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S U M M A R Y
Thermal anomalies associated with ore-mineralization (Pb–Cu–Zn and Fe) were studied using
thermal infrared data collected over Mamandur polymetal prospect, India, with the aid of
satellite, field, and laboratory measurements. Day and night ASTER data were analysed in
conjunction with field measurements to estimate thermal inertia of the ore body, altered zones
and country rocks. Representative samples collected from field were also analysed for thermal
conductivity, diffusivity, and inertia using a self-fabricated setup. Spatial changes in thermal
inertia were mapped by look up table (LUT) and advanced thermal inertia mapping (ATIM)
approaches. Mineralized zones show very high thermal contrast (�T) both in field (15–25◦C)
and satellite data (14.9–16.9 oC). They also exhibit the lowest thermal inertia in field-(2118–
5474 J m−2 K−1 s−1/2) and satellite-based (3783–4037 J m−2 K−1 s−1/2) measurements. In
non-mineralized areas, acidic rocks (granite, migmatite and granite gneiss) have lower inertia
than basic rocks (basic granulite, dolerite and charnockite). Results estimated by LUT and
ATIM approaches correlate very well at satellite (R2 = 0.97) and field (R2 = 0.89) scales.
Similarly, field- and satellite-based results also have good correlation (R2 = 0.69–0.72).
This study illustrates the potential of thermal inertia mapping in delineating ore bodies and
deciphering the lithological changes even under veneer of soil.
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1 I N T RO D U C T I O N

Thermal inertia (TI), the resistance offered by a material to tem-
perature change, is an important physical property that can be used
to identify or discriminate among materials. This lumped property
can be expressed as

Tl =
√

kρc, (1)

where TI is the thermal inertia (J m−2 K−1 s−1/2), k is the thermal con-
ductivity (J m−1 s−1 K−1), ρ is the density (kg m−3) and c is the spe-
cific heat (J kg−1 K−1). Heat transfer in materials with high thermal
inertia leads to small changes in temperature, while low thermal in-
ertia leads to large changes in temperature (Gillespie & Kahle 1977;
Price 1977; Pratt & Ellyett 1979). Thermal properties of rocks and
soils measured using laboratory or bore-hole logging techniques are
being successfully employed in mineral investigation (Facer et al.
1980; Zolotarev 1989; Prensky 1992; Mwenifumbo 1993), petro-
physics and hydrocarbon exploration (Beck 1976; Vasseur et al.
1995; Schön 2004, 2011; Nasipuri et al. 2006; El Sayed 2011),
geotechnical engineering (Jougnot & Revil 2010) and lithologi-
cal discrimination (Bosch et al. 2002). However, these techniques
have limited utility in spatial discrimination and mapping of rocks
and soils. On the other hand, thermal inertia estimated from satel-
lite/airborne infrared sensors is more efficient in discriminating and

mapping rocks and soils (Watson 1971, 1973; Kahle et al. 1976;
Gillespie & Kahle 1977; Price 1977; Pratt & Ellyett 1979; Kahle
1987; Christensen & Malin 1988; Mellon et al. 2000; Mitra &
Majumdar 2004; Putzig et al. 2004; Nasipuri et al. 2006; Nowicki &
Christensen 2007). Remotely sensed thermal images corresponding
to diurnal (heating–cooling) phases of any surface can be employed
to map and monitor this parameter on a larger areal extent. Wat-
son (1971, 1973, 1975) generated thermal inertia map using remote
sensing data based on one-dimensional heat transfer theory. Subse-
quently, Kahle (1977) applied a finite difference technique that takes
heating terms (sensible and latent) into account in the heat balance
equation to compute thermal inertia. TI estimated using remotely
measured infrared and visible bands has now been extensively used
in various applications like soil water estimation (Lu et al. 2009;
Minacapilli et al. 2009), land mine detection (Nash 1988; Van Dam
et al. 2004; Deans et al. 2006), geology and planetary exploration
(Kahle et al. 1976; Pratt & Ellyett 1979; Kahle 1987; Christensen
& Malin 1988; Mellon et al. 2000; Mitra & Majumdar 2004; Putzig
et al. 2004; Nasipuri et al. 2006; Nowicki & Christensen 2007;
Putzig & Mellon 2007), urban heat island (Cai et al. 2008) and
geothermal anomaly mapping (Eneva et al. 2006; Coolbaugh et al.
2007). However, relatively few publications address the applica-
tion of remotely estimated thermal inertia in mineral exploration
(Thompson & Baker 1981; Nasipuri et al. 2006; Gupta et al. 2009).

