Advances in Oil and Gas Exploration & Production

Troyee Dasgupta Soumyajit Mukherjee

Sediment Compaction and Applications in Petroleum Geoscience

Advances in Oil and Gas Exploration & Production

Series Editor

Rudy Swennen, Department of Earth and Environmental Sciences, K.U. Leuven, Heverlee, Belgium

The book series Advances in Oil and Gas Exploration & Production publishes scientific monographs on a broad range of topics concerning geophysical and geological research on conventional and unconventional oil and gas systems, and approaching those topics from both an exploration and a production standpoint. The series is intended to form a diverse library of reference works by describing the current state of research on selected themes, such as certain techniques used in the petroleum geoscience business or regional aspects. All books in the series are written and edited by leading experts actively engaged in the respective field.

The Advances in Oil and Gas Exploration & Production series includes both single and multi-authored books, as well as edited volumes. The Series Editor, Dr. Rudy Swennen (KU Leuven, Belgium), is currently accepting proposals and a proposal form can be obtained from our representative at Springer, Dr. Alexis Vizcaino (Alexis.Vizcaino@springer.com).

More information about this series at http://www.springer.com/series/15228

Troyee Dasgupta · Soumyajit Mukherjee

Sediment Compaction and Applications in Petroleum Geoscience

soumyajitm@gmail.com

Troyee Dasgupta Department of Earth Sciences Indian Institute of Technology Bombay Mumbai, Maharashtra, India Soumyajit Mukherjee Department of Earth Sciences Indian Institute of Technology Bombay Mumbai, Maharashtra, India

ISSN 2509-372X ISSN 2509-3738 (electronic) Advances in Oil and Gas Exploration & Production ISBN 978-3-030-13441-9 ISBN 978-3-030-13442-6 (eBook) https://doi.org/10.1007/978-3-030-13442-6

Library of Congress Control Number: 2019935486

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Troyee Dasgupta *dedicates this book to her daughter "Rahini Dasgupta, born on 31-Jan-2017"*.

Soumyajit Mukherjee dedicates this book to Profs. Joydip Mukhopadhyay and Prabir Dasgupta for teaching sedimentology and stratigraphy in great detail during his B.Sc. studies in the then Presidency College (Kolkata) during 1996–1999.

Acknowledgements

TDG wrote this book while in maternity leave (February to August 2017). SM co-authored while in research sabbatical in IIT Bombay in 2017. We acknowledge our spouses, Swagato Dasgupta and Payel Mukherjee, respectively, for their support. TDG is thankful to Dr. Lalaji Yadav for his fruitful mentorship in Petrophysics. Sandeep Gaikwad (IIT Bombay) drew few diagrams. Thanks to Helen Ranchner, Annett Beuttner and the proof-reading team (Springer).

Contents

1	Con	npaction of Sediments and Different	
	Con	npaction Models	1
	1.1	Introduction	1
	1.2	Porosity Models	1
		1.2.1 Athy's Model	2
		1.2.2 Hedberg's Model.	2
		1.2.3 Weller's Model	3
		1.2.4 Power's Model	3
		1.2.5 Teodorovich and Chernov's Model	4
		1.2.6 Burst's Model	4
		1.2.7 Beall's Model	4
		1.2.8 Overton and Zanier's Model	4
	1.3	Normal Porosity Profiles for Clastics	4
		1.3.1 General Points	4
		1.3.2 Shales	5
		1.3.3 Shaly Sandstones.	6
		1.3.4 Sandstones.	6
	1.4	Carbonates	6
	Refe	erences	7
2	Por	osity in Carbonates	9
	2.1	Introduction	9
	2.2	Origin of Carbonate Rocks	10
	2.3	Carbonate Classification	11
	2.4	Carbonate Factories	11
	2.5	Porosity and Its Classification	14
	2.6	Porosity Classification.	15
		2.6.1 Archie's Scheme	15
		2.6.2 Choquette-Pray Classification	15
		2.6.3 Lucia Classification	16
	2.7	Permeability Classification	16
	2.8	Diagenetic Processes and Porosity Development	16
	Refe	erences	17
3	Por	e Pressure Determination Methods	19
	3.1	Introduction	19
	3.2	Normal Pressure	19

