Review on drilling-induced fractures in drill cores

Shatavisa Chatterjee, Soumyajit Mukherjee *

Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India

ABSTRACT

Drilling-induced fractures (DIFs) develop in the drill cores as well as in the country rocks during the drilling process due to tensile failure of the rocks. A few types of DIFs can be used to decipher the far field in-situ stresses and to detect spatial and temporal variations in orientation of the principal stress axes. This in turn has made the study of DIFs to be crucial in the field of hydrocarbon exploration. In (sub)vertical wells, DIFs parallel the maximum horizontal stress (S_H) and are perpendicular to the breakout. This specific geometric relation to stress field can be used to find the orientation of the S_H. Estimating principal stress directions and magnitudes are important in sand production prediction, wellbore stability, loss in fluid circulation and production-induced subsidence. Besides, DIF’s orientations give a satisfactory estimate of the trend and direction of fracture propagation induced by hydraulic treatments, and the behavior of hydraulic fracturing operations during simulations. Distinguishing natural fractures from DIFs is therefore essential to identify damage zones and to model fracture network geometry of reservoirs.

1. Introduction

Drilling-induced fractures (DIFs) develop when this stress exceeds the rock strength. There are several practical reasons of studying DIFs. For example, once detected from logging and wellbore imaging, such fractures can be used to decipher the present day stress regime around them. DIFs provide a constraint on the direction of the principal stress axes and their relative magnitudes. Since DIFs are spaced usually uniformly within the core, they can also be used to extract information about the absolute magnitude of stress. The analysis of the spatial changes in widths and lengths of DIFs and the changing stress state near-the well-bore region can give clues to prevent such fractures. Additionally, accurate prediction of geometries of the early-stage fractures is important for the selection of the treatment needed to seal the DIF to prevent/minimize drilling fluid-loss and preclude additional fracturing (review in Kostov et al., 2016). Factors affecting the DIF geometry on the borehole of a well arc: (i) in-situ stress tensor, (ii) relative orientations between the lines of action of stresses and the borehole, (iii) fluid pressures in the borehole and in the surrounding rock, (iv) rock’s cohesive strength, and its friction angle for shear (Aadnoy and Bell, 1998).

This article reviews DIF’s (i) morphological variations (ii) genesis and (iii) few important case studies. Examples are taken mainly from the DIFs developed in the cylindrical drill core rock samples.

2. Morphology

Various types of DIFs are of cup, disc, petal, petal centerline, saddle and scallop geometries (Fig. 1). Note that the terms disc-shaped fractured and the cup-shaped fractures have been used interchangeably in the literature. Although the morphology of the fractures may imply to a novice their genesis by tensional stress, it is quite the opposite. The stress regime required for their production is locally entirely compressive. The existing in-situ drilling-induced compressional stresses produce tensions that can rupture the core. DIF parallels the greatest horizontal compressive stress axis (S_H) of the local and the present-day stress regime (Zhang, 2019).

The main types of DIF morphologies are as follows (mainly as per Kulander et al., 1990).

2.1. Disc fractures (Fig. 2)

Disc/cup-shaped fractures mainly form in fine-grained fissile rocks due to vertical tension. These fractures are generally (sub)horizontal in a (sub)vertical core, however, their orientation can be affected by inclined beds, cross beddings and rock anisotropy. Where the rocks are foliated, disc fractures might dip toward the foliation. These fractures commonly originate between the bit and scribe knives or scribe groove. Fully
developed disc fractures cut across the core, whereas the incomplete ones remain hidden within the core till it is cut open.

The morphology of the disc fractures and the primary stress is influenced by the in situ stresses, unloading and drilling-induced torsional stresses and vibration. When unloaded, reduced overburden pressure expands the rock producing tension towards the core center. The velocity of fracture propagation increases towards the core center by a centerline fracture that continues parallel to the core axis through the core boundary, at an inclination of 30-75° the core axis and superposes with the axis of the cylindrical drill core. This is followed by a centerline fracture that continues parallel to the core axis through the center of the core. The two parts of this fracture forms due to a single fracture, and the continuous petal centerline fractures possess a common strike, which usually parallels S0 direction in case for a vertical wellbore. Kulander et al. (1990) concluded that petal fracture can occur without the centerline part, but not the vice-versa. Interestingly, Lorenz and Cooper (2017) reported a centerline fracture originating at the mid-core (Fig. 5). The centerline part of the fracture is longer than that of the petal. Neither petal nor the centerline fracture cuts across the entire core. Petal fractures initiate presumably below the cutting edge of the bit, caused by the increase in bit stress; they form before the bit during the coring process and propagate into the rock yet to be drilled (Lorenz and Finley, 1988).

The direction of propagation of DIF can be deciphered from the hackle plume features and the arrest line geometries. The propagation is usually along the arrest line that goes away from the origin and bends the least (Figs. 2 and 6a). The close-spaced arrest lines are formed due to the cyclic variation in bit pressure. This varies the tensile stresses in magnitudes and directions and propagates the fracture. In rocks with higher frequency of petal centerline fracture (e.g., Fig. 7), hydro-fracturing may take place.

