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Abstract
Ideal morphologic representation of geologic structures using standard curves/surfaces can have far-reaching implications in 
estimating resources. From NW Lesser Himalaya (Uttarakhand state, India), field photographs of fully developed sigmoid-
shaped brittle shear P- and ductile shear S- planes that crop out on the NW–SE (sub)vertical natural sections of rocks are 
matched by drawing curves using the B-spline tool in Rhinoceros software 5 SR service in 2D. These curves are advantageous 
to handle since the user can control their degrees, the control points are not the deciding factors, and that local modifications 
in shapes are permitted, unlike the Bézier curves. Sigmoid shapes are analyzed in detail using six shape parameters (lengths 
in between control points: L1, L2 and L3; angles in between control points: α1, α2 and α3). Good correlations between L3 vs. 
L1, L2 vs. L3 and L1 vs. L2 reveal the relation between wavelength (λ) and amplitude of the sigmoids that are classified into 
four types. Strong correlation between α2 vs. α3 and (α3−α1) vs. (α1− α2) suggest only the Type I, II and III sigmoids pos-
sess 180° rotational symmetry. Regression models (R2 values) demonstrate that the sigmoid geometries are governed by (1) 
pre-existing or co-evolving regional structures and (2) lithologic composition.
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Introduction

Ductile and brittle shear zones in meso- and micro-scales 
commonly display sigmoid-shaped sheared rock masses/
bulges/pods/mineral(s) (reviews in Passchier and Trouw 
2005; Davis et al. 2010). In ductile shear zones these are 
commonly bound by the primary shear C-planes. Their 
sigmoid margins define the S-surface (e.g., Passchier and 
Trouw 2005; Fig. 1b of Dutta and Mukherjee 2019). Ponce 
et al. (2013) used the word “lozenge” to represent a number 
of shapes in bulged rocks in ductile shear zones (review in 
Mukherjee 2017). One of the shapes of these lozenges is 
sigmoid. The sigmoid-shape can also be defined by sheared 
quartz veins either in a train (e.g., Fig. 4d of Mukherjee and 
Koyi 2010) or being rootless (e.g., Fig. 4b of Mukherjee 

and Koyi 2010). At the micro-scale, ductile sheared rocks 
commonly display sigmoid-shaped mineral fish (Passchier 
and Trouw 2005; Mukherjee 2011).

In brittle shear zones, sigmoids are usually bound by 
the Y-planes and their sigmoid/lensoid margins themselves 
define the P-planes (e.g., Passchier and Trouw 2005; Fig. 2I 
of Dutta and Mukherjee 2019). Sigmoids in brittle shear 
zones can either be thrust slices (e.g., Fig. 3h in Li et al. 
2017) or a part of rock masses inside the fault zone/fault 
gouge as step-overs or oversteps (Ahlgren 2001; Fig. 7d in 
Mukherjee 2013). Both in a ductile and a brittle shear zone, 
further deformation- most notably fracturing (Gudmunds-
son 2011) distort the sigmoid geometries. The sizes of the 
sigmoid masses can vary significantly in field even in close 
proximity.

Understanding and mathematical representation of geom-
etries of geologic structures is one of the fundamental exercises 
in structural geology, which can have long-term implications in 
exploration studies, e.g., in predicting structural continuation 
in sub-surface (such as extrapolation of fold geometry by Busk 
method). A number of articles exist in this direction regarding 
folds (e.g., review in Fossen 2016; Gogoi and Mukherjee 2019), 
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joints/ fractures (Anders et al. 2014), and faults (Torabi et al. 
2019). Geometric characterization of structures is a fundamen-
tal exercise in structural geology. Contrarily, geometric stud-
ies on sigmoid sheared structures have been scanty. Only ten 
Grotenhuis et al. (2003) and Mukherjee (2011) plotted graphs 
of aspect ratios of mineral fish vs. their local orientation/inclina-
tion to the primary shear C-planes. Later workers also defined 
few morphologic terms for such sheared objects. Passchier and 
Trouw (2005) in their Fig. 5.35 presented a 3D SEM image of 
a ductile sheared sigmoid mica grain.

Using Bézier and Non-Uniform B-spline (NURB) curves 
to model geometries of structures, most notable folds, have 
become popular in 2D (e.g., Gogoi et  al. 2017; review 
in Nabavi and Fossen 2021) and also in 3D (Gogoi and 
Mukherjee 2019). Such curve fittings are usually rapid and 
can take care of a large number of fold geometries easily. 
Following this trend, this work fits B-spline curves to con-
strain the morphologies of the brittle and ductile-sheared 
sigmoids. The NURB curves are advantageous over the 
Bézier curves. This is because changes the control point 
locations affect the local segment of the NURB curves 
without disturbing their overall geometries, thus having finer 
shape control than the Bézier curve. In other words, NURB 
curve is advantageous since it gives more localized control 
over the produced curve and requires minimum assistance 
on the degree, smoothness and domain partition.

Sigmoid P-planes (and S-planes) are documented that 
envelope within the primary shear Y-planes (and C-planes) 
from the Uttarkashi-Mussoorrie transect of the Indian west-
ern Lesser Himalaya. Four types of shears are identified form 
field: (1) top-up-to-the-NW and (2) top-up-to-the-SE shears 
demonstrating a compressional stress regime, whereas, (3) 
top-down-to-the-NW and (4) top-down-to-the-SE an exten-
sional one. This article also investigates the relation between 
the P- and S-plane geometries with stress regime (compres-
sional/ extensional), lithology, and pre-existing or co-evolv-
ing regional structures.

The aim of the work is to introduce a new simple classi-
fication scheme to categorize commonly occurring sigmoid 
shape in brittle and ductile regime. The categorization com-
municates with conceptual understanding of naturally occur-
ring sigmoids. The approach introduces two new parameters, 
rock lithology and regionally deformed rock to standard-
ize the process. This has implications for brittle and ductile 
deformation modelling.

Non‑uniform B‑spline function

Fundamentals

Non- uniform B-spline curve is a polynomial curve termed by 
Schoenberg (Prautzsch et al. 2002 and references therein) that 

can be generated by (n + 1) number of control points and the 
B-spline basis function of degree k, in variable u. Such graphic 
design function is available in most of the photo-editing, 3D 
modelling and animation software (e.g., Corel Draw, Rhino, 
Motion, Final cut pro, Creo, Fushion 360°, TinkerCAD, Bob-
CAD-CAM, SOLIDWORKS, MATLAB, CANVAS).

The B-spline curves are a combination of multiple seg-
mented curve sections, which is continuous between the start 
and the end points (Fig. 1). Such curves can be either sym-
metric or asymmetric with respect to 180° rotational sym-
metry (Fig. 1). The significant advantage of this particular 
curve is that the degree of the curve (k) is user-defined and 
is independent of the control points. Thus, with multiple 
control points, e.g. ≥ 10, k can still be 3 or 4 as per the user. 
This is unlike the Bézier curve where the control points and 
k are inter-related: for 10 control points k = 10 for the Bézier 
curves. A complex B-spline basis function is generated with 
increase in k. For k = 10, the generated polynomial functions 
are u9, u8,…u. In B-spline curves, a particular segment is 
only controlled by a limited number of control points and 
thus provides a more precise local control leading to a better 
curve fitting.

The Non-Uniform B-spline curve can be written as:

Here ‘n’ is a representation of control point, in which the 
total control points are n + 1.

B
i,k:basis function of variable u and the parameter. It 

ranges from 0 to (n−k + 2).
For example, for four control points (n + 1 = 4), n equals 3. 