	3.3	Overpressure	20
	3.4	Underpressure	21
	3.5 Refe	Pore Pressure Estimation Methods	23 29
4	Dete	ection of Abnormal Pressures from Well Logs	31
1	4.1	Introduction	31
	4.2	Wireline Log Responses	32
	Refe	rences	48
5	Glo	oal Overpressure Scenario	51
	5.1	Introduction	51
	5.2	Global Scenario in Overpressure Zones	51
	5.3	Specific Cases (Table 5.1)	54
		5.3.1 Abnormal Pressure Occurrences in Middle East	54
		5.3.2 Abnormal Pressure Occurrences in Europe	54
		5.3.3 Abnormal Pressure Occurrences in Africa	57
		5.3.4 Abnormal Pressure Occurrences in China	58
		5.3.5 Abnormal Pressure Occurrences in and Around	
		SE Asia, Australia and New Zealand	60
		5.3.6 Abnormal Pressure Occurrences in Some Parts of	~
	D	Asia	62 70
	Refe	rences	79
6	Inve	stigation of Erosion Using Compaction Trend	
	Ana	lysis on Sonic Data	83
	6.1	Introduction	83
	6.2	Exhumation Estimation from Porosity Logs	84
	6.3	Transit Time and Shale Compaction	84
	6.4	Methodology	85
	Refe	rences	89
7	Pore	e Pressure in Different Settings	91
	7.1	Introduction	91
	7.2	Plate Margins	92
		7.2.1 Convergent Margins	92
		7.2.2 Extensional Margins	95
	Refe	rences	98

Symbols

Φ	Porosity
Φ_0	Average surface porosity of the surface clays
c	A constant
Z	Burial depth
ρ_h	Hydrostatic pressure
Υw	Specific weight of water
h	Height of column of water
G_h	Hydrostatic pressure gradient
Р	Pore pressure
$\sigma_{\rm v}$	Overburden stress
σ_{e}	Effective stress
α	Biot's effective stress coefficient
Rn	Resistivity normal trend
R	Resistivity log
Х	Normal compaction trend
Δt	Interval transit time
Δt_n	Interval transit time normal trend
Y	Pore pressure gradient
$\mathbf{P}_{\mathbf{f}}$	Formation fluid pressure
$\alpha_{\rm v}$	Normal overburden stress gradient
β	Normal fluid pressure gradient
Z	Depth
Δt	Sonic transit time
A, B	Parameters
PB	Pore pressure
$\sigma_{\rm A}$	Effective stress at A
P _{NA}	Hydrostatic normal pore pressure at point A
OB _B	Overburden pressure at point B
OBA	Overburden pressure at point A

- $\sigma_M \qquad \text{Mean effective stress}$
- σ Vertical effective stress

$\boldsymbol{\sigma}_h$	Minimum horizontal stress
$\sigma_{\rm H}$	Maximum horizontal effective stress
V	Sonic velocity
V _{min}	Minimum sonic velocity of the rock matrix
V _{max}	Maximum sonic velocity of the rock matrix
Σ	Vertical effective stress
Р	Pore pressure
ρ_{max}	Maximum matrix density
$ ho_{\rm f}$	Fluid density
$\Delta t_{\rm f}$	Interval transit time of fluid
Δt_n	Interval transit time for the normal pressure in shales
Δt	Transit time of shale
Vp	Compressional wave velocity
V _{ml}	Mudline velocity
U	Parameter representing uplift of the sediments
σ_{max}	Effective stress
v	Velocity
V _m	Sonic interval velocity with the shale matrix
a _m	Ratio of the loading and unloading velocities in the effective stress
	curves
V _{max}	Velocity at the start of unloading
P_{ulo}	Pore pressure due to unloading
$Ø_{\rm RHOB}$	Porosity from density log
ρ_{ma}	Matrix density
ρ_b	Bulk density measured by log
$\rho_{\rm fl}$	Fluid density
Δt_{ma}	Interval transit time of the matrix
$\Delta t_{\rm fl}$	Fluid transit time
Δt	Average interval transit time from log
$Ø_{\rm DT}$	Porosity from sonic log
Ø _{RILD}	Porosity from resistivity log
$R_{\rm w}$	Formation water resistivity
n	Saturation exponent
m	Cementation exponent
Rt	True resistivity of the formation
t _{ma}	Sonic transit time of the rock matrix
φz	Porosity at depth z
ϕ_0	Porosity at the surface
b	A constant
Δt	Transit time measured by the sonic log