Although disc, petal and petal centerline fractures are more ubiquitous, other types of fractures e.g., saddle fracture (Li and Schmitt, 1998), core-edge induced fractures and sub-horizontal induced extension fractures (Wilson et al., 2007) have also been reported. A saddle-shaped disc fracture is common in a thrust fault setting where the horizontal stress magnitudes, S0, and Sn, differ considerably. The azimuth of the high points on saddle-shaped fractures lies along the direction of the least compressive stress (Fig. 1; Li and Schmitt, 1998). When the core is broken off at the completion of a run, or when the rock is relieved from load as it enters the core barrel, sub-horizontal extension fractures can develop (Wilson et al., 2007).

2.3. Transverse DIFs

While longitudinal DIFs (such as centerline fractures) can put a constrain on the lower bound of the S0 magnitude, transverse DIFs (e.g., cup/disc, saddle, petal) can constrain the lower bounds of both S0 and Sn. Transverse DIFs from image logs (Fig. 8) can indicate whether the stress regime is strike-slip or reverse faulting without any knowledge of S0 and Sn (Nelson et al., 2005). The factors affecting the transverse DIFs are in situ stress, rock strength and the weight of the drilling mud. As per the image logs, transverse DIFs are electrically conductive, non-planar and discordant to the bedding, and are confined to the tensile region of the wellbore (Nelson et al., 2005). As per Morin and Flamand (1999), disc-shaped DIFs form where drilling mud is circulated and are affected by the ephemeral thermal stresses. Nelson et al. (2005) studied the DIFs in image logs (e.g., Fig. 8) to constrain the stress regime from the West Tuna area (Australia).

3. Stress conditions for DIF formation

The morphology/type of fracture (disk, petal or petal centerline) depends on the in-situ stress condition of the region where the borehole is drilled. Li and Schmitt (1998) described the different stresses acting on the borehole in different stress regimes as follows.

3.1. Stress regimes

3.1.1. Normal fault regime (S1 > S2 > S3)

As per Anderson’s model, S0 > S3 in the normal fault regime. The high overburden stress and anisotropic horizontal stresses generate petal fractures. Petal fractures form when S0 = 0 and S1 = 0.5 (Fig. 9a) and S1 = 0.75 (Fig. 9b). The point of initiation of fracture is at the bottom of the drill bit since it holds the maximum tension. For S0 = S3, petal-centerline fractures develop. These petal-centerline fractures eventually evolve into disk fractures with the increase in S0. The strike of the petal and petal centerline fractures parallel S1 (Li and Schmitt, 1998).
Fig. 1. A. Cartoons of common types of DIFs. Arrow: S_H direction. Reproduced from Zhang et al. (2019). Actual examples- (a) cup/disc fracture, (b) saddle fracture (e.g., Figs. 28.14 and 28.15 in Lorenz and Cooper, 2017), (c) petal fracture, (d) petal centerline fracture. Reproduced from Li and Schmitt (1998).
3.1.2 Strike-slip fault regime ($S_H > S_V > S_H$)

As per Anderson’s theory, the intermediate principal stress axis is vertical (S_V) in the strike-slip regime. Fracture initiates at the bottom of the drill bit in the plane perpendicular to the maximum stress axis (S_H). As the anisotropy of the horizontal stresses, the fractures evolve from petal fractures to petal-centerline and finally become the disc type. In Fig. 10a and b, it can be seen that petal fractures form when $S_H = 0$, and $S_H = 1$ thus indicating high anisotropy between the horizontal stresses. As S_H increases to 0.17, petal center-line fractures form and at $S_H = 0.25$, disk fractures are observed. Saddle fractures are also possible along with concave (towards the sky) and nearly planar fractures (Li and Schmitt, 1998).

3.1.3 Thrust fault regime ($S_H > S_V > S_H$)

In this type of regime (Fig. 11), $S_V < S_H$. This type of stress conditions shows a different set of fractures than the normal and the strike-slip regimes. S_H generates a large tension parallel to the inner surface of the drill bit, in the plane perpendicular to the maximum stress. Fracture initiates at the core’s root. Disc-shaped fractures are the most common type under uniform horizontal stresses. In case of highly anisotropic horizontal stress, saddle-type fractures might develop, initiating at the drill bit. The fractures strike in the direction of the maximum horizontal compression and the azimuth of the high points of petal and saddle fractures lie along the S_H. This type of fracture gives an idea about the relative magnitude of the principal stresses. When S_H and S_V differ greatly, petal fractures commonly develop. As the anisotropy of the horizontal stresses decrease, fractures evolve from petal fractures to petal-centerline and finally attains a disk geometry (Li and Schmitt, 1998).

3.2 Components of stress inside a wellbore

The stresses that Li and Schmitt (1997) considered in developing a finite element model for DIF formation are the horizontal stresses, overburden stress, the drill-string weight and the wellbore fluid pressure. Nonlinear phenomena, such as fluid penetration into the rock mass and fractures, torsional stress generated by drill-bit rotation and variations in rock properties e.g., Poisson’s ratio were not considered.