Let the degree of the curve be chosen as k = 3.In this case, B
i,k 

ranges from 0 to n−k + 2, i.e., from 0 to 3–3 + 2 = 2.
The expression “n−k + 2” defines the number of total 

segments within the B-spline curve. In the above example, 
the total number of segments are 2 (= 3–3 + 2). Segment 
‘r’ ranges from u = 0 to 1 and segment ‘s’ from u = 1 to 2 
(Fig. 1). The deep violet square in Fig. 1 represents the meet-
ing point of the curve segments ‘r’ and ‘s’.

Even though as per Eq. (1), all the control points are pre-
sumably involved to generate the curve, for a given range of 
u, some of the basis functions become zero. This assists the 
user to modify the curve especially at the edges.

Considering the curve segment-r (Fig. 1), the number of 
control points influencing the segment equals k. This means 
that the segment r is only influenced by P0, P1 and P2, and 
not by P3. Similarly, for segment ‘s’, the control point P0 has 
no influence and is only controlled by P1, P2 and P3.

The term “Non-uniform” is used as the prefix to the 
“B-Spline Function” since not all the control points 
equally inf luence the curve segments. For example 
(Fig. 1), P0 and P3 can only influence the segment ‘r’ and 

(1)P(u) =

n
∑

i=0

P
i
B

i,k(u), (0 ≤ u ≤ n − k + 2)
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‘s’, respectively. However, P1 and P2 can influence both ‘r’ 
and ‘s’ segments. Control points with uniform influence 
on the curve disable the curve to coincide with the starting 
point and the end point.

The continuity of the curve is defined by the magnitude 
of k. The curve has C(k−2) continuity. For k = 2, the curve 
is C1, or it has a slope continuity. For k = 2, it is C2, or it 
has a curve continuity.

Putting n = k = 3 in Eq. (1):

For u = 0, 1; the non-zero B-spline basis function:

For u = 1, 2, the non-zero B-spline basis function:

Inputs required to define a non-uniform B-spline curve 
are: (1) location of the control point (x, y, z co-ordinate in 
3D), and (2) the order of the curve. For example, consider-
ing control points (n + 1) = 4, n = 3; (Fig. 1), the ith control 
point is P(i−1)(xi−1, yi−1, zi−1) {i = 1, 2, 3, 4}. The order (k) 
of the curve is 3.

Using B-spline tool in the Rhinoceros software (ver. 5, 
2017) with the help of four control points and by defining 
the order of the curve (k = 3), curve (‘r + s’) can be gener-
ated (Fig. 1).

Mathematical expression of the Basis‑function

The Basis-function, Bi,k(u) from Eq. (1), is defined as:

(2)
P(u) = P0,3(u)x0 + P1, 3(u)x1 + P2, 3(u)x2 + P3, 3(u)x3 (0 ≤ u ≤ 2)

P(u) = P0, 3(u)x0 + P1, 3(u)x1 + P2, 3(u)x2 (0 ≤ u ≤ 1)

P(u) = P1, 3(u)x1 + P2, 3(u)x2 + P3, 3(u)x3 (1 ≤ u ≤ 2)

Here ti is the “knot vector” defined in the parameter 
space of the generated curve. The vector determines the 
start and stop of the polynomials of the drawn curve. The 
ti function decides where and how the control points affect 
the generated curve.

The knot vectors are defined as:

To find the basis function Bi,k(u), the previous basis 
function Bi,k−1(u) value is required. Thus, the B-spline 
basis function is also known as the recursive function (Cox 
1972; De Boor 1972).

The recursive function terminates at:

For n = k = 3 (Fig. 1), the knot values (ti, 0 ≤ i ≤ 6) are 
ti = {0, 0, 1, 2, 2, 2}.

(3)

B
i,k(u) =

u − t
i

t
i+k−1 − t

i

B
i,k−1(u) +

t
i+k

− u

t
i+k

− t
i+1

B
i+1,k−1(u) (De Boor 1972)

(4)
Total number oftvalues can be expressed byt ∶ t

i(0 ≤ i ≤ n + k)

(5)t
i
= 0 if i < k;

(6)t
i
= i − k + 1 if k ≤ i ≤ n;

(7)t
i
= n − k + 2 if i > n

(8)B
i,k(u) = 1, if t

i
ut

i+1

0 otherwise.

Fig. 1   Sigmoids generated using B-spline tool, in which P0, P1, P2 
and P3 are the control points. Curve segments are represented by ‘r’ 
and ‘s’. Wavelength and amplitude are shown by arrows. Sigmoid 
are divided with respect to 180° rotational symmetry. i Symmetric: 

Sigmoid (‘r’ + ‘s’) after 180° rotation appears exact same (segment 
‘r’ = segment ‘s’). ii Asymmetric: Sigmoid (‘r’ + ‘s’) after 180° rota-
tion, clockwise or anticlockwise, appears different (segment ‘r’ ≠ seg-
ment ‘s’)
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To pass the curve through the end control points (e.g., P0 
and P3 in Fig. 1), the influence of knot vectors at the edges 
should differ from those present at the middle (P1 and P2 in 
Fig. 1). Such non-uniform influence of knot vectors within 
the curve gives rise to the term “Non-Uniform Basis Func-
tion” (NUB curve).

Non‑uniform rational basis‑function (NURB curve)

The Non-Uniform Rational Basis-functions (NURB func-
tion) can be expressed as a modification/rational version of 
the B-spline curve:

Here “h” represents the weight of the control points. This 
enables any particular control point(s) to influence the entire 
curve more. In other words, the curve can be pulled more 
towards few particular control point(s).

Curves with three or more control points can be (re)gen-
erated and modified quickly based on the user’s requirement 
of curve fitting using the B-spline tool in any photo-editing 
software viz., CAD, CAM and CAE.

Study area

Geology

Near-vertical rock sections along the National Highway-34 
and the State Highway-30 were studies for ~ 152 km in the 
NW Lesser Himalaya (LH): from ~ 10 km NE of Uttarkashi 
towards Mussoorie (Uttarakhand, India) (Fig. 2). In absence 
of lineations related to ductile shear in the field, we have 
worked with sigmoids documented on ~ NW–SE natural rock 
sections. Eventually, the sigmoids have been documented 
on planes almost perpendicular to the line of intersection 
between the P or the S-planes defined by these sigmoid mar-
gins and the primary shear planes that bound them. If in 
any terrain, lineations are documents, XZ-sections must be 
observed for the sigmoids. Since we restrict to only geomet-
ric analyses of sigmoids and perform neither (1) kinematic 
analyses of shear zone, nor (2) tectonics of the orogen, the 
approximate planes chosen in this study do not affect (1) 
and (2). Bound by the Siwalik range in the south and the 
Greater Himalayan Crystallines in the north, the LH is a 
Paleoproterozoic–Paleozoic sedimentary succession (review 
in Célérier et al. 2009; Biswas et al. 2021). More accurately, 
the LH is bound at south by the Main Boundary Thrust and 
at the north by the Main Central Thrust (MCT) zone. In 
field the followings rocks are encountered: schists, phyllites, 

(9)P(u) =

n
∑

i=0

P
i
B

i,k(u)hi
where 0 ≤ u ≤ n − k + 2

slates, quartzites, dolomites, conglomerates and limestones. 
Overall, LH is characterized by low-grade greenschist meta-
morphic facies. North of the Sainj village, amphibolite facies 
rocks and granite-gneisses are found in the MCT zone (Bose 
and Mukherjee 2019a). Repository Table 1 in ESM compiles 
the stratigraphy of the area based on previous literatures.