- z Burial depth
- Δt_o Transit time near to the transit time of water

List of Figures

Fig. 1.1	Compaction models shown by porosity versus depth of	
	burial. Inter-relationship for shales and argillaceous	
	sediments: 1-9: Different curves. Modified after	
	Fig. 17 of Rieke and Chilingarian (1974)	2
Fig. 1.2	a Bulk density versus depth relationship for shales	
	from Oklahoma (U.S.A). b Porosity versus depth	
	relationship for shales from Oklahoma (U.S.A)	
	(Modified after Fig. 14 of Rieke	
	and Chilingarian 1974)	2
Fig. 1.3	Comparison between Athy's and Hedberg's	
	compaction curves. Modified after Chapman (1994)	3
Fig. 1.4	Different stages of compaction effect on clay	
	diagenesis. a Clays consist of bound water at the time	
	of deposition. b Free water increases with burial with	
	the consequent release of boundwater. c Free water is	
	squeezed out and the original volume reduces	
	(Fig. 57 in Rieke and Chilingarian 1974)	3
Fig. 1.5	Comparison of normal depth profile curve. Athy's	
	original curve, shale compaction profile curve from	
	Nagaoka basin, Gulf coast, and Beaufort Mackenzie	
	delta. Porosity data derived from density log	
	(Burrus 1998)	5
Fig. 1.6	Mechanical compaction in sands. Fine grained	
	sands compact easily than core grained sand	
	(Chuhan et al. 2002)	6
Fig. 1.7	Changes in sand compaction with burial	
	(Bjørlykke et al. 2004)	7
Fig. 2.1	Latitude-wise distribution of organisms	
	(Moore 2001)	10
Fig. 2.2	The dashed line represents the predicted growth	
	and the open circles represent the actual growth	
	of the corals (Moore 2001)	10

Fig. 2.3	Three carbonate factories with different mineralogical contents (Schlager 2005)	12
Fig. 2.4	Different modes of precipitation of carbonate factories	
-	(Schlager 2005)	12
Fig. 2.5	Depth of occurrence of carbonate factories along	
	with production rate (Schlager 2005)	13
Fig. 2.6	Porosity classification incorporating the details about	
	the depositional as well as the diagenetic changes and	
	are as categorised as fabric selective, not fabric	
	selective and fabric selective or not category	
	(Scholle 1978)	15
Fig. 3.1	Typical hydrostatic pressure, pore pressure,	
	overburden stress in a borehole well (Zhang 2011)	20
Fig. 3.2	Pressure versus depth plot showing "overpressure"	
	zones when the pressure is more than hydrostatic.	
	"Underpressure zones" develops when the pressure	
	is less than the hydrostatic pressure (Swarbrick and	
_	Osborne 1998; Swarbrick et al. 2002)	21
Fig. 3.3	Maximum pressure generation due to hydrocarbon	• •
F : 2.4	buoyancy in North Sea (Swarbrick and Osborne 1998)	23
F1g. 3.4	Vertical and horizontal methods of pore pressure	
	estimation. Pore pressure indicator is used as the same	
	of nora pressure estimation. Whenever, in herizontel	
	of pore pressure estimation. whereas, in horizontal	
	normal trend (noint B) (Rowers 2001)	24
Fig. 3.5	Pore pressure versus resistivity crossplot	24
1 Ig. 5.5	(Owolabi et al. 1990)	25
Fig 36	Published pore pressure crossplots for sonic transit time	25
1 15. 5.0	(Owolabi et al. 1990)	25
Fig. 3.7	Vertical effective stress methods (Bowers 2001)	27
Fig. 3.8	Scenario where vertical effective stress method fails	27
Fig. 4.1	Log pattern of Not formation along with helium	
C	calculated porosities. Some parts of the Not formation	
	are affected by poor hole conditions (3968–3993 m).	
	Modified after Hermanrud et al. (1998)	33
Fig. 4.2	Log pattern of Ror formation along with helium	
	calculated porosities. Some average porosities	
	were calculated for all the shaly formations in the	
	Upper and lower Ror formations. Modified after	
	Hermanrud et al. (1998)	34
Fig. 4.3	Average porosities calculated in Not formation from	
	a Sonic (DT) log, b Density (Rhob), c Resistivity	
	(Rt) and d neutron log. Each of the pressure regimes	
	are indicated by different symbols. Modified after	
	Hermanrud et al. (1998)	35