Uniform horizontal biaxial stress causes cup-shaped disk fractures within the rock near the root of the core stub. The site of fracture
initiation changes to the surface of the core as the horizontal stresses become more anisotropic that develops saddle-shaped core discs. These fractures parallel S_{H}. As S_{V} increases during drilling, eventually petal and petal-centerline fracturing take place. According to Li and Schmitt (1997), these fractures are more close-spaced at higher stress levels. Centerline fractures produce as a combination of short core stub and high overburden stress. The maximum tensile stress increases with core stub length at first, but plateaus at ~40% of core diameter, putting maximum limits on the spacing between succeeding fractures along a core. In a biaxial stress regime, the principal stress axis is vertical along the core axis. Towards the periphery of the core, one of the principal stress axes becomes sub-vertical and develops cup-shaped core discs.

In case of hydrostatic regime, the superposition of the biaxial and overburden stresses reduces the tension inside and at the root of the core. Tensional failure occurs when the tensile strength of the rock is surpassed and the initiation of DIF occurs above the inner kerf corner.

3.3. Effect of core length on the stress regime

The tensile and shear stress magnitude exerted by the primary stresses (horizontal and overburden stresses, weight of drill bit and fluid pressure) increase with the length of the core stub. The stress magnitude reaches a limit when the core stub becomes 40% of the core diameter when the overburden stress (S_{V}) and weight of the drill bit (S_{b}) are considered. In case of the prevailing horizontal stresses (S_{H}) and fluid pressure (S_{p}), the limit is reached when the core stub becomes 15% of the core. The length of the core stub at which these maximum tensions occur limits the spacing of core fractures. At core stub lengths of 25% of

Fig. 5. (a,b) Centerline fracture originating at the mid-core. Reproduced from Lorenz and Cooper (2017). (c) Sketch of Fig. 5a as seen within the drill core.
the core diameter, most severe tensile damage may occur. If the core disking is caused by tensional damage, the discs are spaced no more than one-quarter the core diameter. This is supported by field observations and lab experiments (Li and Schmitt, 1998). Fig. 12 presents the relation between the greatest tensile stress and the normalized core-stub length.

4. DIFs in inclined and horizontal core

The classic disc and petal centerline fractures are rare in drill cores related to highly deviated or horizontal borehole due to the reorientation of the stress fields with reference to the core axis (Kulander et al., 1990). Unlike vertical wells, the principal stress axes in deviated
wells are not along the wellbore axis, and are not contained by the perpendicular plane, making the relationship more complicated. Muhajir et al. (2018) analyzed the hole-shape data from caliper logs using the inversion technique to detect the borehole breakouts and DIF. They deduced the in-situ stress orientations. Integrated stress analysis inversion was carried out on the data of the DIFs and breakouts were obtained by analyzing borehole images. Caliper log data and borehole image analysis were applied to five wells at the Sukowati field (east Java).

In a deviated borehole DIFs are present as en-echelon pairs of frac-tures at an angle to the borehole wall. As they propagate away from the well, they bend and tend to become perpendicular to S_H. The absence of DIFs in a borehole makes it possible to constrain the upper bounds on the S_H magnitude (Zoback et al., 2003). This was also confirmed by the photoelasticity experiments where photoelasticity lab tests were carried out by simulating the initiation and propagation of DIFs in glass cubes containing borehole at different angles (Jia et al., 2015). In case of a vertical borehole, axial DIFs were formed, and in the 45° plunging borehole, en-echelon fractures were observed. This experiment concurred that when one of the principal stress axes is parallel with the borehole, tensile DIFs develop, else en-echelon tensile fractures appear.

Okabe et al. (1998) demonstrated the possibility of estimating the stress regime for a drill core related to an inclined borehole using an inversion technique, by taking the sets of the circumferential positions of DIF along the borehole surface and the inclination of small fractures of the DIF. The problem was conducted using synthetic data and was validated by real data taken from a borehole at the Japan Main Island.

Borehole micro-resistivity imagery has been used to study DIFs in horizontal wellbores (Miller et al., 2011). The zones that have lower fracture initiation pressures show more numerous DIFs. There are two types of DIFs that form within a horizontal borehole: transverse and longitudinal, which originate at the top and bottom of the borehole. These are generated in extensional regimes where the overburden stress magnitude exceeds the magnitude of S_H. The longitudinal fractures parallel the length of the wellbore, whereas the transverse DIF parallels the maximum horizontal stress direction, at a high inclination to the borehole length. In country rocks devoid of DIF, a high stress environment and high stress anisotropy are expected (Miller et al., 2011).

5. DIF in image logs (e.g. Fig. 13)

DIFs in drill cores exhibit certain characters as revealed in image logs that give an idea about their origin, orientation, size, spacing, and distribution. DIFs can be identified in image logs as sharply defined narrow features sub-parallel to the borehole axis in a vertical well (Miller et al., 2011). DIFs are poor reflectors of acoustic energy, so they appear as narrow bands of low reflectivity (Asquith and Krygowski, 2004).

