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rh Minimum horizontal stress
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Dto Transit time at the present sedimentary surface
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Dto Transit time near to the transit time of water
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1Compaction of Sediments
and Different Compaction Models

Abstract
Various simple and advanced models exist for
mechanisms of uniform and non-uniform sed-
iment compaction that increases density and
reduces porosity. While the classical Athy’s
relation on depth-wise exponential reduction
of porosity is not divided into any distinct
stages, the Hedberg’s model involves four
stages. Weller’s model utilized Athy’s and
Hedberg’s relations to deduce a sediment
compaction model. Power’s compaction
model additionally considers clay mineralogy.
Several other porosity/compaction models
exist, e.g., those by Teodorovich and Chernov,
Burst, Beall, and Overton and Zanier. The
geometry of the depth-wise porosity profile
depends on the sedimentation rate, compaction
mechanism and pressure solution model. This
chapter reviews porosity variation with depth
for the following rock types: shales, shaly
sandstones, sandstones and carbonates.

1.1 Introduction

The chemical and the physical properties of
sediments and sedimentary rocks alter as the
overburden pressure increases. These changes
relate to burial depth, temperature and time.
Experiments by Warner (1964) suggested that

acceleration of the rate of compaction of sedi-
ments seem to be the only change at <200 °F.
Compaction of sediments reduces porosity and
increases density (Bjørlykke et al. 2009). The
reduction of porosity is a convenient way of
measuring the amount of sediments compacted
since deposition took place, for practical pur-
poses. Empirical compaction curves are the plots
of porosity versus depth up to *6 km.
Mechanical compaction being the primary
mechanism of compaction, clay minerals are
often utilized in many models to visualise how
grains rearrange with depth. The composition
varies from proximal to distal part of the basin
and the compaction pattern of each sediment type
differs (Bjørlykke et al. 2009). Compaction
models explain the major processes for the sed-
iment compaction. This helps the interpreters to
visualise the relationship of porosity loss with
depth and the probable reason for anomalous
zones. The evolution of compaction models and
porosity reduction with depth from different parts
of the world are presented in Fig. 1.1.

1.2 Porosity Models

Sediment porosities undergo changes with burial.
In the consecutive sections the different models
are explained.
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