Structures and geochronology

The cooling age of LH units, based on 40Ar/39Ar dating of 
white micas, ranges 4.3–6.7 Ma (Thiede et al. 2005). Young 
dating age of 4–7 Ma recorded in between the Munsiari 
Thrust and the MCT zone in the Sutlej valley (Himachal 
Pradesh, India, Vannay et al. 2004). The Munsiari Thrust 
activated ~ 19.8 ± 2.6 Ma (Ar/Ar dating on hornblende; 
Metcalfe 1993). However, Th–Pb monazite dating of Catlos 
et al. (2002) gave 5.9 ± 0.2 Ma as the time of activation. 
Montemagni et al. (2020) deduced a much younger Ar–Ar 
age of 5–4 Ma from the Munsiari Thrust in the Garhwal 
Himalaya. The thrust separating the Inner Lesser Himalaya 
in the north from the Outer Lesser Himalaya in the south 
has been recognized variously as the Tons Thrust/Srinagar 
Thrust/North Almora Thrust (review in Bose and Mukher-
jee 2019a). The Berinag Thrust slipped top-up-to-the-SW 
and later folded (Bose and Mukherjee 2019a) within the 
Inner Lesser Himalaya. The Singuini Thrust is equivalent of 
the Khattukhal Fault (Agarwal and Kumar 1973) and coin-
cides with the axial trace the Khattukhal Anticline. Dharasu 
Thrust/Nalupani fault/Dharkot Dislocation (review in Agar-
wal and Kumar 1973) lies south of the Singuini Thrust. The 
Tons Thrust at the margin between the Inner- and the Outer 
Lesser Himalaya reactivated ~ 14 Ma as a back-thrust (Patel 
et al. 2015; Agarwal et al. 2016). The Outer Lesser Himalaya 
consists of few major tectonic units: the Mussoorie syncline 
possesses ~ northern dipping Aglar Thrust and ~ southern 
dipping Basul Thrust (Jain 1971). The Kathu-ki-chail Thrust 
passes through the Mussoorie synclinal axis that reactivated 
during the Himalayan compression (Dubey 2014). The MBT 
activated ~ 9–11 Ma (apatite fission track dating: Meigs et al. 
1995; Thakur et al. 2014).

Ductile and brittle shears with orogen–perpendicular 
sense of shear have already been studied extensively from 
the LH along the natural (sub)vertical NE–SW rock-sections 
by the previous workers (e.g., Mukhopadhyay and Mishra 
2005; Célérier et al. 2009; Agarwal et al. 2016; Bose and 
Mukherjee 2019a, b; Mahato et al. 2019). However, shear 
structures observed on the orogen-parallel NW–SE sections 
received far less attention.

Onset of Tibet and Himalayan orogen-parallel exten-
sion (Repository Fig. 1 in ESM) is estimated between 15 
and 5 Ma by various authors. For example, 40Ar/39Ar ther-
mochronology on muscovites at the upper Karnali valley 
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(Nepal) indicates an extension ~ 15–13 Ma (Nagy et al. 
2015). Hintersberger et al. (2011) recorded brittle-ductile 
transition between 15 and 17.5 Ma from the NW Greater 
Himalayan rocks and also the NW–SE extension. This exten-
sion (D4), supposedly equivalent with NE–SW compression 
(D1), prevailed between 12 and 11 Ma (zircon fission track 
date: Vannay et al. 2004). Based on the cross-cut relation-
ship between the Khula Kangri granite (12.5 Ma) and the 

South Tibetan Detachment (STD), Edward and Harrison 
(1997) estimated initiation of orogen-parallel extension to 
be ~ 10 Ma. Repository File 1 reviews orogen-parallel shear 
from Tibet.

Agarwal and Kumar (1973) and subsequently Jain (1987) 
identified orogen-parallel compression/NW–SE compression 
to be younger than the NE–SW compression (D1 of Hinters-
berger et al. 2011). In the NW LH, a D3 NE–SW extension 

Fig. 2   Shear fabric documented along NW–SE trend located in the geological map of the Garhwal Lesser Himalaya. The map along with the 
compiled structural and tectonic information is taken from Bose and Mukherjee (2019a)
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as per Hintersberger et al. (2011) is presumably correlated 
with the NW–SE compression suggesting a deformation 
around 7–4 Ma (40Ar/39Ar dating).

Top-up-to-the-NW and top-up-to-the-SE (compressional 
shear fabric), and top-down-to-the-NW and top-down-to-
the-SE (extensional shear fabric) shears are photographed in 
this work from the NW–SE natural cross-sections (Fig. 3). 
The shears are deciphered from S-C fabric and brittle 
shear planes Y and P, from total 98 spots. Several earlier 
workers (e.g., reviews in Yin 2006; Bose and Mukherjee 
2019a) completely missed these deformations. A total of 
103 curved S-(and P-) planes bound by C- (and Y-) planes 
are considered. Amongst these, 67 curves (P-planes) belong 
to the Inner Lesser Himalaya, and 27 (P-planes) to the 
Outer Lesser Himalaya. Nine curves (S-planes) come from 
the MCT zone schist. Where sigmoid P- and S-planes are 
incompletely developed or are broken naturally (Repository 
Fig. 2 in ESM), we avoided them in the present work.

Methods

Usually to generate the exact shape of the sigmoid curves, 
this work satisfactorily uses four control points. A good fit 
is understood visually. The degree is fixed to k = 3 to achieve 
the desired degree of smoothness. With increase in k value 
the order of the curve increases. For example, if k = 4, a 
cubic degree (u3) of polynomial forms. With decreasing k 
values, the order of the curve decreases and the overall cur-
vature closes near the control points: for k = 2, linear, and 
worse, for k = 1, no curve is simulated. The chosen degree 
smoothens the curve and avoids complex polynomial equa-
tions involving u4, u5, u6 etc. Summarily, having less control 
points make the fit unsatisfactorily. On the other hand more 
than 4 control points do not augment the fit significantly.

The B-spline curve can fit with the sigmoid using the 
Rhinoceros software 5 SR Service (free trial version) as fol-
lows (Figs. 4, 5):

Fig. 3   Field evidence of orogen-parallel extensional and compres-
sional shear fabrics documented in the NW Lesser Himalaya along 
the Dehradun-Uttarkashi transect. Dip amount/dip direction: x°/y°. a 
Within Main Central Thrust (MCT) zone, sigmoid S-planes (29°/55°) 
bounded by C-planes (not visible; 16°/315°) records top-down-to-
the-NW extensional shear by quartz-fish within low-grade metamor-
phic schist. Location 5 in Fig. 2. b Brittle shear indicating top-up-to-
the-NW compressional shear in Rautgara schist (Y-plane: 15°/124°; 

P-plane: dip amount/dip direction: 60°/140°). c Location 36 in 
Fig. 2c Berinag Quartzite affected by top-down-to-the-SE extensional 
brittle shear zones with well-developed Y- (36°/134°) and P-planes 
(30°/300°). Location 29 in Fig. 2d. d Fragmented P-planes bordered 
by segmented Y-planes denote top-up-to-the-SE compressional shear, 
within the Rautgara schists. Y-plane: 25°/165°, P-plane: 77°/115°. 
Location 5 in Fig. 2
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1.	 Import the digital field photograph image consisting of 
the curved shear plane (P or the S-plane) bound by a 
set of primary shear planes (Y- or the C-plane) in the 
Rhinoceros XY-graphical interface (Fig. 5a).

2.	 Rotate the image so that Y- or the C-plane parallels the 
abscissa (Fig. 5b).

3.	 Place the leftmost end points of the P- or the S-plane at 
the origin (0, 0) (Fig. 5c).

4.	 Draw a nearly matched curve of the P- or the S-plane 
using the B-spline graphic tool using four control points, 
starting from the origin of the curve. Fix two control 
points, P0 and P3, as the end points of the curve. Define 
the weight of the control points (h) = 1 so that all the 
control points have equal influence on the curve. Define 
the degree of the curve (here k = 3) allowing consider-
able smoothness (Fig. 5d).

