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Bauxite, the only source of aluminium, is an aggregate of minerals, most of which
are oxides and hydroxides of aluminium and iron such as gibbsite, bohemite,
goethite and haematite. Bauxite is used in the chemical and refractory industries
and its quality is controlled by the presence of impurities such as iron and silica.
Bauxite commonly occurs together with iron-rich laterites as alteration products of
parental igneous and metamorphic rocks. Aluminium-rich bauxites grade towards
highly ferruginous laterites with a transitional Al-rich laterites or ferruginous
bauxite, herein described as Al-laterites. In the Savitri River Basin, bauxite contains
58–75% gibbsite, 6–11% goethite and 19–26% haematite, whereas the mineralogy
of Al-laterites and Fe-laterites are dominated by haematite (29–68%) and goethite
(6–25%) with subordinate amounts of gibbsite. Conventional techniques to demar-
cate the high-grade pockets of bauxites rich in gibbsite are tedious, time consuming
and involve detailed field sampling and geochemical analyses. Our work illustrates
how spectral properties of these three litho-units can be effectively utilized in map-
ping of high-grade bauxites occurring over wide areas using hyperspectral remote
sensing (HRS). The methodology adopted herein involves generation of noise-free
field spectral database of target materials, linear unmixing of field spectra for con-
stituent minerals, classification of preprocessed Hyperion images using field spectra
and finally accuracy assessment for ore grade estimation. It is observed that bauxite
mapping using Hyperion data and noise-free field spectra yielded results that corre-
late well with the chemistry and mineralogy of representative samples. By adopting
the above procedure, we achieved classification accuracies of 100%, 71% and 89%
for bauxite, Al-laterite and Fe-laterite classes, respectively.

1. Introduction

The study of the characteristic absorption features of minerals and their mixtures
using discrete, broad channels of multispectral imagery, such as Landsat, Système
Pour l’Observation de la Terre (SPOT) and Indian Remote Sensing (IRS) images,
has serious limitations because of the large bandwidth of their channels, which makes
them insensitive to wavelength-specific absorption features of minerals. Hyperspectral
remote sensing (HRS), which uses the reflectance (or emissivity) spectra of an object in
narrow, contiguous spectral bands, has overcome limitations of multispectral remote
sensing for identifying minerals and rocks accurately (Goetz 2009). The identification
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7274 K. N. Kusuma et al.

of mineral and mineral aggregates (e.g. rocks and soils) using HRS data is based on
the concept that each mineral has its characteristic spectral absorption feature shapes
that depend on the structure and chemistry of crystal lattices of individual minerals,
and the nature of their physical surfaces (Burns 1970, Hunt and Salisbuary 1970, Hunt
et al. 1971, 1973, Goetz et al. 1985, Rossman 1988, Goetz 2009). Laboratory, field, air-
borne and spaceborne measurements of spectral signatures have proved to be useful
in various fields of applications related to geology, such as lithologic mapping (Clark
et al. 1992, Clark and Swayze 1995, Van der Meer et al. 1997, Rowan et al. 2004),
mineral exploration (Kruse et al. 1993, Bierwirth et al. 2002, Cudahy 2004, Swayze
et al. 2004) and hydrothermal alteration mineral mapping (Barley 1984, Crowley and
Zimbelman 1997, Bierwirth et al. 2002, Kruse 2002, Kruse et al. 2003, 2006, Cudahy
2004, Kennedy-Bowdoin et al. 2004). HRS has also been used effectively to identify
secondary mineral components constituting extensive areas of regolith (Das 1996,
Carvalho et al. 1999, Papp and Cudahy 2002, Craig et al. 2006, Deller 2006). Our
study is directed towards deciphering the boundaries of bauxite and aluminous (or
Al-) laterites over ferrugenous (or Fe-) laterites.