C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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Further, TI is sensitive to composition and density of near surface
materials up to a depth that can be reached by the diurnal heating
wave (∼30–50 cm) (Schieldge et al. 1980). Hence, mapping ther-
mal inertia of surfaces can provide additional information about
compositional changes at the surface and shallow depth.

In this study, we demonstrate a method to delineate ore bodies
and discriminate rock types in and around Mamandur polymetal
prospect, India, using satellite, field and laboratory data. This shear
zone- and metamorphism-related mineralization offers one of the
best sites in the world to study the massive type Pre-Cambrian
polymetal deposits. The procedure adopted herein involves (i) gen-
eration of thermal inertia maps using daytime, nighttime satellite
and field data; (ii) discrimination of ore bodies and rock types based
on thermal inertia; (iii) analyses of field samples in laboratory for
mineralogy and thermal properties, and (iv) correlation of results
for accuracy assessment.

2 S T U DY A R E A

The Mamandur polymetal prospect (Fig. 1) is bounded by northern
latitudes 11o 52′ to 12o 01′ and eastern longitudes 78o 53′ to 78o 59′.
This area is situated in the northern part of the southern gran-
ulite terrain (SGT) comprising mostly migmatite and charnockite
with bands of other high-grade metamorphic rocks such as banded-
magnetite–quartzite (BMQ), garnet–biotite–gneiss, granite–gneiss
and garnet–biotite–sillimanite–gneiss. These rocks are cut across
by dykes of norite, dolerite, granite pegmatite and quartz veins
(Chattopadhyay 1999). The Pb, Cu and Zn mineralization in this
area is associated with a shear separating migmatite complex in the
east and amphibolite charnockite in the west. In this deposit, miner-
alization occurs in two distinct zones. A disseminated copper lode

occurs in the southern part and a multimetal mineralization zone
with lead–zinc–copper and silver values occurs in the northern part.
Wall rock alteration is manifested by alteration of biotite into chlo-
rite and sericite; feldspars into kaolinite; and pyroxene to tremolite
and actinolite. Besides Pb, Cu and Zn mineralization, the inves-
tigated area is also hosting banded magnetite quartzite deposits.
The mineralogy of ore bodies, alteration zones and host rocks are
detailed in Section 5.1.

3 T H E O RY

One-dimensional heat transfer is the simplest and a reasonably well-
understood concept. For low-heat conducting materials such as
rocks and soils, 1-D transient heat transfer equations are widely
used to estimate thermal conductivity and diffusivity (Carslaw
& Jaeger 1959; Woodside & Messmer 1961; Morabito 1989;
Middleton 1993; Schilling 1999; Abu-Hamdeh 2003; Bautista &
Campos 2005; ASTM 2008, 2009a,b).

For terrestrial and planetary applications, the temperature gradi-
ent across the thickness of conducting media cannot be measured.
Hence, TI is estimated by comparing temperature differences of sur-
faces collected at different phases of diurnal heating–cooling cycle
to values predicted by temperature diffusion models (Kahle 1977).
Under such conditions, the heat transfer equation can be expressed
as

∂T

∂t
= k

ρ.c
.
∂2T

∂x2
, (2)

where k is the thermal conductivity (J m−1 s−1 K−1), ρ is the density
(kg m−3), c is the specific heat (J kg−1 K−1), T is the temperature

Figure 1. Geological map of the Mamandur prospect indicating the sites of field investigation and sampling.
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Thermal inertia mapping and its application 3

Figure 2. Flowchart depicting the methodology adopted.

(oK), t the duration of heating (h) and x the depth to diurnal tem-
perature variations.

It is considered that beyond 1 m depth, the diurnal variations due
to solar heating ceases (Kahle 1977). Hence, for all practical ap-
plications involving solar-heating-related heat transfer, a maximum
depth of 1 m is considered. Xue & Cracknell (1995) have developed
an advanced thermal inertia model (ATIM) by using phase angle
information of the diurnal temperature change. Eq. (3) is based
on first-order approximation thermal inertia model and is suitable
for areas with variable soil moisture and vegetation cover having
surface temperature ranging from 280 to 310 oK.