5.	 Adjust the two control points (P1, P2) along X- and 
Y-axes in both the positive and the negative directions, 
and match the exact curve pattern. P1, P2 are the mov-
able control points and its position generates the curva-
ture of the sigmoid. By moving P1 and P2, location the 
drawn curve is visually matched with the field photo-
graph. (Fig. 5e).

6.	 If the newly created curve exactly/reasonably replicates 
the P- or the S-plane as present in the imported picture, 
join all the controlling points (P1, P2 and P3) from the 
origin or from P0 and measure individual lengths (L1, L3 
and L2, respectively) (Fig. 5f).

7.	 Measure the angles α1 = ∠OP0P1, α2 = ∠OP0P3, and 
α3 = ∠OP0P2 (Fig. 5g).

3

The 180° rotational asymmetry of the curve (Fig. 1ii) 
manifested by different wavelengths (λ values) in its differ-
ent segments can be accounted by changing the positions 
of P1 and P2 (Fig. 5d).

Various shapes and sizes of sigmoids are encountered 
in the field. Values of lengths Li and angles αi, (i = 1, 2, 3), 
are utilized in a relative sense (e.g., “low L1 value” means 
a much lower magnitude of L1 with respect to L2 and L3) 
to understand the sigmoid geometry.

We regenerate/trace field-photographed S- and P-planes 
(few attitudes presented in Fig. 6) in computer using the 
Rhino 5 SR Service, a free computer-aided design with an 
in-built B-spline tool.

After bringing in the Rhino 5 SR Service platform, indi-
vidual lengths of P- and S-curves were measured from 
origin (0,0) in the photographs in terms of L1, L2 and L3 
(Fig. 5h). The angles (α1, α2 and α3) (Fig. 5h) are calcu-
lated (Table 1).

Stronger simple shear is expected to reduce α2 and 
lengthen L2 (Fig. 7; Mukherjee 2011). This work incorpo-
rates additional four parameters (α1, α3, L1 and L3; Fig. 5h), 
in which, along with α2, acute angles α1 and α3 reduce simi-
larly and L1 and L3 expand as shear continues. The article 
attempts to draw relations in between the six parameters 
(α1, α2, α3, L1, L2 and L3) to constrain the sigmoid geometry.

Results

General points

Using the B-spline tool, the redrawn curves from the field 
photograph can be defined in terms of six parameters (Li, 
αi; i = 1, 2, 3). These parameters were mutually compared in 
terms of “first order plots” (Table 2, sl. no. 1–4; Fig. 8i.–iv). 
Next, the parameters were used to calculate ratios and com-
pared as the “second order plots” (Table 3; Fig. 9i). The best 
fit straight lines were derived from these plots along with 
their R2 values. R is the linear correlation coefficient. R2 is 
the statistical measurement of closeness of the data with the 
matched best fit line of regression.

Practically no correlation (R2 = 0.0003) was noted 
between α2 and L2 (Table 2, sl. no. 5). Scatter plots support 
a moderate to good regression model fit (marked by ‘^’ in 
Tables 2, 3, e.g., sl. no. 1, 2, 3 and 4 in Table 2 and sl. no.1 
in Table 3).

The other first-order and the second-order plots suggest 
poor regression model fit (marked by ‘*’ in Table 2, e.g., 
sl. no.5 in Table 2) between the chosen pair of parameters.

Fig. 4   Top-up-to-the-NW brittle shear, within Rautgara Slate, Inner 
Lesser Himalaya, is defined by sigmoid-shaped P-plane, bound 
by two sub-parallel Y-planes. Inset stereo-plots of poles of Y- and 
P-planes. The inset line traces the right margin of the sigmoid
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Fig. 5   P-plane regenerated 
using the Rhinoceros software. 
Parameters L1, L2, L3, α1, α2 
and α3 are defined. a Import 
the digital field-snap in the 
graph. b Rotate the image so 
that the Y-shear plane parallels 
the abscissa. c Place left end 
points of the P-plane at origin 
(0,0). d Draw a nearly matched 
curve pattern of P-plane using 
the B-spline graphic tool with 
four control points from origin. 
P0 and P3 are the end points of 
the curve. Add weight of the 
control points = 1, degree of the 
curve, k = 3. e Adjust the two 
control points (P1, P2) along 
the X- and the Y- axes. f Join 
all the controlling points (P1, 
P2, and P3) with the origin (P0) 
and measure individual lengths 
(L1, L3, and L2, respectively). g 
Measure the angles α1, α2 and 
α3: ∠OP0P1 = α1, ∠OP0P3 = α2, 
∠OP0P2 = α3. h Regenerated 
P-plane using B-spline tool 
visually matching with field 
photograph marked with blue 
color. Y-plane is marked with 
yellow color, which lies parallel 
with X-axis. P0 and P3 are the 
end points, whereas P1 and P2 
(yellow circles) are the control 
points which can be moved till 
it matches with desired visual 
fitness. P0P1 marked as L1, P0P3 
represents L2 and P0P2 marked 
as L3. ∠OP0P1 = α1 marked 
with light green, ∠OP0P3 = α2 
represented in yellow and 
∠OP0P2 = α3 marked by orange
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Types of sigmoids

Generally, for sigmoidal S and P planes (Fig. 3), two curve 
segments bulge in the middle, taper towards the end and are 
bound by ductile shear C-planes/brittle shear Y-planes. The 
sigmoid can be classified based on their wavelengths and 
amplitudes (Fig. 1) into the following four types.

Type-I The sigmoid curve is characterized by low ampli-
tude and low wavelength showing very little curvature. 
Relative L1 values are the lowest with very little difference 
between L2 and L3 values (Fig. 10i). Acute angles α1, α2 and 
α3 are close-spaced magnitude-wise, and the sigmoid seg-
ment ‘r’ after 180° rotation replicates the segment ‘s’. Thus 
the entire sigmoid can be stated to have a 180° rotational 
symmetry (Fig. 10ii).

Type-II This particular curve is defined by moderate 
wavelength and amplitude in which the L1–L2 and the L1–L3 
values are more than those for the Type-I but less than those 
for the Type-III sigmoids (Fig. 10i). Acute angles α1, α2 
and α3 are equally spaced (α2−α1 ≈ α3−α2) leading to 180° 
rotational symmetry of these sigmoids (Fig. 10ii).

Type-III This type of a curve has the maximum curvature 
thus having a very high relative L1 and close to the values of 
L2 and L3 (Fig. 10i; explained in Repository Files 1 and 2 in 
ESM). Angles α1, α2 and α3 differ much but α2−α1 ≈ α3−α2 
along with the maximum wavelength (L2). Such sigmoids 
are symmetric after 180° rotation (Fig. 10ii).

Type-IV This type of a sigmoid is characterized by 
its asymmetry. The curve fails to regenerate itself after 

180° rotation and thus segment ‘r’ and segment ‘s’ differ 
(Fig. 10ii). Here α2−α1 ≠ α3−α2. Thus in (α3−α1) vs. (α1 -α2) 
plot, the asymmetry leads the scatter plot points falling away 
from the regression line R2 = 1.

Discussions

General points

Understanding of geologic structures using graphic tools 
(Bézier curve, NURB curve, GOCAD etc.) has gained 
popularity (e.g., Renard and Courrioux 1994; de Kemp and 
Sprague 2003; Zhong et al. 2004; Paluszny et al. 2007; Liu 
et al. 2009a, b; Hudleston and Treagus 2010; Gogoi and 
Mukherjee 2017). 2D understanding of geometry in meso as 
well as in micro-scale can further 3D graphical modelling to 
visualize, interpret and analyse geological structures (Zhong 
et al. 2004; Sprague and Kemp 2005; Gogoi and Mukherjee 
2019). Such modelling can have long-term implications in 
engineering geology (e.g., Francké and Yelf 2003; Koerber 
et al. 2003; Zhong et al. 2006; Barazzetti et al. 2016; Jac-
quemyn et al. 2019).