Bauxite, an end product of residual weathering, is rich in aluminium hydroxides
with low concentrations of iron, silica, alkalis and titanium. Besides being an ore of
aluminium, bauxite is also used in the abrasives, chemical and refractory industries.
The economic value of bauxite depends on the content of Al2O3 and other associated
impurities such as Fe2O3, SiO2 and TiO2. Because of intimate mixing between the
major oxide (and hydroxide) phases, it is nearly impossible to differentiate pure forms
from impure forms, which would otherwise necessitate extensive field sampling and
geochemical analyses to detect the more valuable grades of ore.

In this study, we demonstrate a method for discriminating and mapping the closely
related bauxite, Al-laterite and Fe-laterite bodies within the Savitri River Basin area,
Maharashtra, India, using visible through infrared field spectroscopy and HRS data.
Our procedures involve (i) identification of mineral species and their abundances in
field spectra by spectrally unmixing them using the United States Geological Survey
(USGS) Mineral Spectral Library (Clark et al. 2007); (ii) discrimination of bauxites
from Al-laterites and Fe-laterites based on their component mineral abundances; (iii)
spatial mapping of high aluminous bauxites by matching field spectra with satellite
(Hyperion) image spectra; and (iv) validation of the procedure for accuracy based on
ground truth.

2. Study area

The Savitri River Basin area (figure 1) is bounded by the Western Ghat Escarpment
(WGE), a steep geomorphic feature that rises about 1200 m above the Konkan Coastal
Plain to its east and the Arabian Sea to its west. The Konkan Plain is a narrow strip
of land about 65 km wide that lies between the western coastline of India and the
WGE. This plain is divided into a coast-parallel strip extending landward about 42 km
from the coast, called the Outer Konkan Plain (OKP) and another strip, called the
Inner Konkan Plain (IKP), which extends from the eastern edge of the OKP up to the
foothills of the coast-parallel WGE (Gunnell 2001, Kusuma 2010). The OKP is made
up of a series of low plateaus, which generally increase in height from their western
coastal side to their inland edges, where it occasionally reaches heights of 400 m. These
plateaus are capped by laterites and are cut up by narrow gorges of short rivers that
flow north–south to meet the Savitri River, which cuts a broad east–west valley amidst
these laterite-capped plateaus.
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7276 K. N. Kusuma et al.

The typical weathering profile in the field shows progressive transition from duri-
crust (laterite/ bauxite) in the top to unaltered basalt in the bottom through a mottled
zone with saprolite in between (Walther 1915). In the western parts of the OKP,
adjoining the coast, mineable reserves of ‘pocket-type’ bauxite deposits occur along
with Al-laterites and Fe-laterites. The bauxite and Al-laterite deposits are exposed
ubiquitously on the plateau top with or without a thin veneer of laterite gravels.

In the study area, the economic bauxite deposit is confined to a narrow strip as
caps over weathering profiles developed on the Deccan basalt adjoining the coast.
High-grade, commercially viable deposits in this area are discontinuous and patchy.
Many of the transitional forms of ore, ranging between laterite and bauxite, can be
observed with only a thin mantle of top soil/laterite gravel covering them. The sur-
face expression of the deposits is dependent on the size and shape of the bauxite ore
body and their enclosing litho-units. In general, the typical bauxite profiles consist of
an upper, strongly indurated, dissected aluminium and/or iron-rich layer (duricrust)
and a poorly preserved saprolite horizon having a gradational contact with the parent
bedrock. In some areas, the weathering profiles are completely dissected and blocks
of bauxite/laterites are strewn immediately atop the parent rocks. A typical bauxite
profile (2.5–15 m thick) of the study area has the sequence of (i) duricrust, (ii) mot-
tled horizon, (iii) pallid zone and (iv) basalt rock from top to bottom. The duricrust is
typically coarse-grained with fragments of size ranging from 2 to 6 cm.

The landform features of the study area are mostly attributable to the pre-Neogene
period, with modifications during the Neogene and Quaternary periods. Prior to these
modifications, most of the study area was capped by a deeply weathered laterite crust.
Changes in the local base level due to sea-level changes and tectonic activity resulted
in the erosion of the weathered mantle in areas of high erosion potential (IKP and
WGE regions). Areas of low erosion potential, such as OKP, retained their original
weathering profiles. In situ regolith, occupying the tops of the present-day plateau,
mesas and buttes, can be attributed to topographic relief inversion (Kusuma 2010).