Fig. 4.4	Average porosities calculated in Ror Formation from a Sonic (DT) log, b Density (Rhob), c Resistivity (Rt) and d neutron log. Each of the pressure regimes are indicated by different symbols. Modified after	
Fig. 4.5	Hermanrud et al. (1998) Pore structure model of a rock, constituting storage pores with high aspect ratio and connecting pores with low aspect ratio. Modified after	35
Fig. 4.6	Bowers and Katsube (2002) Cartoon depicting the wireline responses in a overpressure generated due to compaction disequilibrium process, b overpressure generated due to unloading process (Ramdhan et al. 2011)	36
Fig. 4.7	Well from Gulf of Mexico showing the typical response due to unloading. At the onset of overpressure zone the extent of response shown by sonic velocity and resistivity log is more than that of the density	57
Fig. 4.8	Velocity versus density crossplot for identifying	38
Fig. 4.9	Detection of unloading behaviour. Modified after Bowers (2001) Detection of unloading behaviour a Velocity versus effective stress, velocity reversal along with reduction in effective stress. b Density versus effective stress, effective stress reduction but density remains constant ($P_{\rm rev} = 2001$)	38
Fig. 4.10	 (Bowers 2001) Cartoon showing the overpressure trends possibly due to unloading. a Fluid pressure versus depth trend; b shale porosity versus depth trend; c shale porosity versus effective stress, and d bulk density versus velocity trend 	39
Fig. 4.11 Fig. 4.12	Map of Malay basin with well locations (Hoesni 2004) Sonic velocity-effective stress plot showing the normally pressured data fallowing loading curve whereas Mildly overpressured (11.5–14 MPa km ⁻¹), Moderately Overpressured (14–17 MPa km ⁻¹) & Highly Overpressured (>17 MPa km ⁻¹) data falling off the loading curve. Overpressure in the formation following the unloading curve is because of the fluid expansion, load transfer or vertical transfer mechanism. Most of the data representing unloading curve	40
Fig. 4.13	(Tingay et al. 2013) Sonic velocity-effective stress plot of the three formations 2A, 2b and 2C. Dark grey dots with pressure >11.5 MPa km ^{-1} (0.51 psi ft ^{-1}) represent the unloading curve and the normally pressured (hydrostatic pressure)	42

	wireline formation tester data represent the loading	
	curve (Tingay et al. 2013)	43
Fig. 4.14	Sonic velocity-effective stress plot of 49 data with	
C	excellent mobility (>10 mD/cp). Low mobility	
	formation show inaccurate measurements	
	(Tingay et al. 2013)	44
Fig. 4.15	Sonic velocity versus density to distinguish	
11g. 4.15	some velocity versus density to distinguish	
	(A local for the second of the second of the second	
	(Adapted from Hoesni 2004; O Conner et al. 2011;	
	Tingay et al. 2013). Data of the formation in which	
	overpressure is generated by compaction disequilibrium	
	follow the loading curve. Mechanisms related to clay	
	diagenesis and load transfer shows drastic increase in	
	the density and little change in the sonic velocity.	
	Overpressure generation due to gas generation shows	
	severe drop in sonic velocity with little or no increase in	
	density	44
Fig. 4.16	Cross plot between Sonic velocity versus density for	
0	four wells in Malay basin. The normally pressured	
	sediments are represented by white squares and they	
	follow the loading curve. The loading curve are the data	
	of normally pressured formations and are shown by	
	white squares. As discussed in the text, the part of the	
	white squares. As discussed in the text, the part of the	
	sequences within the overpressure transition zone is	
	represented by gray squares, the center of the	
	overpressured zone is represented by black squares	
	(After Tingay et al. 2013)	45
Fig. 4.17	Porosity (sonic velocity) versus effective stress plot	
	distinguishing the overpressure due to compaction	
	disequilibrium (black dots) and fluid expansion	
	mechanism (ash colored squares). The normal	
	pressured data following the loading curve is defined	
	by small grey colored dots (after Tingay et al. 2009)	46
Fig. 4.18	Velocity versus density crossplot from the onshore wells	
	of Niger delt. Adapted after Nwozor et al. (2013)	46
Fig. 4.19	Velocity versus vertical effective stress crossplot from	
U	the onshore wells of Niger delt (Nwozor et al. 2013)	46
Fig. 4.20	a Sonic velocity versus effective stress crossplot for the	
0	wells in the northern part, 170 Wireline formation tester	
	data were used to calculate the vertical effective stress	
	Pore pressure data >11.5 MPa km ⁻¹ fall off the loading	
	curve and delineate the unloading zones. b Dore pressure	
	from 140 wireling formation tester data ware plotted in	
	nom 140 whethe formation tester data were plotted in	
	Some velocity versus elective stress plot for southern	
	NEC DIOCK, all the pore pressure >11.5 MPa km	
	tollow the loading curve and signifies overpressure due	
	to undercompaction (John et al. 2014)	47

