6.190 of Papanastasiou et al. 2000):

ðo2Uz=ox2Þ þ ðo2Uz=oy2Þ ¼ l�1½oP=oz � dg Sinh� ð1Þ

‘x’ and ‘y’ are perpendicular directions that lie on the

cross-section of the shear zone; Uz—fluid along z-direc-

tion; ‘l’—fluid viscosity; (qP/qx)—pressure gradient

leading t o extrusion; ‘d’: fluid density; ‘g’: gravitational

acceleration; and ‘h’: shear zone dip.

Considering only the YZ section, (q2Uz/qx2) = 0.

Therefore:

ðo2Uz=oy2Þ ¼ l�1½oP=oz � d g Sinh� ð2Þ

Integrating twice, considering the shear zone to be of 2y0

units thick, and at y = y0, Uz = -U1 and at y = -y0,

Uz = U2 gives the profile:

Uz ¼ 0:5l�1ðoP=oz � d g SinhÞ y2 � y2
0

� �

þ 0:5 U2 � U1ð Þ � y y�1
0 U1 þ U2ð Þ

� �
ð3Þ

Being a quadratic equation, it represents a parabola, whose

vertex has the following coordinate:

x-ordinate: 0.5 (U1 - U2) ? 0.125 l y0
-2 (U1 ? U2)2

(qP/qz - d g Sinh)-1 - 0.5 y0
2 l-1 (qP/qz - d g Sinh)

y-ordinate: 0.5 l y0
-1 (U1 ? U2) (qP/qz - d g Sinh)-1

The vertex lies inside the shear zone if

y0 [ 0:5ly�1
0 U1 þ U2ð ÞðoP=oz � d g SinhÞ�1 ð4Þ

It lies on one of the boundaries if

y0 ¼ 0:5ly�1
0 U1 þ U2ð ÞðoP=oz � d g SinhÞ�1 ð5Þ

And it lies outside the shear zone if

y0\0:5ly�1
0 U1 þ U2ð ÞðoP=oz � d g SinhÞ�1 ð6Þ

In case of Eq. (4), the thickness of the STDSU is

T ¼ ½y0 ��0:5ly�1
0 U1 þ U2ð ÞðoP=oz � d g SinhÞ�1�:

ð7Þ
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