T I = (1 − β)S0Ct

�T
√

ω

⎧⎨
⎩ A1[cos(ωt2 − δ1) − cos(ωt1 − δ1)]√

1 + 1
b + 1

2b2

+ A2[cos(ωt2 − δ2) − cos(ωt1 − δ2)]√
2 +

√
2

b + 1
2b2

⎫⎬
⎭ , (3)

where ‘β’ is albedo derived from the satellite data, S0 is the Solar
constant (W m−2), Ct is the atmospheric transmittance, ω is the
Earth’s angular frequency, �T is the temperature difference (oK),

Table 1. Specifications of instruments and data used.

Instruments/data product Application Accuracy of measurement Central wavelength (μm) Spatial resolution

Fabricated instrument for Laboratory Conductivity ± 0.1–0.3 Not applicable Sample size
thermal conductivity and diffusivity J m−1 K−1 s−1

measurement
(9 cm × 9 cm × 1.5 cm)

FLUKE Ti-27 IR imager Field cum laboratory Thermal sensitivity ±0.05 ◦C Band-1 (0.45) FOV: 23◦×17◦
Band-2 (0.57) IFOV : 1.67 mRad
Band-3 (0.66)
Band-4 (10.5)

AST-07 Field Not applicable Band-1 (0.56) 15 m
Band-2 (0.66) 15 m
Band-3 (0.82) 15 m
Band-4 (1.65) 30 m
Band-5 (2.17) 30 m
Band-6 (2.21) 30 m
Band-7 (2.27) 30 m
Band-8 (2.33) 30 m
Band-9 (2.39) 30 m

AST-2B03 Field Not applicable Band-1 (10.5) 90 m
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Figure 3. Scatter plot showing the correlation between satellite- and field-
measured temperatures for different locations corresponding to daytime (A)
and nighttime (B) measurements.

An is Fourier series coefficient, t1 and t2 are time of day and night
satellite overpass and ‘b’ is dependent on maximum daytime tem-
perature (Eq. 4) estimated from the nearest weather station.

b = tan(ωtmax)

1 − tan(ωtmax)
, (4)

δ1 (Eq. 5) and δ2 (Eq. 6) are phase differences and is a function of
maximum daytime temperature. Phase difference can be calculated
using the following equations:

δ1 = arctan

(
b

1 + b

)
, (5)

δ2 = arctan

(
b
√

2

1 + b
√

2

)
. (6)

Figure 4. LUT model to relate thermal inertia (P), albedo (β) and thermal
contrast (�T).

The Fourier series coefficient An (Eq. 7) can be expressed as

An = 2 sin δ sin ϑ

nπ
sin(nψ)

+ 2 cos δ cos ϑ

π (n2 − 1)
. [n sin(nψ) cos ψ − cos(nψ) sin ψ], (7)

where n = 1, 2, 3 . . . , δ is the Solar declination, ϑ is the local
latitude and ψ is a function of Solar declination and latitude (Eq. 8)
and can be defined as

ψ = arccos(tan δ tan ϑ). (8)

Alternate to this procedure is the look up table (LUT) approach
that relates �T as a function of albedo (β), slope, azimuth and
thermal inertia (Kahle 1977). For a flat area without topography-
related effects, variables such as slope and azimuth can be dropped
and LUT relates the thermal inertia of surface to �T and ‘β’ (Pratt &
Ellyett 1979). With �T and ‘β’ known for each pixel of the satellite
data, TI of ground targets can be estimated using a calibration chart
that can be modelled for a set of conditions and diurnal temperature
variations (Price 1977; Pratt & Ellyett 1979).

4 M E T H O D O L O G Y

The adopted methodology in this study involves, 1) normaliza-
tion of ASTER (albedo, daytime and nighttime surface kinetic

Figure 5. Photomicrographs of ore body (A–D) and host rocks (E–H)
relating the compositional changes to thermal properties.
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Thermal inertia mapping and its application 5

temperatures) data with field data, 2) generation of thermal iner-
tia map by LUT and ATIM techniques, 3) estimation of field TI
and collection of representative samples, 4) estimation of lab-based
thermal inertia and mineralogy of ores, rocks and soils and 5) assess-
ment of accuracy. The adopted methodology is shown as a flowchart
(Fig. 2).

