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ABSTRACT 

Improved carbon sequestration (CCS) models with rocks as sinks require incorporation of uncertainty into the models. In such cases of uncertain 

geoscientific problems, fuzzy graph theory can be useful. Brittle shear plane network with indistinct shear planes is common in natural sheared rocks, 

and can be targeted for CCS. Due to non-unique possibility of continuity of P-planes, it is not possible to represent such networks as crisp graphs. We 

present few natural examples of the former type of P-planes in shear zones, and how fuzzy graph theory can represent the fracture network and fluid 

flow. The process involves assigning some sample numerical probability to represent the connectedness between the underdeveloped P-planes and the 

Y-planes. The presentation is a geometric exercise and does not extend to the genesis of the shear zones. 
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INTRODUCTION 

Structural geological modeling requires representation of 

structures in some numerical form. When the structures are 

clearly decipherable, this is rather easy, for example, one 

can apply the graph theory (e.g., Sanderson et al., 2018; 

Mukherjee, 2019). Classical graph theory works when there 

is a full certainty that which nodes are connected by which 

vertices through edges. 

Various brittle plane geometries develop in rocks at shallow 

crustal depths that undergo brittle shear (Figure 1a). In case 

the shear planes are clearly delineated (Figure 1b), one can 

use graph theory to represent the brittle plane network in 

terms of   sigmoid shear bound by parallel planar shear 

planes commonly seen in sheared rocks. For example, in 

case of Figure 1b, the adjacency matrix is: 

a     b     c     d     e     f 

a 0 0 0 0 1 0 

b 0 0 0 0 0 1 

c 0 0 0 0 0 1 

d 0 0 0 0 0 1 

e 0 0 0 0 0 1 

f 0 0 1 1 0 0 

Carbon sequestration (CCS) has recently been modeled in 

terms of extraneous CO2 sources and CO2 sinks in rocks and 

P-graph modeling approach has been undertaken (Chong et 

al., 2014). Fractured rocks especially coal has been targeted 

for CCS (e.g., Chen et al., 2020). However, since 

connectivity of fractures is uncertain at depth, establishing 

models on CCS becomes problematic (Figure 1 of Zhang et 

al., 2009). Pashin et al. (2008) presented a discrete fracture 

network model for CCS in coal. Such models would be 

possible when existence of the sink locations in the coal is 

fairly well understood. When the existence of the sinks is 

uncertain, models will nevertheless be required to be built in 

decision making. Other uncertainties can be “unproven 

nature” of the carbon sequestration technology, economic 

cost and life cycles of the CCS technologies and so on (Tan 

et al., 2010 and references therein). Researchers have 

identified CCS as one of the potential areas where graph 

theory concept needs more elaboration (e.g., Farid et al., 

2021). 

Anand et al. (2021) discussed various kinds of uncertainties 

in parameters in structural geological problems. The 

sigmoid planes can be indistinct due to (i) poor snap quality, 

(ii) they are indeed developed less prominently, or (iii) 

sometimes a part of them is below the ground surface hence 

not seen. For example, in seismic images, brittle planes may 

not always be clearly decipherable. This can be because of 

such brittle planes are below the seismic resolution (Misra 

and Mukherjee, 2018), and yet the modeler needs to make 

some presentation of the brittle plane network. In such 

cases, where the classical graph theory cannot represent the 

brittle plane network where uncertainty exists about 

continuation of fractures, fuzzy graph theory should be 

used. 

The concept of fuzzy sets was introduced by Zadeh (1965), 

which later was well applied to solve several research 

problems that are uncertain in nature. Crisp set is a well-

defined collection of distinct objects. If there is any 

uncertainty in the set boundaries of objects, the concept of 

fuzzy set is used. In other words, a fuzzy set is used to 

represent the degree of membership of any qualitative data. 

The crisp set is not able to work with scientific problems 

with inherent uncertainty because it consists of just two 
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truth values: 0 – false (no) and 1-true (yes). These single 

values of membership degree are unable to manage the 

uncertainties. Atanassov (1999) proposed the intuitionistic 

fuzzy set to manage uncertain situations using an extra 

degree of membership, defined as the hesitation margin. 

Intuitionistic fuzzy set, is as an extension of Zadeh’s theory 

of fuzzy sets. Compared to classical fuzzy set, it is more 

flexible and efficient to work with uncertainty due to the 

presence of hesitation margin. Repository presents the 

fundamentals of the fuzzy graph theory. A fuzzy graph 

representing fracture network can constraints fluid flow 

through such a network. 