Borehole imaging tools are based on contrasts in physical properties of the rock. Resistivity imaging tools utilize the contrast in resistivity between the DIFs and the intact core (Ekstrom et al., 1987, Fig. 14). Since the DIFs get infiltrated by drilling mud, they appear as narrow pairs of conductive features in the resistivity logs separated by 180° and run sub-parallel to the borehole axis in vertical wells. Ma et al. (1993) mapped the acoustic impedance boreholes using an ultrasonic transducer pulse-echo response tool that used 250 kHz to 1.3 MHz frequency, and gives a Borehole Televiewer (BHTV) image with the 360° periphery of the borehole. This enabled excellent mapping and characterization of DIFs. Fig. 15 presents an example of DIFs as deciphered in an acoustic image.

![Fig. 8. Transverse DIFs in image log. Reproduced from Nelson et al. (2005).](image)

![Fig. 9. Predicted trajectories of fractures in the normal fault stress regime. Reproduced from (Li and Schmitt, 1998).](image)
Besides the resistivity and acoustic imaging tools, DIFs appear on a number of optical imaging tools, as fine fractures separated by 180°. In bulk density images, DIFs are seen as narrow low-density features sub-parallel to the borehole axis. In photoelectric absorption factor (Pe), DIFs are imaged as high Pe fracture zones (Tingay et al., 2008, 2016). Guha et al. (2006) integrated a number of logging while drilling (LWD) logs, LWD propagation resistivity, wireline array induction (HDIL), multi-component induction (3DEX) and cross-dipole acoustic measurements (XMAC Elite) to analyze the fracture intensity, length and orientation in an overbalanced vertical well from offshore India. The presence of DIFs is marked by the large difference between LWD resistivity and array induction resistivity data, separation of the shallow and deep array induction resistivity curves and different responses of multi-component measurements (3DEX). A combination of the multi-sensor sonic and induction log gives better results in characterizing the DIF and reduces the uncertainties. The lengths of the DIFs are obtained from a High Definition Induction Log (HDIL).

6. Distinguishing natural fractures from DIF

Proper identification of DIFs and their influences on logging not only enhances the geologic and petrophysical understanding, but also enables more efficient drilling. The knowledge of the presence or absence of DIFs allows the use of preventive measures to counter lost circulation, thus enabling more efficient and cost-effective drilling. The petrophysical and geologic interpretations can be improved by distinguishing natural fractures from the induced ones (Plumb et al., 1999). This can be done by geomechanical modeling of failure modes, real time logging while drilling data, annular pressure measurements and resistivity at the bit images (Rezmer-Cooper et al., 2000). Bratton et al. (2001) improved this technique by using real-time resistivity and annular pressure measurements for wells using oil-based muds.

The increase in the density of the DIFs renders interpretation of tectonic/natural fractures difficult. Kulander et al. (1990) and Keren and Kirkpatrick (2016) described ten styles or geometric variations of induced deformation documented in drill cores from the Japan trench (Fig. 16). They used high-resolution imagery of the cores, done using a multi-sensor core logger (MSCL)-I digital imaging system with GEO-SCAN IV (Geotek, Ltd.) that involves a linear scanline method to scan the structures. The deformation manifestations are as described below.

Fig. 10. Predicted trajectories of fractures in the strike-slip fault stress regime. Reproduced from Li and Schmitt (1998). \(\Phi = 0° \rightarrow \) the cross section is parallel to \(S_H \), \(\Phi = 90° \rightarrow \) the cross section is perpendicular to \(S_H \). \(S_H \) = Maximum horizontal compressive stress. \(S_h \) = Minimum horizontal compressive stress. \(S_v \) = Overburden stress. The values of the stresses are normalized and \(S_H \) is taken as 1, (a) \(S_H = 1, S_v = 0.5 \), (b) \(S_H = 1, S_v = 0.75 \).

Fig. 11. Predicted trajectories of fractures in the thrust fault stress regime. Reproduced from Li and Schmitt (1998). \(\Phi = 0° \rightarrow \) the cross-section is parallel to \(S_H \). \(\Phi = 90° \rightarrow \) the cross section is perpendicular to \(S_H \). \(S_H \) = Maximum horizontal compressive stress \(S_h \) = Minimum horizontal compressive stress. \(S_v \) = Overburden stress. The values of the stresses are normalized and \(S_H \) is taken as 1, (a) \(S_H = 1, S_v = 0.0 \), (b) \(S_H = 1, S_h = 0.5 \).
Drilling biscuits/discs: These are separate blocks formed due to coring, with concave bottoms and/or convex tops, and are usually separated by drilling mud or rock fragments. Inclinations of the edges of the discs are usually horizontal in the vertical borehole, but the orientation can be influenced by the presence of inclined beds (Kulander et al., 1990). Fully developed horizontal biscuits cut across the core or abut against the other fractures. The discs form due to the action of vertical tensile stress due to the removal of overburden (also see Kidd, 1978; Kulander et al., 1990).