Geometry and distribution of any structural elements 
are influenced by the stress regime, lithologic variation and 
existing regional structures (Fossen et al. 2017). Sigmoid 
shapes of shear fabrics depend on water fugacity, pure shear, 
simple shear, amount of strain, grain-size (e.g., Sonder, 
2001; Bose et al. 2018). Meyer et al. (2017) suggested mate-
rial heterogeneity to be the responsible factor to develop 
sigmoids and/or shear zones. Shear fractures and sigmoids 
indicate grain reorganization, cataclasis, and/or precipitation 
(Peacock et al. 2018 and references therein). Understanding 
of fracture/sigmoid geometry can be important to deduce the 
prevalent stress pattern, kinematics and temporal relation-
ship in shear zones (Peacock et al. 2018; Liu et al. 2009b). 
Thus, geometric modelling of shear structures is essential 
(Hudleston and Treagus 2010).

Sigmoids encountered in the field ranges from mm to cm 
and sometimes to meter-scale. To understand the types of 
sigmoid the article emphasizes on length ration and angle 
ratio plots.

Several correlation plots in geology such as in geochemi-
cal composition (e.g., Fisher 1995; Akram et al. 2017; Evans 
et al. 2018), mechanical parameters (Akram et al. 2017), 
topographic features (Gabrielli and McDonnell 2020), heavy 
metal concentration (Huisman et al. 1997), soil chemistry 
(Maynard 1992) suggests that R2 > 0.5 indicating moder-
ate to strong correlation. In this study, in general, based on 
R2 > 0.5 moderate-strong correlations are observed in L3 vs. 
L1 (R2 = 0.52), L2 vs. L3 (R2 = 0.92) and L1 vs. L2 (R2 = 0.59). 
With relatively low L1 values, little difference between L2 
and L3 values indicates that the studied sigmoid shear planes, 

Fig. 6   Poles of seven S-planes marked by green and 45 P-planes pink 
dots in a stereo-net. Data collected from the NW Indian Lesser Hima-
laya
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Table 1   Total of 103 reproduced P- and S- plane parameters

Sl no Formation/lithology L1 (mm) L2 (mm) L3 (mm) α1 (°) α2 (°) α3 (°) Weight Control 
points

Degree 
of 
Curve

1 Chandpur Slates 0.204 1.426 0.777 44.59 38.206 50.145 1 4 3
2 Chandpur Slates 1.035 2.542 1.788 36.394 38.459 55.896 1 4 3
3 Chandpur Slates 1.189 2.706 1.793 20.34 42.304 56.9 1 4 3
4 Rautgara Formation Slate 24.163 25.953 17.45 − 6.26 38.29 52.51 1 4 3
5 Rautgara Slates 9.423 27.575 21.702 7.91 24.72 29.62 1 4 3
6 Rautgara Slates 1.88 6.71 2.58 3.98 10.25 29.52 1 4 3
7 Rautgara Slates 1.527 14.906 8.665 50.054 28.899 59.144 1 4 3
8 Rautgara Slates 24.12 45.69 28.39 − 17.535 27.07 50.83 1 4 3
9 Rautgara Slates 13.758 36.05 27.83 − 6.83 23.495 29.81 1 4 3
10 Rautgara Slates 14.23 25.092 19.97 − 12.22 19.524 26.051 1 4 3
11 Rautgara Slates 3.271 11.31 8.51 − 12.9 21.72 35.043 1 4 3
12 Rautgara Slates 1.017 3.206 1.548 − 6.729 25.239 31.831 1 4 3
13 Rautgara Slates 1.101 3.425 2.38 − 5.318 19.92 36.495 1 4 3
14 Rautgara Slates 14.411 30.976 25.033 30.242 53.873 61.896 1 4 3
15 Rautgara Slates 6.011 24.963 22.302 18.881 65.671 80.056 1 4 3
16 Rautgara Slates 8.977 24.662 20.758 13.293 60.817 69.708 1 4 3
17 Rautgara Slates 2.115 9.76 6.28 45.27 68.48 88.905 1 4 3
18 Rautgara Slates 1.08 5.53 4.61 65.69 39.34 58.262 1 4 3
19 Rautgara Slates 3.16 8.99 7.53 − 2.55 61.75 72.68 1 4 3
20 Rautgara Slates 6.527 19.009 12.705 16.815 26.706 37.139 1 4 3
21 Rautgara Slates 5.303 14.554 13.483 22.035 30.546 35.198 1 4 3
22 Rautgara Slates 1.292 3.789 2.437 − 4.02 30.516 46.957 1 4 3
23 Rautgara Slates 5.441 22.926 19.803 4.234 20.92 24.719 1 4 3
24 Rautgara Slates 1.7 8.886 6.083 11.635 15.216 18.665 1 4 3
25 Rautgara Slates 5.417 20.336 16.611 15.742 23.869 25.622 1 4 3
26 Rautgara Slates 5.716 12.058 10.436 − 10.596 36.18 45.273 1 4 3
27 Rautgara Slates 4.842 8.311 5.465 − 5.69 45.975 79.895 1 4 3
28 Rautgara Slates 2.834 5.7 4.085 − 5.581 29.467 34.369 1 4 3
29 Rautgara Slates 2.974 7.075 4.448 11.05 36.343 46.534 1 4 3
30 Berinag Quartzite 5.1 10.66 6.514 − 2 41.36 48.16 1 4 3
31 Berinag Quartzite 1.23 3.02 1.65 − 2 28.8 38.29 1 4 3
32 Berinag Quartzite 21.71 39.887 25.448 − 12.77 9.77 16.51 1 4 3
33 Berinag Quartzite 14.11 40.55 29.75 − 13.75 34.261 43.97 1 4 3
34 Berinag Quartzite 11.65 24.04 17.619 − 5.089 12.06 16.59 1 4 3
35 Berinag Quartzite 6.85 20.93 17.15 − 16.13 31.57 41.48 1 4 3
36 Berinag Quartzite 4.78 8.15 5.67 − 2.05 29.14 34.86 1 4 3
37 Berinag Quartzite 4.285 9.948 7.754 − 24.07 22.68 36.57 1 4 3
38 Berinag Quartzite 2.817 9.486 6.221 0.8 17.912 20.913 1 4 3
39 Berinag Quartzite 7.768 18.592 12.965 − 3.274 14.34 25.97 1 4 3
40 Berinag Quartzite 1.91 7.04 3.12 − 24.53 24.47 29.62 1 4 3
41 Berinag Quartzite 1.736 5.225 3.531 − 18.243 16.078 31.015 1 4 3
42 Berinag Quartzite 0.718 4.503 2.696 − 16.368 16.06 32.538 1 4 3
43 Berinag Quartzite 1.014 4.883 3.293 − 2.595 36.048 46.641 1 4 3
44 Berinag Quartzite 9.18 20.37 8.324 14.608 28.779 62.324 1 4 3
45 Berinag Quartzite 3.817 12.215 7.866 16.535 35.297 52.95 1 4 3
46 Berinag Quartzite 0.824 7.162 3.825 24.313 40.243 79.998 1 4 3
47 Berinag Quartzite 6.179 30.201 19.407 10.571 22.289 42.098 1 4 3
48 Berinag Quartzite 0.675 1.443 0.954 6.462 33.588 53.458 1 4 3
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Table 1   (continued)