METHODS 

Figure 2a-c present a network of brittle shear planes where 

not all P-planes can be tracked with confidence. Here the 

curved P-plane AB joins two sub-parallel Y-planes. 

However, the other P-planes (CD, KZ, EF, GH and IJ) do 

not join both the C-planes. In some cases, the P-planes are 

too close-spaced in order to distinguish them confidently in 

naked eyes. A simplified situation can be thought in this 

case (Figure 3). 

 

 

 

Figure 1(a). Clearly visible Y and P planes. Top-to-ESE brittle shear with distinct Y- and P-planes within fluvial sandstone of 

the Sarnoo hill area, observed on a sub-vertical section. Location: W of Sarnoo hill area, SE of the Sarnoo village, Barmer basin, 

India. Reproduced from figure 1.18 of Mukherjee et al. (2020).  

 

Figure 1(b). A brittle plane network in a brittle shear zone. Reproduced from Figure 2c of Mukherjee (2019).  
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Figure 2. Brittle plane network consisting of Y and P planes.  Here some of these planes cannot be traced continuously with full 

confidence, and hence a  crisp graph cannot be visualized. Fuzzy graph theory can be applied in these cases. All examples from 

mylonitized gneiss in Greater Himalayan Crystallines, Bhagirathi section, Uttarakhand, India- (a,b) Top-to-left (up) shear. India; 

reproduced from figures. 5.15 and 5.20, respectively of Mukherjee (2014). (c) Top-to-right (up) shear; reproduced from figure 5.21 of 

Mukherjee (2014). 

 

 

Figure 3. An idealized brittle shear plane network. Few sigmoid P-planes (e.g., AB) join the C-planes.  The other P-plane, CD, KZ, 

EF, GH and IJ, are not fully developed and merge with just a single C-plane. In such a situation, fuzzy graph theory has been applied 

in this work. 
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We represent fracture network using intuitionistic fuzzy 

graph as follows (Figure 4). Points (nodes) A and B are 

certainly connected with AB as an arc.  But it is uncertain 

for some reason whether point D connects with E, G or I by 

some arc. Connection between D and E or I, therefore can 

be represented as an intuitionistic fuzzy graph. Now if by 

zooming the image or by some image enhancement 

technique, a connection between D and G is established 

with some degree of confidence, it means that there is a 

much higher probability/possibility that they are connected, 

and therefore connections between D and E or D and I 

would be less likely/less probable. Putting some sample 

numerical probability values in a scale of 0 (“certainly not”) 

to 1 (“certainly”), or using intuitionistic fuzzy graph enables 

one to represent the fracture network. In this graph, take the 

node set as V = {A, B, C, D, E, F, G, H, I, J, K, Z} and A 

(0.9, 0.1) denotes the degree of membership and degree of 

non-membership of the node A and similarly for all other 

nodes The ordered pair (0.7, 0.1) denotes the degree of 

membership and degree of non-membership of the arc 

relation eFH=(F,H) on 𝑉 × 𝑉and so on. These numerical 

values of   possibilities are given according to the degree of 

confidence of the connection. The values are taken in the 

interval [0,1]. 

We will now get into further detail of fuzzy graph theory to 

tackle flow problems. The adjacency matrix of a fuzzy 

graph G :(V,σ,µ) is an n×n matrix defined as A=[aij] , 

where aij=µ (vi,vj) (Anjali and Mathew, 2013). For example, 

consider the fuzzy graph in Figure 5 for a hypothetical data 

set. Its adjacency matrix is: 

 

 

Figure 4. A fuzzy graph corresponding to the case of Figure 3. 
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Figure 5. A fuzzy graph with nodes 𝑣1,   𝑣2, 𝑣3 and 𝑣4. Values inside brackets of the nodes are the fuzzy weights of the respective 

nodes.  Fuzzy arc weights are represented by the values 0.1, 0.2, 0.4, 0.6, and 0.9.  

 

Figure 6. A network, from nodes v2 to v1 the flow can vary in magnitude from 7 to 2 units. Therefore, we take fuzzy weights 0.7 for 

v2 and 0.2 for v1. Similarly, one can take the fuzzy weight of v3 as 0.3, v4 as 0.1. 

In this fuzzy graph, the numbers inside the first bracket 

represents the node weights, which do not appear in the 

adjacency matrix since. Instead, only the arc weights are 

used for the entries in the adjacency matrix. Such a 

presentation is as per Anjali and Mathew (2013). The 

entries in the adjacency matrix are obtained as follows. 