Fig. 4.21	a Sonic velocity versus density crossplot for the wells in the northern part. 170 Wireline formation tester data were used for the study. Pore pressure data >11.5 MPa km^{-1} fall off the loading curve and delineate the	
	unloading zones representing sharp reduction in sonic velocity and constant density. b Pore pressure from 140	
	wireline formation tester data were plotted in sonic	
	velocity versus density plot for southern NEC block, all	
	the pore pressure >11.5 MPa km^{-1} follow the loading	
	curve and signifies overpressure due to	
T ' 7 1	undercompaction (John et al. 2014)	47
Fig. 5.1	Global occurrence of overpressure zones taken	
	from Bigelow (1994a, b) and physical world map	50
E. 5.0	of geology.com	53
Fig. 5.2	Abnormal formation pressure environments in fran (Earth 1076)	54
Fig. 5.3	Location map of the central graben and the quadrant is the licensing structure in the United Kingdom	34
	Continental of the area (Holm 1998)	55
Fig. 5.4	The Forties Montrose High divides the graben into	55
1.8.011	eastern and western grabens. The oil and gas fields	
	are from Devonian to early Eocene age and the major	
	formations are Upper Jurassic Fulmar Sandstone,	
	Upper Cretaceous Chalk Groupand the Paleocene	
	Forties Formation (Holm 1998)	56
Fig. 5.5	Pressure versus depth plots. The measured pressure data from the permeable zones have been used and in the	
	impermeable zones the pressures have been estimated	
	hy indirect methods of pressure estimation	
	(mud-weights D-exponents connection gases etc.)	
	a Pressure versus depth plot in the Central graben area	
	which shows the normally pressured Paleocene	
	sandstones and beneath that there is normally pressured	
	chalk group. There is rapid change in the profile with	
	increase in the pore pressure from \mathbf{f} to \mathbf{g} and the highest	
	at the pre-Cretaceous structure in the h. b Pressure	
	profile of Ekofisk Field. The chalk group (c, d) is	
	moderately overpressured (Holm 1998)	57
Fig. 5.6	Pressure profiles of a Ekofisk area b North sea area's	
	Zechstein evaporate section (Rehm 1972)	58
Fig. 5.7	Comparison of predrill and actual pore pressure	
	prediction in north sea area (Herring 1973)	59
Fig. 5.8	Schematic diagram depicts the formation of	
	overpressure and underpressure zones as the	
	hydrocarbon migration takes place (Holm 1998)	60

Fig. 5.9	 a Tectonic map of the Italian Adriatic area. b Pressure profile of a well in the Italian Adriatic area. In the zones B & C the pressure values are far beyond the normal pressure values. c Plots showing overpressured 	
Fig. 5.10	environments in Adriatic sea (Rizzi 1973) Pore pressure plot of the North Sinai basin and the Nile delta. Abnormal increase in the pore pressure and leak	61
	off test is there (Nashaat 1998)	62
Fig. 5.11	Location of Yinggehai basin in the South China sea along with the location of wells along with structural	
Fig. 5.12	features such as faults, diapir like structures Pressure and Pressure coefficient versus depth plot of the different stratigraphic units in the Dongying depression of the Bohai Bay basin where the Es3 and	63
Eig. 5 12	Es4 are overpressured. DST denotes drill stem testing	64
Fig. 5.15	of well log data of wells in Dongving depression	65
Fig. 5.14	Shows the relationship of the fluid pressure versus depth ratio with stratigraphic horizon. The stratigraphic	05
	zones in different wells are overpressured because	
T ' 5 1 5	of the presence of apparent low permeability zone	66
F1g. 5.15	Figures showing abnormal formation pressures in	
	of overpressured wells b Pressure profile of	
	overpressured wells of Australia c Pressure profile	
	of overpressured wells of Papua New Guinea.	
	(Bigelow 1994a, b)	67
Fig. 5.16	Sedimentary basins of India showing overpressure area (Sahay 1999)	68
Fig. 5.17	Details of well W-32. Courtesy: Journal Geological Society of India Volume 75	69
Fig. 5.18	Depth versus ΔT plot of the wells in Bengal basin,	07
-	the deviation from the normal compaction trend is taken	
	as the top of the overpressure and is also confirmed with the RFT results	70
Fig. 5.19	Relationship between shale acoustic parameter	
	difference $\Delta tob(sh) - \Delta tn(sh)$ from drilled wells	
	and reservoir fluid pressure gradient (modified	
E' 5 20	Hottmans curve of Bengal Basin) (Roy et al. 2010)	71
Fig. 5.20	Relation between effective stress from well data and reservoir fluid type in which below 7.0 MPa km^{-1} cut	
	off the chances of getting hydrocarbon is minimum	
	(John et al. 2014)	71
Fig. 5.21	Tectonic map of Krishna–Godavari basin showing	, 1
	location of 10 wells (Chatterjee et al. 2015)	72