Induced brecciation: Cores containing only broken angular clasts. Such breccias do not possess striations/slickenlines/slickenslides, which distinguish them from several natural clasts.

Triangular fracture sets: These have orientations parallel to the edge of the biscuits and other induced structures. These fractures form at the split face of the core, at the edge of the core barrel.

Near right-angle fractures: Continuous fractures showing a high-angle bend (~90°) are observed near the outer edge of the cores, along the biscuit corners. These form as a result of the continuous rotation and flexure of the core.

Radiating fractures: Fractures that originate from a common point and can display a radial symmetry (Arthur et al., 1980; Dengo, 1982). Similar down-core diverging cured fractures generated at the outside of the core have also been reported (Kulander et al., 1990).

Core axis parallel fractures: Petal and Petal-centerline fractures parallel the greatest horizontal stress (S_h) (Li and Schmitt, 1998). They are usually seen as down-core dipping fractures in the drill cores. These are used to evaluate the direction and magnitude of the S_h (Fig. 1).

Fractures crosscutting drilling mud: Such fractures are always drilling-induced, as evident from the relative time relation, i.e., the fracture formed after the drilling injection.

Williams et al. (2016) studied the damage zone of the Alpine fault New Zealand from the X ray computed tomography studies of the drill cores. In order to accurately characterize the damage zone, distinction between the natural and induced fractures in the cores was of utmost importance. Disc fractures, brecciation due to drilling and triangular fracture sets were identified.

7. Applications

7.1. Determination of in-situ stress magnitudes and direction (Fig. 17)

The process of drilling a well results in a concentration of the far-field tectonic stresses closer to the wellbore. Drilling-induced failure occurs when it crosses the rock strength. Using the techniques of logging and wellbore imaging, these failures can be detected and used for the estimation of unknown stress magnitudes. For vertical boreholes, the in-situ stress regimes can be constrained if the downhole mud pressure, tensile...
strength of the rock to the horizontal tensile stress, and the pore pressure are known. For an inclined borehole, en-echelon fractures are drilling-induced on which inversion methods can be applied to constrain the in-situ stresses. (Bosworth et al., 2012; Saoudi et al. 2012; Zhang, 2019) (Appendix).

Table 1 Initiation of DIFs have been used to estimate the stress magnitude for rocks with low permeability with negligible pore diffusion. The magnitude of S_{H} can be derived by studying the timing of the initiation of the fractures. In such a model (Brudy and Kjerholt 1999), two extreme scenarios are considered: when the fracture initiates right after drilling, the magnitude of the S_{H} is the maximum, and it decreases as the time gap between the drilling and initiation of fracture decreases. It reaches a minimum value when the fracture is considered to be initiated shortly before logging. This model, when applied to determine the state of stress in the northern North Sea region, provided results that were in accordance with previous elastic analysis. However, this model does not explain the effect of the plastic material behavior and the effects caused due to the interaction of drilling mud and shale.

Brudy (1998) provided high quality stress orientation data of the northern North Sea by analyzing DIFs from image logs of 16 wells in the area. Inclined DIF in a vertical borehole indicated that the orientation of the principal stress axis was not vertical. It was also observed that the probability of the occurrence of DIFs increases with the hole depth. This correlates with the increase in stress differences with depth. From the study of the image logs, it was concluded that the area is presently under a strike-slip regime.

Data from offset wells in the Kolosh Formation (northern Iraq) was analyzed in the diagnosing of drilling hazards and predict the possibility of fracturing (Fig. 18). Vertical DIFs were used to determine the S_{H} orientation (Abalioglu et al., 2011).

A similar application of DIF data was carried out in constructing a 3D geomechanical model for the optimization of drilling in the Llanos Orientales Basin, Colombia. (Araujo et al., 2010). The formation of DIFs near a vertical wall, drilled with mud weight lower than the fracture gradient, indicated the presence of a significant horizontal stress anisotropy and with $S_{H} > S_{V}$.

Mazumder et al. (2010) determined the orientations of S_{H} and S_{h} in the Baturaja Formation of South Sumatra Basin (Indonesia) using the dominant orientations of breakouts and DIFs determined from FMI images combined with caliper logs.

In the global review of stress regimes in hydrocarbon fields by Zoback et al. (2003), DIFs constrained the lower bound of the S_{H} magnitude. DIFs form when the following two conditions are met: (i) $S_{H} \gg S_{h}$, and (ii) wellbore pressure exceeds the mud pressure. The mud-induced cooling also affects the genesis of DIFs. For example, cooling of the wellbore originates en echelon sets of DIF. However, the influence of the increase in mud weight is more than that of the increase in cooling for the DIFs. Thus, the observation of DIFs can provide a lower bound for the S_{h} if S_{h}, S_{V} and the pore pressure are known (Zoback, 2007).

Allan et al. (2019) modeled the fracture plane in order to plan a sidetrack trajectory of drilling that bypasses the DIFs. This was done by determining and validating the S_{H} orientation and detection of the
fracture. A sidetrack trajectory was calculated to minimize the chances of encountering the fractured zone. The model was applied to the borehole at the Shah Deniz field (South Caspian Sea) by considering the stress regime and the pore pressure.