Since v1 is not shown to be connected with itself by any 

edge, the entry is 0. Since v1 is adjacent with v2 with arc 

weight 0.1, the entry is 0.1 and so on. 

Consider the network in Figure 6. From v2 to v1, the flow can 

vary in magnitude from 7 to 2 units. Therefore, we take 

fuzzy weights 0.7 for v2 and 0.2 for v1. Similarly, one can 

take the fuzzy weight of v3 as 0.3, v4 as 0.1. This is a first-

time approach through this work. Suppose the fuzzy graph 

presented in Figure 6 has no arrows on edges. Then its 

corresponding adjacency matrix will differ. 

That means flow can happen from one vertex to another and 

vice versa. The definition of a fuzzy graph allows us to give 

the arc weights in the following way. The arc (edge) 

weights are taken as the minimum among the corresponding 

node weights. This is logically true, since the maximum 

flow between two nodes is the minimum capacity between 

the two nodes. In that case, the adjacency matrix is:  

 

Suppose, instead of a range of flow, definite units of flow 

were given (e.g., 7, 5 and 2). We then assign fuzzy weights 

as 0.7, 0.5 and 0.2, respectively, for arcs. If a range of flow 

is given, we will get a freedom to take the minimum value 

amongst the range for representing the arc weight for the 

range of flow. As per the definition of adjacency matrix, 

one can represent these values by using their corresponding 

fuzzy weights. If 2, 1 and 3 are avoided, i.e., flow range 7 to 

2 becomes 7, flow range 2 to 1 becomes 2 and flow range 5 
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to 3 becomes 5, the flow becomes exact, and one can assign 

the fuzzy weights. In fuzzy graph, we can give the 

maximum value of node weight and arc weight as 1 and 

minimum as 0. All other values are in between 1 and 0. A 

value equal to 1 means that the flow has fully happened. 

The intensity of the flow is represented by using these fuzzy 

weights.  

Ramakrishnan and Lakshmi (2008) discussed how to fuse 

two nodes of the same fuzzy graph as follows. Let G: (V, σ, 

µ) be a fuzzy graph and let 𝑢, 𝑣 ∈ 𝜎. By the join (fusion) of 

two vertices u and v, the following is meant. 

(i) Fuse (join) the vertices u and v as uv in the 

corresponding crisp graph G∗ = (σ∗, µ∗) and then consider its 

underlying simple graph. A simple graph is the one without 

loops and possessing multiple edges. 

(ii) The resulting fuzzy graph is Guv=(σuv,µuv) where 

𝜎𝑢𝑣(𝑥) = {max [𝜎(𝑢), 𝜎(𝑣)]  if  𝑥 = 𝑢𝑣 

  𝜎(𝑥)  if    𝑥 ≠ 𝑢𝑣} 

and 𝜇𝑢𝑣(𝑥, 𝑦) = { max [𝜇(𝑥, 𝑢), 𝜇(𝑥, 𝑣)]  if 𝑦 = 𝑢𝑣 

max [𝜇(𝑢, 𝑦), 𝜇(𝑣, 𝑦)]  if   𝑥 = 𝑢𝑣 

𝜇(𝑥, 𝑦) if   𝑥 ≠ 𝑢𝑣 ,  𝑦 ≠ 𝑢𝑣}         

Consider the fuzzy graph in Figure 7. Figure 8 represents 

the fusing of the vertices a and b. 

For instance, 

µab (ab,d)=Max {µ (a,d),µ (b,d)}=Max {0.5,0}=0.5 

σab(ab)=Max {σ(a),σ(b)} =Max {1,0.8} =1 

 

 

Figure 7. Example of a fuzzy graph with nodes 𝑎, 𝑏, 𝑐 and 𝑑. Values inside the brackets of the nodes represent the fuzzy weights.  

Fuzzy arc weights are 0.5, 0.7 and 0.8. 