Sl no Formation/lithology L1 (mm) L2 (mm) L3 (mm) α1 (°) α2 (°) α3 (°) Weight Control 
points

Degree 
of 
Curve

49 Berinag Quartzite 0.477 5.11 4.092 23.971 32.713 42.796 1 4 3
50 Berinag Quartzite 1.435 4.117 3.722 17.621 30.209 35.974 1 4 3
51 Blaini Formation conglomerate clast 6.421 17.624 12.269 37.58 36.227 51.761 1 4 3
52 Blaini Formation conglomerate clast 7.009 14.903 11.127 6.326 41.869 57.393 1 4 3
53 Blaini Formation conglomerate clast 6.345 15.044 8.546 4.172 25.812 41.248 1 4 3
54 Krol Formation Limestone 6.021 11.4 8.37 − 4.96 53.641 77.332 1 4 3
55 Krol Formation Limestone 2.389 8.262 6.735 − 43.492 24.732 33.59 1 4 3
56 Krol Formation Limestone 3.486 6.859 5.464 − 2.3 29.978 42.634 1 4 3
57 Krol Formation Limestone 3.791 8.545 8.44 18.815 39.058 45.364 1 4 3
58 Krol Formation Limestone 9.864 17.641 15.274 − 7.942 3.79 9.678 1 4 3
59 Krol Formation Limestone 4.228 13.767 4.211 2.161 29.059 74.812 1 4 3
60 Krol Formation Limestone 7.971 11.578 10.801 − 8.149 23.045 27.921 1 4 3
61 Krol Formation Limestone 4.494 13.873 11.007 37.049 54.445 70.267 1 4 3
62 Krol Formation Limestone 4.26 12.081 9.244 14.036 54.59 65.719 1 4 3
63 Krol Formation Limestone 1.858 9.756 7.538 26.531 53.063 65.517 1 4 3
64 MCT zone Schist 14.8 30.75 21.6 5.63 28.65 46.09 1 4 3
65 MCT zone Schist 15.237 19.712 13.115 − 2.078 20.635 25.67 1 4 3
66 MCT zone Schist 3.21 26.22 21.08 − 1.16 33.29 46.49 1 4 3
67 MCT zone Schist 4.75 17.29 12.904 8.306 28.25 36.47 1 4 3
68 MCT zone Schist 0.834 30.487 14.356 15.945 20.243 58.951 1 4 3
69 MCT zone Schist 7.469 22.697 15.801 38.826 64.072 68.715 1 4 3
70 MCT zone Schist 8.043 29.144 26.014 10.955 69.278 75.37 1 4 3
71 MCT zone Schist 6.025 18.783 11.103 16.46 47.318 68.155 1 4 3
72 MCT zone Schist 4.977 14.636 11.909 24.22 45.442 58.707 1 4 3
73 Nagthat Quartzite 4.358 31.247 25.284 21.282 41.733 48.257 1 4 3
74 Nagthat Quartzite 2.282 12.988 9.06 − 13.001 29.88 35.512 1 4 3
75 Nagthat Quartzite 1.6288 7.553 6.056 8.781 35.761 41.087 1 4 3
76 Nagthat Quartzite 2.999 5.26 3.955 17.74 49.994 63.123 1 4 3
77 Nagthat Quartzite 1.331 4.257 2.962 31.529 40.825 57.145 1 4 3
78 Nagthat Quartzite 0.862 2.738 2.002 20.512 38.972 40.028 1 4 3
79 Nagthat Quartzite 4.702 10.892 13.757 31.393 55.259 46.493 1 4 3
80 Nagthat Quartzite 3.796 17.773 16.412 22.593 35.653 36.562 1 4 3
81 Nagthat Quartzite 0.466 31.936 26.892 0.138 31.415 34.372 1 4 3
82 Nagthat Quartzite 3.498 15.211 13.731 − 8.854 40.212 45.882 1 4 3
83 Nagthat Shaly Quartzite 5.161 16.81 12.56 1.63 23.44 26.316 1 4 3
84 Rautgara Quartzite 7.102 26.82 16.64 9.81 46.04 50.12 1 4 3
85 Rautgara Quartzite 7.436 24.879 17.39 9.5 47.3 62.628 1 4 3
86 Rautgara Quartzite 5.414 11.788 6.577 37.303 44.086 78.535 1 4 3
87 Rautgara Quartzite 2.502 10.311 6.514 28.727 39.894 60.058 1 4 3
88 Rautgara Quartzite 5.527 14.043 10.98 − 15.29 30.73 44.677 1 4 3
89 Rautgara Quartzite 1.84 5.55 3.85 1.72 45.731 67.479 1 4 3
90 Rautgara Quartzite 17.1 45.45 36.04 5.3 34.46 40.079 1 4 3
91 Rautgara Quartzite 1.66 6.21 4.25 13.113 30.58 48.57 1 4 3
92 Rautgara Quartzite 1.43 5.27 3.62 4.16 32.54 38.29 1 4 3
93 Rautgara Quartzite 0.49 1.785 1.442 − 8.319 42.13 54.38 1 4 3
94 Rautgara Quartzite 1.101 3.336 2.332 25.029 34.364 55.198 1 4 3
95 Rautgara Quartzite 6.662 27.868 23.317 9.653 32.922 40.587 1 4 3
96 Rautgara Quartzite 7.171 27.942 24.461 − 2.569 38.063 45.71 1 4 3
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P- and S-, are of low λ (Fig. 10i, Type-I vs. Type-III) and 
high wavelength. Significant difference in L2 and L3 value 
(Fig. 10i, Type-III) indicates a greater curvature (high ampli-
tude, Fig. 10i with m1n1 < m2n2 < m3n3), complimented by 
relatively high L1 values (Fig. 10i, Type-III). From Type-I to 
Type-III, as the value of L1 increases, the difference between 
L2 and L3 magnitude also increases. Figures 10i–iii show 
increasing curvature from Type-I to Type-III with significant 
rise of L1 value along with minor increase of L2 and L3 value.

Good correlations for α2 vs. α3 (R2 = 0.69), and (α3−α1) 
vs. (α1−α2) (R2 = 0.75) suggest that the curve segments 

are of 180° rotational symmetry. Note Farrell and Shep-
ard (1981) coined the term “180° rotational symmetry”. 
In Fig. 10ii, Type-I, II and III sigmoids have curve seg-
ment ‘r’, which after 180° rotation becomes the segment 
‘s’. In Fig. 10ii, Type-IV sigmoids do not achieve such a 
rotational symmetry. There the segments ‘r’ and ‘s’ are 
of different shapes. This is also reflected in terms of poor 
correlations between α2 vs. α3 and (α3−α1) vs. (α1−α2).