4.1 ASTER data pre-processing

4.1.1 Normalization of daytime and nighttime images

In this study, we have used the atmospherically corrected surface
reflectance (AST07) and surface kinetic temperatures (AST2B03)
data from United States Geological Survey (USGS) and Japanese
Aerospace Exploration Agency (JAXA). The technological spec-
ifications of ASTER and other data products used in this study
are given in Table 1. The chosen data sets correspond to the pe-
riod October and February 2001 and 2005 as thermal contrast
(�T) between day and night was maximum during these peri-
ods. As our data acquisition request (DAR) could not yield suc-
cessive daytime and nighttime data, we adopted a unique proce-
dure to transform the multiple date images to single date (day and
night) measurements. This involved measurement of albedo and
temperature in the field (at 27 locations with GPS coordinates)
using a FLUKE Ti-27 thermal imaging camera. This camera has
three visible bands and a thermal band. The daytime measure-
ments were made between 11 a.m. and 2 p.m. and, nighttime mea-
surements were made between 8 and 10 p.m. with Sunset around
5:30 p.m. At each site, the areal extent of measurements varied from
1.0–1.5 m2.

The field albedo of rock and soil exposures was measured by
normalizing the image radiances with spectralon panel radiance.
The thermal band was calibrated with the aid of a thermoelectri-
cally stabilized blackbody reference. The emissivity of rocks (where
thermal images were acquired) was measured using the designs and
prototype (D&P) 102F Fourier Transform Infrared spectrometer
(FTIR) following the procedures of Wadsworth & Dybwad (1998).
The emissivity values corresponding to central wavelength of fluke
camera (10–11 μm) were used to estimate the calibrated day and
night temperatures.

The albedo and temperature data measured in the field with GPS
coordinates were subsequently plotted against the albedo and tem-
perature of satellite data at respective locations. It is evident from
Figs 3(A) and (B) that the field and satellite data correlate very
well and the relationship is statistically significant (R2 = 0.78 to

0.89) at 95 per cent. This empirical relationship is used to generate
calibrated, diurnal, satellite datasets. Since emissivity of dry rocks
and dry soils does not change, the adopted procedure is expected to
yield meaningful transformations.

4.1.2 Geometric correction, estimation of albedo
and temperature difference

Since thermal inertia computation involves visible and thermal in-
frared bands of varying spatial resolutions, spatial re-sampling and
accurate co-registration of datasets are necessary. The GPS data
collected in the field for prominent roads and road–river inter-
sections (at 20 locations) were used to geometrically correct the
daytime visible bands with 15 m spatial resolution using ERDAS
imaging software. Subsequently, both visible and thermal bands
were re-sampled to 30 m spatial resolution and co-registered. Simi-
larly, nighttime data were also re-sampled to 30 m and co-registered
with daytime data. Root mean square error (RMSE) ranged between
0.006 and 0.009 m with a maximum positional error up to 27 cm on
the ground.

Since albedo offers important information on the absorbed en-
ergy, broad band albedo needs to be estimated from the reflective
bands of daytime ASTER data. In this study, we have estimated the
total broadband albedo (βT) using eq. 9 proposed by Liang et al.
(2006). For this purpose, the surface reflectances (AST07) of band
1 to band 9 were used. Since the investigated area is a flat terrain,
no topography-related corrections are necessary.

βT = 0.82β1 + 0.183β2 − 0.034β3 − 0.085β4 − 0.298β5

+ 0.356β6 + 0.239β7 − 0.24β9 − 0.0001. (9)

The daytime and nighttime temperature difference image (�T)
was generated by subtracting the recalibrated daytime and nighttime
images using the ERDAS modeller.

4.2 Thermal inertia estimation

4.2.1 LUT approach

In this study, we used a thermal model to generate a LUT relating
temperature difference (�T), thermal inertia and albedo follow-
ing the procedures of Pratt & Ellyett (1979) and Mitra & Majumdar
(2004). The LUT (Fig. 4) was generated by considering flat topogra-
phy, low wind velocity (3.5 m s−1), minimum and maximum air tem-
perature of 15 and 30 ◦C and radiative sky temperature of −20 ◦C.

Table 2. Thermal conductivity of investigated rocks vis-à-vis published results.

Rock types Thermal diffusivity ×10−6 m2 s−1 Thermal conductivity (J m−1 K−1 s−1)

Value measured Published Value measured Published

Granite 1.02 0.93–1.787c 1.71 1.5–2.5a

Charnockite 0.87 1.25–1.85 b 1.72 2.13–2.81b

Garnet gneiss 0.83 1.15b 2.00 2.20a

Basic granulite 0.80 1.17–1.29b 2.20 2.27–2.6b

BMQ 1.49 DNA 2.68 DNA
Metabasite 0.68 DNA 1.65 1.84c, 2.20a

Norite 0.80 DNA 1.91 1.7–2.5, 2.10–2.30a

Migmatite 1.02 DNA 1.89 1.8–2.4b

Migmatite with mineralization 1.16 DNA 2.09 DNA

aCote & Cornrad (2005), bRay et al. (2006), cHorai & Baldridge (1971), dKim et al. (2007), DNA—Data not
available.
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For each pixel of the image, thermal inertia was then estimated
using the derived predictive equations in Matlab.