Higgins et al. (2006) presented a 1D geomechanical model of the stress regime to optimize the production at Rulison field (USA). From the image log data, S_{H} was considered to parallel the DIFs. This was achieved by forward modeling the DIFs and the far field stresses were converted to the near wellbore stresses to estimate the failure.

Wilson et al. (2007) documented the natural and induced fractures from the cores of the McMurdo Ice shelf (Antarctica). The documentation was done by scanning the whole core/intact segments. DIFs include steeply dipping, petal, petal-centerline, core-edge induced fractures and sub-horizontal induced extension fractures. The density of petal-centerline fractures decrease towards the bottom of the core. A number of sub-horizontal fractures are encountered with circular grooves along which the cores have rotated.

Wiprut et al. (1997) employed the interactive software system of Stress and Failure of Inclined Boreholes (SFIB, Peska and Zoback, 1996), to study the compressive and tensile DIFs in a wellbore at the Visund oil field (Norway) to constrain the in situ stress regime. They also reviewed conditions for wellbore instability and sand production. It was observed using FMI that the orientations of the DIFs match with observations made using other methods. The data from compressive and tensile DIFs have been used to present a complete stress tensor model. Next, an estimation of the rock strength and optimal wellbore trajectories was also proposed.

Bankwitz and Bankwitz (1997) studied the drilling-induced

Fig. 16. Core section from Japan trench digitized to show the different fractures and deformation. Reproduced from Keren and Kirkpatrick (2016).
features in the German Continental Deep Drilling Project (KTB) related drill cores to determining the present-day stress field in the Bohemian massif (Germany). Formation MicroImager and FMS/Formation Micro Scanner log data were used to study the 3D shape and symmetry of the fractographic features in the borehole. The strike of the bifurcating centerline fractures were used to determine the orientation of the maximum horizontal stress up to 7800 m depth. The high density of disk fractures was presumably a result of the superposition of additional tectonic stress.

Nie et al. (2013) analyzed fractures in the borehole wall using resistivity and acoustic image logs to determine the in situ stress from the DIFs in the Wenchuan Earthquake fault zone (China). This was done to investigate the distribution of the fault zones and study the earthquake mechanism. Core samples and image log data were obtained from four boreholes drilled in the maximum displacement region by the Wenchuan Earthquake Fault Scientific Drilling Project (WFSD).

Titheridge (2014) proposed a technique to determine the angle between face cleat and the principal horizontal stresses (S_H, S_h) using the DIFs (petal, core edge, disc and saddle fractures) present in the coal core. This further enabled to interpret the orientation of the face cleat, which was important to know for the CO$_2$ sequestration and planning the direction of hydro-fractures low-permeability areas. This method applies to coal beds and coal mines.

Chatterjee and Singha (2018) identified DIFs from borehole image logs in the Krishna-Godavari basin to find the orientation of S_H, and further studied the rock mechanical properties. Laubach et al. (1988) determined the orientation of the petal-centerline fractures and used it to interpret the present-day stress regime in East Texas (USA). S_H and S_h directions were further used to deduce the trajectory of the induced hydraulic fracturing done in that area. The agreement between the DIFs and the natural fractures indicated that paleo and present stress regimes resemble each other.

Schwab et al. (2017) studied the well log images of the DIFs to determine the present day S_H and S_h in the Wellington and Anson Bates field (USA). The study was carried out to determine the potential of earthquakes caused due to the injection of CO$_2$ in reservoir for storage and enhanced oil recovery. The DIFs indicated that the maximum horizontal stress direction was along E-W direction. It was concluded that high rates of CO$_2$ injection could potentially reach the threshold pressure of failure in the region.

Patlan et al. (2008) studied the DIFs from the cores and acoustic image logs and borehole televiewer images of borehole from the Victoria Land rift basin (Antarctica) to determine the present day stress fields. The software CoreBAsé was used to stitch the core section logs into a cumulative image of the whole core. WellCAD software was used to determine the orientation of the DIFs, which then provided the direction of maximum horizontal stress in this area.
The development of preventive measures, viz., enhanced hydraulics and geomechanical models, new field techniques and new lost circulation materials have been the strategies for addressing DIFs. DIFs can form in a low-pressure reservoir caused by pressure depletion or pore pressure regression. It also induces a lower fracture gradient. To prevent the formation of DIFs, these risky zones are identified and low mud weight is maintained. Since the stress configuration around the inclined boreholes differs spatially, fracture widths vary with the direction of drilling (Feng and Gray, 2018).

Feng and Gray (2018) modeled the fluid loss caused by DIFs in a dynamic circulation pressure environment using the finite-element method. The simulation takes care of dynamic mud circulation in the wellbore and gives an estimate of time-dependent wellbore pressure, fluid-loss rate, fracture profile during drilling and the boundary conditions of the bottomhole pressure. The mud viscosity has a greater impact on the fracture width whereas the pump rate affects the length more.