 

Figure 8. Fusing nodes a and b in the graph presented in Figure 7. 
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By using this idea, we can define the fusion of two vertices 

from two fuzzy graphs (Figure 9). Consider two fuzzy 

graphs G1: (V1, σ1, µ1) and G2: (V2, σ2, µ2). Let  𝑢 ∈ 𝐺1, 𝑣 ∈

𝐺2. Fuse (join) the vertices u and v as uv in the 

corresponding crisp graph and then consider the underlying 

crisp simple graph. The resulting fuzzy graph is 

Guv=(σuv,µuv) where: 

      𝜎𝑢𝑣(𝑥) = {max [𝜎1(𝑢), 𝜎2(𝑣)]  if  𝑥 = 𝑢𝑣 

𝜎1(𝑥)  if    𝑥 ∈ 𝐺1,   𝑥 ≠ 𝑢𝑣 

𝜎2(𝑥)  if    𝑥 ∈ 𝐺2,   ,𝑥 ≠ 𝑢𝑣} 

𝜇𝑢𝑣(𝑥, 𝑦) = {𝜇1(𝑥, 𝑢)  if   𝑦 = 𝑢𝑣, 𝑥 ∈ 𝐺1 

 𝜇2(𝑥, 𝑣)  if   𝑦 = 𝑢𝑣, 𝑥 ∈ 𝐺2 

𝜇1(𝑥, 𝑦)  if    𝑥, 𝑦 ∈ 𝐺1 

 𝜇2(𝑥, 𝑦)  if    𝑥, 𝑦 ∈ 𝐺2 }  

Coming to the case of a directed fuzzy graph or a fuzzy 

digraph, consider the network in Figure 10. The 

adjacency matrix of this new fuzzy graph is given 

below. 

 

 

 

Figure 9. Fusion of two vertices u and v from two fuzzy graphs 𝐺1 and 𝐺2,, respectively into 𝑢𝑣. The fused vertex is assigned a 

weight 0.9, which is the maximum weight in between 𝑢 and 𝑣.  

 



O.T. Manjusha and Soumyajit Mukherjee   J. Ind. Geophys. Union, 27(2) (2023), 109-117 

116 

 

 

Figure 10. Fusing two nodes B and B1 from two different networks. In the BB1 fused vertex, 0.3 is stated inside bracket. The 

magnitude is the maximum out of B (0.3) and B1 (0.1). 

In the BB1 fused vertex, 0.3 is stated inside bracket. This 

means that the maximum out of B (0.3) and B1 (0.1) to be 

stated: “BB1 (0.3)”. For the maximum taken, the logic is 

that the capacity elevates when nodes are fused 

(Ramakrishnan and Lakshmi, 2008). 

The general expression for fusing n number of vertices is 

defined as follows. Fusing of n number of nodes within the 

same fuzzy graph: Let G = (V,σ,µ) be a fuzzy graph and 

let 𝑢1,𝑢2, … . . 𝑢𝑛 ∈ 𝜎∗. By the join of n vertices u1,u2…, un 

we mean: 

(i) Fuse the vertices u1, u2,un in the corresponding crisp 

graph G∗=(σ∗,µ∗) 

(ii) The resulting fuzzy graph is 

Gu1u2.....un=(σu1u2 ..................... un,µu1u2………un) 

Here, 𝜎𝑢1𝑢2……𝑢𝑛
(𝑥) = {max [𝜎(𝑢1), 𝜎(𝑢2), … … 𝜎(𝑢𝑛)] 

if  𝑥 = 𝑢1𝑢2 … … . . 𝑢𝑛 

 𝜎(𝑥)  if    𝑥 ≠ 𝑢1𝑢2 … … . . 𝑢𝑛} and  

𝜇𝑢1𝑢2……….𝑢𝑛
(𝑥, 𝑦) = { max [𝜇(𝑥, 𝑢1), 𝜇(𝑥, 𝑢2),

… … . 𝜇(𝑥, 𝑢𝑛] 

if   𝑦 = 𝑢1𝑢2 … … . . 𝑢𝑛 

max [𝜇(𝑢1, 𝑦), 𝜇(𝑢2, 𝑦)  … … . 𝜇(𝑢𝑛 , 𝑦)] 

if   𝑥 = 𝑢1𝑢2 … … . . 𝑢𝑛         

 𝜇(𝑥, 𝑦) 

if   𝑥 ≠ 𝑢1𝑢2 … … . . 𝑢𝑛 ,  𝑦 ≠ 𝑢1𝑢2 … … . . 𝑢𝑛}         

SUMMARY 

Indistinct or poorly developed brittle plane networks are 

common in rocks. Their numerical representation can be 

important for modelers, such as in fluid flow, CCS and 

hydrocarbon reservoir studies. Hydrocarbon resources are 

depleting, and flow models realistic to geologic cases are of 

paramount importance. In this article we introduce the 

concept of fuzzy graph theory as a first step to fulfill such a 

far-reaching aim. An example of brittle shear planes 

consisting of Y and P-planes was considered with different 

degrees of connection between them. We further presented 

theoretical issues regarding fuzzy digraphs and joining / 

fusion of vertices. 
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