4.2.2 ATIM approach

For this approach, the variables were collected from the local me-
teorological station (tmax, Ct), and satellite scenes (β, �T, t1, t2)
and established values from the literature (Xue & Cracknell 1993,
1995). The value of parameters used in above eqs (3)–(8) include S0

(1.361 kw m−2), Ct (0.75), ω (7.27 × 10−5 rad s−1), tmax (32 400 s),
δ (−9.53◦) and ϑ (11.989161). For each satellite image pixels,
thermal inertia was calculated using Matlab.

4.3 Laboratory measurements

Rock and soil samples collected from the field representing the ore
body, alteration zones and country rock were analysed for mineral-
ogy and thermal properties. For mineral identification, petrography
was used. Thermal properties like conductivity, diffusivity and iner-
tia were estimated using a self-fabricated, cost-effective apparatus
(Ramakrishnan et al. 2012) which can be used under steady-state
and transient techniques.

Mineralogy and major oxide chemistry of samples collected from
field were estimated by conventional procedures such as petrogra-
phy, X-ray diffractometry (XRD) and fluorescence (XRF). The XRF
instrument (PW-2404) was calibrated using the USGS standards
Sco-1, SGR-1 and Sdo-1 (Govindaraju 1994).The weight percent-
age of major oxides was used to identify lithology and ore minerals
in conjunction with petrography results.

5 R E S U LT S

5.1 Mineralogy of ore bodies, alteration zones
and host rocks

From ore petrography studies (Figs 5A–D), it is clear that pyrite (Py),
chalcopyrite (Chpy), galena (Gl) and sphalerite (Sph) are the main
sulphide minerals in this prospect. In addition to these, a few grains
of malachite, marcasite, azurite, gold, bornite, pyrrhotite and molyb-
denite are also evidenced under microscope. Though the above-
mentioned major minerals (Chpy, Gl and Sph) are found in varying
amounts, two dominant mineral associations can be distinctly ob-
served. This includes a zone of sphalerite–galena–chalcopyrite in
northern zone (samples S4, S6 and S9) and a zone of chalcopyrite
and pyrite (samples A5 and A83) in southern zone of mineralization.
Chalcopyrite and sphalerite are found as medium to coarse-grained
crystals with intergranular and cataclastic texture with pyrite and
pyrrhotite (Fig. 5B). Based on geochemistry, this prospect is pre-
dominantly rich in Zn (2.2–14 per cent) with subordinate amount of
Cu (0.16–1.0 per cent) and Pb (0.17–1.86 per cent). The alteration
of host rock is mainly manifested by development of thin biotite,
chlorite zones, alteration of feldspar into kaolinite and pyroxenes
into actinoloite and tremolite (A5 and Z2). At many places (A11,
A41 and A7), the effect of secondary enrichment is evidenced by
the prevalence of gossans.

In case of country rocks, mafic granulites (Fig. 5E) contain about
55–60 per cent of Fe–Mg minerals (such as hypersthene [Hp], horn-
blende [Hb], biotite [Bt] and cordierite [Cd]), 35–40 per cent of
albite [Plg] and quartz [Qz]. The charnockite (Fig. 5F) contains
quartz (25–30 per cent), albite (8–10 per cent), orthoclase [Ortho]
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Thermal inertia mapping and its application 7

(5–8 per cent), hyperesthene (15–20 per cent) and cordierite (25–
30 per cent). The dolerite dykes (Fig. 5G) contain hypersthene
(15–20 per cent) in addition to other essential minerals such as
labradorite, olivine [Olv] and augite [Aug]. The migmatite and gran-
ite gneiss (Fig. 5H) have predominance of quartz (30–40 per cent)
and potash feldspar (15–25 per cent) with subordinate amounts of
albite, hornblende and garnet.