Rigid body rotation of the sigmoid curves, if attained by 
ductile shear, can increase or decrease α1, α2 and α3 indi-
vidually, however, the difference between the angle remain 

Table 1   (continued)

Sl no Formation/lithology L1 (mm) L2 (mm) L3 (mm) α1 (°) α2 (°) α3 (°) Weight Control 
points

Degree 
of 
Curve

97 Rautgara Quartzite 7.169 21.253 18.905 − 1.948 39.129 42.054 1 4 3
98 Rautgara Quartzites 5.724 12.009 9.016 8.631 22.08 30.204 1 4 3
99 Rautgara Quartzites 1.563 11.81 6.839 26.951 26.998 37.781 1 4 3
100 Rautgara Quartzites 0.833 13.22 9.082 9.659 29.96 41.595 1 4 3
101 Rautgara Slates altered with Quartzite 3.26 11.1 8.1 7.562 25.9 50.46 1 4 3
102 Rautgara Slate altered with Quartzite 2.892 8.84 6.99 21.12 31.74 39.2 1 4 3
103 Rautgara Slate altered with Quartzite 2.7 6.07 3.49 − 14.48 23.64 30.88 1 4 3

Fig. 7   Response of a square block under pure and simple shear (ten 
Grotenhuis et al. 2003) changes shape of a square. L2 lengthens and 
α2 reduces subsequently. i Square block with L2 value 19 mm and α2 
value 45°. ii Initial phase of simple shear deformation leads increas-
ing length of L2 and decreasing the angle α2. iii Final phase of pure 

shear deformation denotes decrease in the length of L2 = 25 mm and 
decreasing the angle α2 = 22°. iv Initial phase of pure shear deforma-
tion leads decreasing length of L2 and decreasing the angle α2. v Final 
phase of non-coaxial shear deformation denotes increase in the length 
of L2 = 22 mm and decreasing the angle α2 = 27°
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unaffected and such rotated curves retain original shapes and 
sizes. For example, in Fig. 10iv, the acute angles (αi, i = 1, 
2, 3) of Type-I sigmoid are 23.5°, 60° and 65°, respectively. 
After 38.25° clockwise rotation, the acute angles change to 
− 14.75°, 21.75° and 26.75°, respectively (Fig. 10iv; Type-I). 

The negative angle indicates an anti-clockwise measurement 
form the X-axis. The difference between the individual acute 
angle remain constant i.e. α1−α2 = 36.5°; α3−α2 = 5°. This 
leads to retain the shape and provides no influence on angle 
ratio plots (Fig. 11).

Table 2   First-order linear 
correlation between parameters 
(L1, L2, L3, α1, α2 and α3)

Sr. no Correlation type (‘*’):poor correla-
tion; (‘^’):moderate-good correlation)

Y-Axis X-Axis Linear correlation 
between parameters (L1, 
L2, L3, α1, α2 and α3)rep-
resented by straight line 
equation (y = Ax + B)

R2

A B

First-order plots
1 ^ L3 L1 1.1787 4.8868 0.5211
2 ^ L2 L3 1.2471 1.2398 0.927
3 ^ L1 L2 0.3652 – 0.2633 0.5966
4 ^ α2 α3 0.6689 3.006 0.6999
5 * α2 L2 − 0.0203 34.375 0.0003

Fig. 8   Different types of first-order scatter plots (one to one parameter comparison) of natural sigmoids defined by P- and S- shear planes plotted 
from NW Lesser Indian Himalaya. Detail at the “Results” section. i L3 vs. L1, ii L2 vs. L3, iii L1 vs. L2, iv α2 vs. α3
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Relation between sigmoid geometries & regional 
structures

Refer to Appendix 1 for background information. The 
P- and the S-planes situated within ~ 2 km range of the 
regional structure (e.g., in Fig. 2 location point: 5- Mun-
siari Thrust, 15 and 25- Berinag Thrust, 46- Tons Thrust, 
50- Aglar Thrust, 75-Mussoorie syncline etc.) display 
comparatively poor correlation amongst the chosen 
parameters (e.g., L3 vs. L1, R2 = 0.26; L2 vs. L3, R2 = 0.88; 
L1 vs. L2, R2 = 0.31; α2 vs. α3, R2 = 0.65). Plots associated 
with the observed P- and S-planes situated > 2 km away 
from the regional faults and fold axes give a compara-
tively stronger linear fit (e.g., L3 vs. L1, R2 = 0.71; L2 vs. 
L3, R2 = 0.94; L1 vs. L2, R2 = 0.81; α2 vs. α3, R2 = 0.81). 
Only the plot of (α3−α1) vs. (α1−α2) in which shear fab-
rics are encountered > 2 km away from regional structures 

[(α3−α1) vs. (α1−α2), R2 = 0.79] display slightly better cor-
relation than the shear fabrics encountered at < 2 km away 
from regional structure [(α3−α1) vs. (α1−α2), R2 = 0.74] (sl 
no.10 in Table 4).

Relation between sigmoid geometries & lithology

Difference in grain size (Bose et al. 2018), mineralogy 
(Libak et al. 2019) in micro-scale and even the cement 
composition within carbonates (Steen and Andresen, 1999) 
play vital roles in altering meso-micro scale fault and shear 
fabric geometries. Bastesen and Braathen (2010) explained 
the effect of lithologic composition over the fault geometry.

Plots showing good correlations (e.g., L3 vs. L1, L2 vs. 
L3, L1 vs. L2, α2 vs. α3, (α3−α1) vs. (α1−α2) are further cat-
egorized based on lithology (Fig. 12) in which the P- and 
the S-planes are observed. Amongst these, the L3 vs. L1, and 
the α2 vs. α3 plots suggest P- and S-planes in politic rocks 
from the Rautgara Formation slates/schists and Chandpur 
Formation slates/schists develop at a low-angle with Y- and 
S- planes, and the sigmoids are flatter with high amplitude 
(Fig. 10iii, Type-I). On the other hand, psammitic rocks (Raut-
gara quartzite, Nagthat quartzite and Berinag quartzite) reveal 
a comparatively high-angle relation between Y- and P- plane, 
and S- and C-planes with sigmoids of relatively low-ampli-
tudes (Fig. 10iii, Type-I). For limestones (Krol Limestone), 
conglomerates (Blaini Formation) and the MCT Zone schists 
along with along with quartzites (Berinag, Nagthat, Rautgara 
and Chandpur Formation), the graphs (Fig. 12i) suggest that 
most of the sigmoids are the Type-II varieties.

The parameter α2 was plotted against lithology (Repos-
itory Fig. 4 in ESM). Majority of the α2 values range in 
between 20° and 50° in case of quartzite with maximum 
ranging 30°–40°, Schist/slates, MCT schists and limestones 
cover a wider range of α2 with a majority between 20° and 
30°. α2 in conglomerate ranges 20°–50°. Range of α2 may 
indicate different degrees of non-coaxial shear.

Table 3   Second-order linear correlation between parameters (L1, L2, L3, α1, α2 and α3)

Sr. no Correlation type (‘*’):poor correlation; (‘^’):moderate-good correlation) Y-Axis X-Axis Linear correlation 
between parameters 
(L1, L2, L3, α1, α2 and 
α3) represented by 
straight line equation 
(y = Ax + B)

R2

A B

Second order plots
1 ^ α3−α1 α1−α2 − 0.9211 14.446 0.7503

Fig. 9   Second-order scatter plots (individual parameters are com-
bined together) of natural sigmoid defined by P- and S- shear planes. 
Details are discussed in the “Results” section. i (α3−α1) vs. (α1−α2)
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Fig. 10   Different types of sig-
moid shapes. Moving towards 
right, the end point location 
P3 also moves. Simultane-
ously P1 and P2 modify their 
locations. P0 end point location 
remains fixed. Sense of slip: 
top-to-right. P0, P1, P2, and 
P3 are the control points and 
jointed by violet dashed lines. 
Amplitude and wavelength 
increase towards right. i L1, L2 
and L3 are marked by red solid 
lines. L1 significantly increase 
towards right. ii α1, α2 and α3 
are represented by blue, green 
and orange, respectively and are 
identified by blue solid lines. 
From Type-I to Type-III, α1, 
α2 and α3 reducebut preserves 
the 180° rotational symmetry 
(after 180° rotation, the curve 
segment ‘r’ becomes curve 
segment ‘s’, and vice versa). 
Type-IV is an asymmetric 
sigmoid, segment ‘r’ is unequal 
to the segment ‘s’. Amplitude 
of Type-IV sigmoid is less 
than all other types, in Type-III 
it is maximum. Difference in 
behaviour in ductile and brittle 
regimes are not accounted. iii 
Sigmoid geometries in different 
lithology. Type-I: Lithology 
plots reveal small L1 value 
along with high values of α2 and 
α3 is dominantly represented 
by psammitic composition of 
rocks. Type-III: Considerably 
high L1 value along with low 
values of α2 and α3 represented 
by pelitic composition. Type-II: 
Most common type of sigmoid 
in the field and covers a wide 
range of lithology (e.g., quartz-
ites, schists, limestones and 
conglomerates and MCT zone 
schists). iv Schematic example 
of retention in geometry, even 
after 38.25° clockwise block 
rotation of Type-I sigmoid. Indi-
vidual angular differences (e.g., 
α3–α2, α2–α1) remain unaffected 
even after block rotation
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Conclusions

Geometric matching of NURB curve in 2D (Piegl and 
Tiller 1997) involves its two segments combined to a sig-
moid shape. In this study, P-planes and S-planes photo-
graphed in the field are imported and visually matched in 

the program by drawing curves using the B-spline tool. 
The process is simple, quick and the results can be plotted 
as 2D scatter plots. NURB curves can be modified locally 
unlike the Bézier curves. NURB offers a wider range of 
curves, from flat to pointy, without changing the degree of 
the polynomial function.