Fig. 5.22	Gamma ray and resistivity log responses of wells KD & KE. Location of wells and profile is shown	
	in Fig. 5.21 (Singha and Chatterjee 2014)	73
Fig. 5.23	a DT versus depth and density porosity sonic porosity	
	(Øs) versus depth plot for onshore well #7. The top of	
	overpressured zone is indicated at 1919.16 m by	
	deviation of sonic data from NCT and separation	
	between (Ød) and (Øs). b DT versus depth and density	
	porosity sonic porosity (Øs) versus depth plot for	
	offshore well #13. The top of overpressured zone is	
	indicated at 1600 m by deviation of sonic data from	
	NCT and separation between (Ød) and (Øs)	
	(Chatterjee et al. 2015)	74
Fig. 5.24	Pressure, salinity and Temperature data in the offshore	
	well Kutch basin, India (Sahay 1999)	75
Fig. 5.25	Bombay/Mumbai offshore basin with the location of	
	Saurashtra-Dahanu block (Nambiar et al. 2011)	76
Fig. 5.26	Interval velocities of different wells plotted and the	
	different zones with lowering of interval velocities are	
	marked with circles and denote overpressure zones	
	(after Nambiar et al. 2011).	76
Fig. 5.27	Location of overpressured zones in Pakistan: Potwar	
	Plateau (a) and Makran basin (b) Modified after Law	
	et al. (1998) incorporating Google Earth imagery	77
Fig. 5.28	Pressure and Temperature gradient in Gulf oil,	
	FimKhassar well (Law et al. 1998)	78
Fig. 5.29	Interval transit time versus depth in the Gulf oil,	
-	FimKassar well (Law et al. 1998)	79
Fig. 6.1	Erosion thickness calculation from compaction trend	
	curve derived from sonic transit time (Magara 1976).	
	a No erosion and the surface transit time is equal to that	
	of water. b Upper surface is eroded and the thickness is	
	the vertical distance between the present surface and the	0.5
	original surface	85
Fig. 6.2	Compaction trend and erosional thickness from	
	a Emplem State1 and b Bridger Butte Unit 3 by Heaster	96
E'. (2)	and Knaritonova (1996)	80
F1g. 6.3	Porosity versus depth curve by Burns et al. (2005)	
	for different functory using volume of shale cut off. $c_{1} = c_{1} = c_{1}$	
	a Sand ($v_{shale} < 0.01$), b Shistone (0.49 $v_{shale} < 0.51$) and a shale ($v_{shale} < 0.51$) along with the surges by	
	and \mathbf{c} shale ($v_{shale} > 0.51$) along with the curves by Rowan et al. (2003)	86
Fig 64	Visual comparison of sonic peresity data and Dower	00
11g. 0.4	et al. (2003) curves for each lithology. The vertical	
	offset is the erosional thickness implied	87
		07