5.2 In situ thermal properties

The thermal diffusivity and conductivity estimated in labora-
tory is presented in Table 2. At room temperature, thermal con-
ductivity of SiO2-rich rocks (67–74 per cent) ranges from 1.6 to
1.9 J m−1 s−1 K−1, whereas conductivity of mafic (MgO and FeO)
rocks is from 1.7 to 2.2 J m−1 s−1 K−1. The mineralized areas, gos-

sans, banded magnetite quartzite and migmatites with high mag-
netite content are observed to show higher conductivity values
(2.09–2.19 J m−1 s−1 K−1) than their non-mineralized counter parts
(1.5–1.9 J m−1 s−1 K−1). The experiments were repeated to check
the consistency and it was observed that both transient and steady-
state methods yielded highly reproducible results within an error
limit of ±0.3 J m−1 s−1 K−1. This error range is less than the val-
ues (0.2 ± 0.1–3.4 ± 3.0 J m−1 s−1 K−1) published in literature for
various rocks (Beardsmore & Cull 2001).

5.3 Thermal inertia mapping

It is clear from the above results that mineralogy plays a vital role in
heat transfer and affects thermal conductivity, diffusivity and inertia.
Hence, changes in surface temperature of rocks and soils mainly

Figure 6. Map showing the temperature difference (�T) between daytime and nighttime images.

Figure 7. Map depicting the variations in albedo from different rock and soil types.
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Figure 8. Thermal inertia map estimated by LUT method.

depend on its thermal inertia characteristics. In a diurnal heating
and cooling cycle, changes in thermal inertia of the Earth surface
materials manifest in terms of thermal contrast (�T). In this study,
we estimated �T (temperature difference between the daytime and
nighttime) using ASTER data sets. It is evident from Table 3 and
Fig. 6 that the thermal contrast was the least, as expected, in water
bodies and water logged areas. Among different rock exposures,
charnockite has the lowest thermal contrast (11.7–13.7 ◦C). The
maximum contrast is observed in the metallic ore bearing rocks like
gossan, laterite, BMQ and migmatite with polymetal mineralization
(14.9–16.9 ◦C). The basic rocks (dolerite dykes and basic granulites)
have slightly higher temperature difference (12.2–16.8 ◦C) than the
acidic rocks like granite gneiss and migmatite (14.0–15.5 ◦C).

Broadband albedo (Fig. 7), a measure of energy reflected by
a given surface, indicates that gossans and laterites exhibit max-
imum albedo (0.32). The basic rocks and charnockites have the
least albedo (0.05–0.12) and the acidic rocks (migmatite and gran-

Figure 9. Thermal inertia map derived by ATIM method.

ite gneiss) and the regolith developed over it have moderate albedo
(0.7–0.15).

Using the ASTER temperature difference and albedo images,
thermal inertia maps were generated by LUT (Fig. 8) and ATIM
(Fig. 9) approaches. It is evident from Table 3 and Figs 8 and 9
that water bodies and water logged areas show the highest thermal
inertia (TILUT = 5959–7482 J m−2 K−1 s−1/2, TIATIM = 7164–9474
J m−2 K−1 s−1/2) and the mineralized areas show the least resistance
for heat transfer/dissipation (TILUT = 3697–4864 J m−2 K−1 s−1/2,
TIATIM = 5407–6447 J m−2 K−1 s−1/2). This observation is in agree-
ment with the thermal properties of water and ore minerals. Among
different rocks, the charnockite is observed to show maximum ther-
mal inertia by both methods (TILUT = 5407–7547 J m−2 K−1 s−1/2,
TIATIM = 7478–9065 J m−2 K−1 s−1/2). Whereas gossans, BMQ and
migmatite with Pb–Cu–Zn mineralization have low thermal iner-
tia. Similarly, the acidic rocks (migmatite and gneisses) could be
discriminated from basic granulite and dolerite dyke based on the
range of thermal inertia values. Such discrimination of mineralized
areas and litho types based on thermal inertia is also possible at field
scales. The thermal inertia ranges estimated using the FLUKE ther-
mal images (Table 3) also indicate the lowest values corresponding
to mineralized areas (TILUT = 2118–3889 J m−2 K−1 s−1/2, TIATIM =
3874–5474 J m−2 K−1 s−1/2). Akin to the satellite-derived results,
different acidic and basic litho types can also be discriminated from
the field measurements.