Lost circulation has been used in the detection of fractures as well. Wutherich et al. (2020) presented a method of detecting DIFs by analyzing the amount of energy spent during the drilling of a well. The depletion around a fractured zone increases the differential pressure between the wellbore and the formation. This increases the energy required to drill the region, which gives the location of the fracture. This method has been applied and validated by using field data from over seventy wells.

Drilling of a well requires the selection of mud with a suitable density that balances the pressure from the formation fluids but does not exceed the pressure that initiates fractures. For a very high-density mud, the minimum hoop stress exceeds the tensile strength and DIFs form, whereas if the mud density is too less, the maximum hoop stress exceeds the compressional strength and results in the formation of borehole breakouts (Gu et al. 2017). After DIFs form, the fractures zones cause loss of a large amount of circulating fluids. To prevent this loss due to DIFs, several avenues have been postulated-refining of hydraulic and geo-mechanical models, new field techniques and new lost circulation materials such as cross-linked polymer pills, gunk squeezes and cement squeezes, water and synthetic based muds (Brege et al., 2010).

Wang et al. (2019) performed a 3D finite element analysis using COMSOL to study the applicability of non-isothermal wellbore strengthening to increase the effectiveness combating lost circulation in boreholes with DIFs.

8. Discussions

A combination of resistivity, acoustic, optical image logs and Logging while drilling data can efficiently characterize the DIFs. Relying solely on the retrieved core fragments to decipher DIF render considerable doubt as the retrieval process might result in loss of fragments and corresponding information. Removal of noise in the image log data, and increase in the resolution of the data would make the identification of DIF easier. Better scanning devices, more efficient core retrieving methods and more accurate characterization of the pressure and resistivity measurements inside the boreholes would lead to identification of DIFs more accurately.

The damage caused by the DIFs tends to increase as the borehole increases in size, and the weaker rocks are more damaged than the stronger rocks. Stronger rocks drilled with small bits show the evidence of less damage than the weaker rocks drilled with large bits (Feng and Gray, 2018). Borehole breakouts and DIFs have been used to determine ~19% of the stress orientations in the World Stress Map (WSM) database (Heidback et al. 2016). Additionally, the majority of stress orientation indicators in petroleum and geothermal systems are usually provided by borehole breakouts and DIFs (Tingay et al., 2008). Repository presents factors affecting genesis of DIFs in country rocks.

9. Future works

Although significant work has been done on DIFs and their characteristics, a number of research questions need to be addressed. These are: (i) 3D visualization of DIFs in cores. (ii) A detail understanding of DIFs developed in inclined and horizontal drill cores and boreholes in terms of forward modeling. Inclined boreholes have a more complicated relation between the principal stresses and the wellbore axes. Visualization and modeling of DIFs in cores from horizontal boreholes is required because it would lead to a better understanding of the hydraulic fracturing mechanism and find application in several oil and gas fields. (iii) Accurate analytical models explaining the growth and propagation of the DIFs in the core. (iv) More accurate detection of DIFs in image logs. This will lead to better prevention strategies and treatment plans for dealing with lost circulation in fractured reservoirs.