Fig. 6.5	Sonic velocity data and porosity from sonic data.	
	trend (Li et al. 2007)	87
Fig. 6.6	Linear porosity trend of 26 wells from Xihu depression area (Li et al. 2007)	88
Fig. 7.1	The occurrence of high overpressured zones is	
U	corresponding to the fault zones. The fluid pressure	
	estimates from consolidation tests are derived from	
	analysis of individual samples and is in agreement with	
	the log derived fluid pressures (Moore et al. 1995)	92
Fig. 7.2	Spike at 505 and 515 m which shows increase in	
-	porosity and decrease in resistivity through decollement	
	zone (Saffer 2003)	93
Fig. 7.3	Annular pressure while drilling for the sites. The sites	
	C0002, C0004, C0006 and the shallower part of the	
	C0001 and C0003 follows the standard gradient. There	
	is divergence in the annular pressure while drilling data	
	in the deeper section of C0001 and C0003 section	
	(Moore et al. 2012)	94
Fig. 7.4	Annular pressure while drilling for the sites C0001A	
	and C0001D. In the site C0001A the standard APWD is	
	there up to 413 mbsf, beyond this depth up to 530 mbsf	
	there is shift in the pressure gradient and at places	
	crosses the lithostatic gradient and later follows the	
	stable pressure gradient. In the hole C0001D the	
	APWD pressure is stable up to 400 mbsf but is	
	followed by fluctuations in pressures while drilling	
	downhole and shoots above lithostatic above 522 mbst	
	and remains above till 690 mbst and similar to hole	
	(Moore et al. 2012)	04
Fig 75	(Moore et al. 2012)	94
Fig. 7.3	(Chilingarian and Wolf 1988)	05
Fig 7.6	Pore pressure plot of KG basin offshore with	95
1 ig. 7.0	the example of well A (Chatteriee et al. 2012)	96
Fig 77	Pore pressure plot of KG hasin offshore with	70
	the example of well B (Chatteriee et al. 2012)	97
		11

List of Tables

Table 3.1	Different overpressure generation mechanisms,	
	tabulated in different categories. Modified after	
	(Swarbrick and Osborne 1998)	22
Table 4.1	Average porosities calculated in the Ror Formation	
	from (a) Sonic (DT) log, (b) Density (Rhob),	
	(c) Resistivity (Rt), and (d) neutron log	
	(Hermanrud et al. 1998)	36
Table 4.2	Well list with dominant pressure mechanisms	
	(denoted by symbols) on the basis of pore pressure	
	profile and velocity-density crossplot	41
Table 5.1	Categorization of overpressure zones	
	(Roy et al. 2010)	53

Compaction of Sediments and Different Compaction Models

Abstract

Various simple and advanced models exist for mechanisms of uniform and non-uniform sediment compaction that increases density and reduces porosity. While the classical Athy's relation on depth-wise exponential reduction of porosity is not divided into any distinct stages, the Hedberg's model involves four stages. Weller's model utilized Athy's and Hedberg's relations to deduce a sediment compaction model. Power's compaction model additionally considers clay mineralogy. Several other porosity/compaction models exist, e.g., those by Teodorovich and Chernov, Burst, Beall, and Overton and Zanier. The geometry of the depth-wise porosity profile depends on the sedimentation rate, compaction mechanism and pressure solution model. This chapter reviews porosity variation with depth for the following rock types: shales, shaly sandstones, sandstones and carbonates.

1.1 Introduction

The chemical and the physical properties of sediments and sedimentary rocks alter as the overburden pressure increases. These changes relate to burial depth, temperature and time. Experiments by Warner (1964) suggested that

acceleration of the rate of compaction of sediments seem to be the only change at <200 °F. Compaction of sediments reduces porosity and increases density (Bjørlykke et al. 2009). The reduction of porosity is a convenient way of measuring the amount of sediments compacted since deposition took place, for practical purposes. Empirical compaction curves are the plots of porosity versus depth up to ~ 6 km. Mechanical compaction being the primary mechanism of compaction, clay minerals are often utilized in many models to visualise how grains rearrange with depth. The composition varies from proximal to distal part of the basin and the compaction pattern of each sediment type differs (Bjørlykke et al. 2009). Compaction models explain the major processes for the sediment compaction. This helps the interpreters to visualise the relationship of porosity loss with depth and the probable reason for anomalous zones. The evolution of compaction models and porosity reduction with depth from different parts of the world are presented in Fig. 1.1.

1.2 Porosity Models

Sediment porosities undergo changes with burial. In the consecutive sections the different models are explained.

© Springer Nature Switzerland AG 2020

T. Dasgupta and S. Mukherjee, *Sediment Compaction and Applications in Petroleum Geoscience*, Advances in Oil and Gas Exploration & Production, https://doi.org/10.1007/978-3-030-13442-6_1