Scatter plot relating the thermal inertia estimated by both LUT
and ATIM methods matches very well (R2 = 0.89–0.97) at both
satellite (Fig. 10) and field scales (Fig. 11A) with 95 per cent sta-
tistical significance. Therefore, results arrived by both techniques
are consistent, meaningful and can be used to discriminate the min-
eralized areas and various rock types. In addition, it is interesting
to note that the thermal inertia derived from satellite data correlate
reasonably well (R2 = 0.69–0.72) with field observation for various
litho types and mineralized areas (Figs 11B and C) at 80 per cent sig-
nificance levels. However, the laboratory-measured values matched
neither with satellite data nor with the field data.

To evaluate classwise accuracy, a confusion matrix was (Table 4)
calculated involving 124 pixels and associated ground truth data.
User’s and producer’s classification accuracy for the mineralized
areas (zones of principal interest) is 80.9 per cent. For other rocks,
the user’s accuracy varied from 43.7 to 86.2 per cent. The lowest
user’s accuracy was observed in basic dykes (43.7 per cent). Table 4
indicates that 25 per cent of pixels representing basic dykes are
misclassified as charnockites. This is attributed to prevalence of
basic and intermediate charnockites in the investigated area, the
composition of which is similar to basic dykes. The producer’s
accuracy for all classes is relatively satisfactory and ranges from
61.5 to 91.6 per cent.

6 D I S C U S S I O N S

Over the last two decades, remote thermal inertia mapping has been
gaining importance in geology and planetary-exploration-related
applications (Kahle et al. 1976; Kahle 1977; Pratt & Ellyett 1979;
Jakosky et al. 2000; Arvidson et al. 2003; Majumdar 2003; Mi-
tra & Majumdar 2004; Eneva et al. 2006; Fergason et al. 2006;
Nowicki & Christensen 2007; Putzig & Mellon 2007; Brenning
et al. 2011; Piqueux & Christensen 2011). However, most of the
above works have minimum or no field inputs to validate cor-
rectness of the satellite-derived results. From this perspective, this
study attains significance, as we attempted to compare the remotely
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Figure 10. Scatter plot depicting the linear relationship between thermal inertias estimated by LUT and ATIM methods and ASTER data.

Figure 11. (A) Scatter plots showing the relationship between the thermal
inertia measured by LUT and ATIM in the field. Interrelation between
satellite and field measurements (by LUT and ATIM) is shown in (B) and
(C), respectively.

derived thermal properties with field- and laboratory-measured val-
ues. Further, we have also carried out detailed compositional and
petro-physical analysis of samples (representing ore mineralization,
rock- and soil-type changes) and related them to changes in thermal
inertia.

Thermal properties of metamorphic rocks and associated soils
are poorly understood because of limited data on basic thermal
properties (conductivity and diffusivity) and influencing properties
(mineralogy, chemistry, bulk density, grain size and moisture con-
tent). For rocks and soils, thermal properties are often estimated
by assuming that the heat transfer mechanism is conduction (Sass
et al. 1971). However, convection and radiative heat transfer can ad-
versely affect the estimates of bulk thermal properties of the rocks
(Clauser & Huenges 1995; Gehlin & Hellström 2003). These ob-
servations suggest that the conductivity estimated in the laboratory
conditions has limited utility in applications involving the thermal
properties of in-situ exposures of rocks and soils (Sass et al. 1971).
In this study, we attempted to estimate thermal properties of rocks
and soils at three different scales, namely coarse (30 m2), moderate
(1.5 m2) and fine (0.09 m2) scales using satellite data, field thermal
imager and a self-fabricated laboratory setup.

It is evident from Table 2 that the samples representing ore miner-
als (BMQ, gossan and poly metals) have higher thermal conductivity
than the host rocks. Similarly, the thermal conductivity of granite
and migmatite (acid rocks) is lower than basic rocks such as norite,
basic granulite and dolerite. These observations are comparable to
the results published in literature (Horai & Baldridge 1972; Cote &
Cornard 2005; Ray et al. 2006; Kim et al. 2007).