Fig. 11   Scatter plots showing R2 ≥ 0.5; correlations are further 
divided based on the existence of regional structures such as folds 
or faults within ~ 2  km on the road-section. Red square: sigmoids 
belonging from NW Lesser Indian Himalaya, developed > ~ 2  km 

away from regional structure; blue diamond: sigmoids developed 
< ~ 2 km away from the regional structure. Details at “Discussions” 
section. i L3 vs. L1, ii L2 vs. L3, iii L1 vs. L2, iv α2 vs. α3, v (α3−α1) vs. 
(α1−α2)

Table 4   Impact of regional 
structure over P- & S-plane 
geometry

Sr. no Distance between regional 
structure & P- & S-plane 
(a) (< ~ 2 km distance)
(b) (> ~ 2 km distance)

Y-Axis X-Axis Linear correlation between 
parameters (L1, L2, L3, α1, 
α2 and α3) represented 
by straight line equation 
(y = Ax + B)

R2

A B

1 a L3 L1 0.826 5.6891 0.2609
2 b L3 L1 1.3541 5.0521 0.7096
3 a L2 L3 1.1787 1.7987 0.8814
4 b L2 L3 1.3011 0.5485 0.9483
5 a L1 L2 0.2746 0.6914 0.311
6 b L1 L2 0.4197 0.9747 0.8124
7 a α2 α3 0.6491 3.8439 0.6525
8 b α2 α3 0.7127 1.1815 0.8123
9 a α3 − α1 α1−α2 − 1.358 11.034 0.7949
10 b α3 − α1 α1−α2 − 0.8894 15.261 0.7356
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This study utilizes a total of 103 curves recorded mostly 
along the Bhagirathi section of the LH starting from ~ 10 
NE of Uttarkashi up to Mussoorie. Field photographs of 
P- and S- plane are reproduced using the B-spline tool in 
the Rhinoceros software 5 SR Service (free trial version). 
The visually matched curves are defined using six shape 
parameters (L1, L2, L3, α1, α2 and α3). With progressive 
simple shear, within all types of sigmoid, values of L2 
ideally increase and that of α2 decrease (ten Grotenhuis 
et al. 2003; Fig. 7). However, any direct relation between 
α2 and L2 could not be established (R2 = 0.0003) due to 
different sizes of the sigmoids identified in the field. This 
would mean that at the starting point of deformation, the 
proto-P and S-planes were of different sizes.

However, some distinct observations are made upon 
further analysis which involves relation between wave-
length and amplitude. Good correlations between L3 vs. 
L1, L2 vs. L3 and L1 vs. L2 plots suggest that all types 
of sigmoids are overall of low amplitude and high wave-
length. Since the sigmoids in the field are of variable 
sizes and shapes, individual magnitudes of L3, L1 and 
L2 become insignificant. Length ratios (L3:L1, L2:L3 and 
L1:L2) in scatter plots differentiates different types of sig-
moids (Fig. 10: Type-I vs. Type-III). These similarities 
roughly stipulate that the regional structures (e.g., Mun-
suari Thrust, Berinag Thrust, Main Boundary Thrust etc.) 

can have considerable influence on the development of 
shear fabrics around them.

Relation between sigmoid geometry and lithology, e.g., 
slates and schist and slates of Rautgara Formation and Chan-
dpur Formation, reveals that the sigmoids are flatter (with 
low α2 and α3 value (Fig. 12iv); low-angle between P- and 
S- plane with Y and C-planes, respectively) along with high-
amplitude with relatively high L1 value (Fig. 12i).

These are the Type-III sigmoid (Fig. 10iii). Sigmoids 
developed within the Rautgara, Nagthat and Berinag quartz-
ites are upright (with high α2 and α3 values, Fig. 12iv). 
High-angle between P- (and S-) plane with the Y (and C-) 
planes are characterized by low amplitudes with relatively 
low L1 values (Fig. 12i) than the Type-I sigmoid within the 
pelitic rocks (Fig. 10iii). With this observation, sigmoids 
documented with the LH schists, quartzites and slates can 
be categorized as the Type-I and II varieties (Fig. 10i). The 
Type-I varieties are of low amplitude whereas amplitude 
increases significantly in the Type-III sigmoids in quartzites, 
schists and slates (Fig. 10i). L3 vs. L1 and α2 vs. α3 plots 
(Figs. 12i, iv) suggests that the Type-II sigmoids within the 
Krol limestones, the conglomerates of the Blaini Formation 
and MCT zone schists are of relatively moderate amplitudes 
along with relatively moderate wavelengths (Fig. 10iii). This 
stipulates favourable tectonic regimes for the development 
of extensional- and compressional shear fabrics. Pelitic and 

Fig. 12   Scatter plots showing R2 ≥ 0.5; correlations divided based on 
litho-types. a Schistose/Slate rocks (red square), b Quartzites (blue 
diamond), c Limestones (green triangle), d Conglomerates (violet 

cross) from the LH. Detailed in “Discussions” section. i L3 vs. L1, ii 
L2 vs. L3, iii L1 vs. L2, iv α2 vs. α3, v (α3−α1) vs. (α1−α2)
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psammitic rock compositions show distinct L3 vs. L1 and 
α2 vs. α3 plots. Type-I sigmoids are found mainly from the 
psammitic rocks, whereas the Type-III mainly from the 
pelitic variety.

Appendix 1

Pre-existing regional structures distribute and orient subse-
quent structures (Misra and Mukherjee 2015; Fossen et al. 
2017). For example, taper geometry of the sediment pile, 
litho-tectonic stratigraphy and overall margin of the shelf 
influenced the fold-thrust belt in the Cordilleran sedimen-
tary basin (Mitra 1997). Earlier developed compressional 
structures in the Alpine Corsica affected the geometry of 
later developed extensional structures (Jolivet et al. 1991).

Balda et al. (1995) argued orogen-parallel deformation 
(extension) to be a syn-collisional product as documented 
form the Variscan Belt. In the Western Coast Belt, orogen-
perpendicular shortening shares syn-kinematic relationship 
with orogen-parallel extension recorded from conjugate 
shear during the mid-Cretaceous (Angen et al. 2014).

These ideas from other orogens lead us to evaluate the 
possibility of impact of regional structures (e.g., Munsuari 
Thrust, Berinag Thrust, Singuini Thrust, Dharasu Thrust, 
Tons Thrust, Basul Thrust, Deosari syncline, Aglar Thrust, 
Mussoorie syncline, Kathu-ki-chail Thrust, Main Bound-
ary Thrust) over the geometries of the smaller scale P- and 
S- shear planes.
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