7.2. Analysis and prevention of lost circulation

<table>
<thead>
<tr>
<th>SL No.</th>
<th>Author</th>
<th>Work</th>
<th>Region</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bankwitz & Bankwitz</td>
<td>Present day stress orientations</td>
<td>Bohemian</td>
<td>FMI Microscanner</td>
</tr>
<tr>
<td></td>
<td>(1996)</td>
<td>(Germany)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wiprut et al.</td>
<td>Stress tensor modelling</td>
<td>Visund field, Norway</td>
<td>SFIB software</td>
</tr>
<tr>
<td></td>
<td>(1997)</td>
<td>(Norway)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Brady (1998)</td>
<td>Study of induced hydraulic fracturing</td>
<td>North Sea, USA</td>
<td>Image logs</td>
</tr>
<tr>
<td>4</td>
<td>Zhang (2019)</td>
<td>Modelling the origin of DIFs</td>
<td>East Texas, USA</td>
<td>Image logs</td>
</tr>
<tr>
<td>5</td>
<td>Brody and Kjorholt</td>
<td>Interpreting DIFs from image logs</td>
<td>Northern Sea</td>
<td>Well logs</td>
</tr>
<tr>
<td>6</td>
<td>Nelson et al. (2005)</td>
<td>DIF from image logs</td>
<td>Gippland, Australia</td>
<td>Microimager</td>
</tr>
<tr>
<td>7</td>
<td>Higgins et al.</td>
<td>Production optimisation</td>
<td>Rullison field, USA</td>
<td>Image and dipole sonic logs</td>
</tr>
<tr>
<td></td>
<td>(2006)</td>
<td>(USA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Patlan et al.</td>
<td>Present day stress fields</td>
<td>Victoria Land Basin,</td>
<td>CoreBASE, WELLCAD</td>
</tr>
<tr>
<td></td>
<td>(2008)</td>
<td>(Antarctica)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Araujo et al. (2010)</td>
<td>3D model for drilling</td>
<td>Llanos Orientales,</td>
<td>Density and Sonic logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>optimisation</td>
<td>Basin, Colombia</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mazummer et al. (2010)</td>
<td>DIF in coal beds</td>
<td>South Sumatra Basin,</td>
<td>FMI, caliper logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2010)</td>
<td>Indonesia</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Abalioglu et al.</td>
<td>Diagnosing drilling hazards</td>
<td>Northern Iraq</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nie et al.</td>
<td>Investigation of fault zones</td>
<td>Wenchuan, China</td>
<td>Acoustic image logs</td>
</tr>
<tr>
<td></td>
<td>(2013)</td>
<td>(China)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Titheridge (2014)</td>
<td>Orientations of cleats in coal core</td>
<td>Alberta, Canada</td>
<td>Acoustic and resistivity logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>implications in CO2 sequestration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Schwab et al. (2017)</td>
<td>Potential for injection-induced</td>
<td>Wellington field, USA</td>
<td>Well image logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>earthquakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Chatterjee & Singh</td>
<td>Study of rock mechanical properties</td>
<td>Krishna-Godavari,</td>
<td>Well image logs</td>
</tr>
<tr>
<td></td>
<td>(2018)</td>
<td>(India)</td>
<td>Basin, India</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Allan et al. (2019)</td>
<td>Drilling optimization</td>
<td>South Gaspian Sea</td>
<td>Caliper logs, Image logs, LWD image logs, X-dipole sonic logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIFs, borehole breakouts</td>
</tr>
<tr>
<td>17</td>
<td>Radwan et al. (2021)</td>
<td>Developing Pore Pressure Fracture</td>
<td>Southern Gulf of Suez, Egypt</td>
<td>X-dipole sonic logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient Model</td>
<td></td>
<td>DIFs, borehole breakouts</td>
</tr>
<tr>
<td>18</td>
<td>Banerjee & Chatterjee, (2022)</td>
<td>Pore Pressure and stress analysis</td>
<td>Raniganj, India</td>
<td>Resistivity logs, Seismic data, seismic logs</td>
</tr>
</tbody>
</table>
10. Conclusions

DIFs develop parallel to the direction of S_H and perpendicular to S_h. Based on this, the principal stress directions can be worked out from the DIFs. Tensile fractures occur when the stress exceeds the tensile strength of the rock. Thus, the study of DIFs can give an idea about the magnitude of the stresses as well.

The factors affecting the formation of DIFs are the rock anisotropy, mud density, stress anisotropy, grain size and orientation of the rock, interaction between the grains, breakage mechanism and mechanical properties of the formation, drill type, bit size and the energy transferred to the borehole while drilling.

Distinguishing natural fractures from DIFs is important to decipher the principal stresses, modeling lost circulation or characterizing the damage zone of faults. The anisotropy in the principal horizontal stresses ($S_H - S_h$) can be quantified from the type of DIF present in the core. Greater the depth more close-spaced are the DIFs. Modeling of the lost circulation of drilling mud using models is one of the industrial applications of DIFs. Artificial neural models are in use to predict the amount of lost circulation before the drilling process begins by incorporating the data of DIFs.

Further studies on DIFs are needed regarding (a) horizontal and inclined drill cores, (b) growth of such fractures and (c) improved recognition of such fractures from (image) logs.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

It is a review article. No original data presented.

Acknowledgements

CPDA grant (IIT Bombay) supported SM. SC worked as a self-funded summer intern with SM in 2021 in online mode. Dr. Mohit Kumar Puniya (Survey of India, Dehradun) kindly drafted several figures. We thank Subhobroto Mazumder (Oil and Natural Gas Corporation) and Lucie Novakova (Institute of Rock Structure and Mechanics of the CAS) for reviewing the article. Tiago Alves (Cardiff University) handled this article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.marpetgeo.2022.106089.

Appendix

How to constrain in-situ stress (Zhang, 2019):

For vertical boreholes, the in-situ stress conditions can be constrained if the downhole mud pressure (P_{m}), tensile strength of the rock to the horizontal tensile stress (T_0), and the pore pressure (P_p) are known. When the DIFs initiate, it can be assumed that the downhole mud pressure is equal to the formation initiation pressure. This is used to calculate the maximum horizontal stress direction in a vertical well under normal and strike-slip
This inequation is plotted on the stress polygon diagram and when combined with other methods of borehole breakouts, the stress conditions can be constrained.

References

Brogger, T.J., Christensen, C., Quintero, L., Clark, D., 2010. Improving Wellbore Strengthening Techniques by Altering the Wettability of Non-aqueous Fluids Lost to Drilling Induced Fractures. AAEF Fluids Conference and Exhibition, Houston, Texas, pp. 6–10.
Mamdouh, S., Sosrowidjijono, I.B., Facirna, A., 2010. In: The Late Miocene Coalbed Methane System in the South Sumatra Basin of Indonesia. SPE Asia Pacific Oil and Gas Conference and Exhibition and Exhibition and Exhibition, OnePetro. SPE-131488-MS.