For field-based measurements of thermal inertia, we used a ther-
mal imager to acquire the albedo and temperature images of rock
and soil exposures ranging in size from 1.0 to 1.5 m2. For each litho
type, we used the median values of albedo and �T to calculate the
thermal inertia by LUT and ATIM methods (Table 3). It is observed
that the exposures with ore mineralization have maximum thermal
contrast and low thermal inertia. Whereas country rocks without
ore minerals have lower thermal contrast and moderate inertia. It
is also evident from the results that it is possible to discriminate
the litho types based on thermal inertia. Typically, charnockite and
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5.

basic rocks are found to have high inertia (TIATIM = 9838–6029 J
m−2 K−1 s−1/2, TILUT = 7521–4442 J m−2 K−1 s−1/2); granite gneiss
and migmatite have moderate inertia (TIATIM = 6919–5474 J m−2

K−1 s−1/2, TILUT = 5234–3889 J m−2 K−1 s−1/2); and BMQ, gossan,
laterite and polymetal mineralized areas have low thermal inertia
(TIATIM = 3874–5474 J m−2 K−1 s−1/2, TILUT = 2118–3889 J m−2

K−1 s−1/2).
The satellite-data-derived thermal inertial values (Figs 8 and 9)

also show similar trend (Table 3) enabling delineation of mineral-
ized zones and lithological variations over a large area. In this study,
we used a new procedure to transform the multidate daytime and
nighttime ASTER images to a common reference frame with the aid
of field-measured temperature and albedo data. Though normaliza-
tion of satellite data with field data can introduce some inaccuracies
in LUT, it is observed to generate practically meaningful thermal
inertia map. The derived thermal inertia maps correlate mutually
and with field-measured values (Table 3 and 4; Figs 10 and 11).
Further, existence of good correlation between LUT and ATIM (at
field- and image-scale) techniques (R2 = 0.96 at 95 per cent sig-
nificance levels) can be interpreted that the normalization did not
affect the results estimated by LUT significantly. Poor correlation
between laboratory- and satellite-measured TI values is attributed to
heterogeneity and variations in bulk properties at field and satellite
scales.

Since the ore bodies have high thermal conductivity, the ther-
mal inertia of the mineralized (Fe, Pb, Cu and Zn) areas has very
high �T and very low inertia. In relating the thermal properties of
rocks as a function of constituent mineralogy, Höfer & Schilling
(2002) elucidated that thermal diffusivity is greatly influenced by
amount of quartz, which has the highest thermal diffusivity among
the major minerals. Pyroxene, amphibole and garnet display inter-
mediate diffusivities, and feldspars are of minor importance owing
to their low diffusivity. Since basic rocks and pyroxene granulites
(charnockite) do not have any free quartz, they are observed to show
high thermal inertia. For the same area, Ramakrishnan et al. (2012)
reported that both thermal conductivity and diffusivity are sensitive
to SiO2/(MgO+Fe2O3) ratio. This ratio is often used to discriminate
the felsic and mafic granulites (Miyashiro 1974). The felsic rocks
such as granite and migmatite with high percentage of quartz have a
higher diffusivity values (10.8–11.5 × 10−7 m2 s−1) than the mafic
rocks dominated by pyroxenes, olivine and feldspar (7.74–9.95 ×
10−7 m2 s−1). This indicates that in the case of basic rocks, where
no free quartz exists, the specific heat capacity of Fe–Mg minerals
plays a critical role in thermal diffusivity. Höfer & Schilling (2002)
and Ray et al. (2006) also reported similar observations. For soils,
it is evident that with increase in fines content, both conductivity
and diffusivity reduce. This observation is akin to the results re-
ported by Abu-Hamdeh (2003), wherein increase in clay content
was attributed to increase in volumetric-specific heat. In this study,
thermal properties of soils are found to be consistent with that of
parent rocks.

Since ASTER thermal bands have coarse spatial resolution (90
m), the best possible mapping scale is about 1:100 000. Accord-
ingly, the lithologies demarcated in this study can serve as a re-
gional geological map. Nevertheless, the mineralization areas are
very prominent even at this scale due to sharp contrast in thermal
conductivity values.

7 C O N C LU S I O N S

Following conclusions emerge from this study:
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1. The procedure adopted herein is capable of distinguishing
mineralized areas from host rocks due to their low thermal inertia.
The petrography and SEM studies reveal that the regions delineated
for low thermal inertia host Pb–Cu–Zn deposit and BMQ. Hence,
the adopted procedure can be employed in exploring the exposed
and shallow-buried ore bodies.

2. Among the country rocks, charnockite and basic rocks
have high thermal inertia than the migmatite and granite
gneiss. This mineralogy-influenced change in thermal conductivity
(Ramakrishnan et al. 2012) can be used to discriminate and map
the rock types. Overall accuracy of classification is 78 per cent.

3. The thermal inertia estimated by LUT and ATIM methods
correlate well and has the potential to discern the rock types and
mineralized areas. However, they need to be considered as apparent
thermal inertia values as they do not commensurate with laboratory-
measured values.
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