3. Methodology

The methodology followed in this study involves (1) generation of a representative
field spectral database for duricrusts and regoliths within our study area; (2) prepro-
cessing of field spectra for noise reduction purposes; (3) deconvolution of field spectra;
(4) Hyperion image analyses; and (5) mineralogical and geochemical analyses of field
samples for grade estimation.

Biconical reflectances of Fe-laterites, bauxites and Al-laterites were measured at
50 field locations in the study area using an Analytical Spectral Devices (ASD)
Fieldspec3 (Boulder, CO, USA) portable field spectroradiometer having a field of view
(FOV) of 25◦. The instrument was calibrated under solar illumination with the aid of a
Spectralon panel (Labsphere, North Sutton, NH, USA). Field spectra were collected
by keeping the sensor at 1 m above ground level with the Sun at its zenith and the
sensor at about 10◦ from zenith. At each location, four consecutive spectral measure-
ments were made with the accumulation of 20 co-adds. GPS coordinates were also
obtained at the time of spectral measurements.

Notably, the field spectra (figure 2) contain wavelength-specific and non-
specific coherent noises caused by atmospheric water vapour, gases, scattering and
signal-to-noise ratio (SNR) limitations of the instrument (Schmidt and Skidmore
2004, Ramsey et al. 2005). Noise can obscure the characteristic shapes of fundamental,
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Figure 2. Field spectra of Fe-laterite (a), bauxite (b) and Al-laterite (c). Noises in water
vapour absorption bands have been removed for clarity. Noise suppression (Kusuma et al.
2010) has been used subsequently to enhance the spectral quality, prior to their use in spectral
classification of the Hyperion imagery.

overtone and combination absorption features of minerals and reduce the efficacy of
spectral matching and mineral abundance estimates. From the field spectra, we elim-
inated the noise related to water vapour absorption at 1.4 and 1.9 µm. Subsequently,
preprocessing of the field spectra was done with the aid of lab spectra before they
were used for spectral mineral mapping and abundance estimation (Schaepman and
Dangel 2000, Liu et al. 2006). In our study, we observed that the spectral absorp-
tion features correspond to the Fe–OH, Al–OH, Mg–OH and carbonate contents of
duricrust and regolith minerals. These absorption features span the wavelength region
between 2000 and 2500 nm and are mostly affected by spectrally coherent noise.

Preprocessing of field spectra representing Fe-laterite, Al-laterite and bauxite was
carried out using the noise-to-signal index threshold procedure (Kusuma et al. 2010).
These noise-corrected spectra were subsequently deconvolved to their mineralogical
constituents (i.e. endmembers) and their fractional abundances using the USGS
Spectral Library spectra (Clark et al. 2007) and by modelling linear mixtures of the
major duricrust/regolith minerals in varying proportions. Fe-laterite, Al-laterite and
bauxite can be considered as intimate mixtures (Clark 1999) that require a non-linear
mixture model (Hapke 1981) for precise estimation of mineral abundances. However,
considering the photometric roughness-related uncertainties due to the rugged topog-
raphy (Hapke 1984, Domingue and Vilas 2007), we use the computationally simpler
and reasonably satisfactory linear mixture model (LMM) to estimate the aerial frac-
tional abundances of minerals. While deconvolving the Hyperion image spectra in
non-vegetated areas, LMM was done using USGS Spectral Library spectra (Clark
et al. 2007) of goethite, haematite and gibbsite, based on coarse fraction (>250 µ)
measurements of these minerals. In sparsely vegetated areas, spectral signatures of
vegetation were also included as one of the LMM endmembers.

Fifteen samples representing bauxite, Al-laterite and Fe-laterite were analysed for
mineralogy and geochemistry. Mineralogical analyses were carried out on powder
samples using a Rigaku (Shibuya-Ku, Tokyo, Japan) D/MaxIC Cu α X-ray diffrac-
tometer (XRD) with scanning angles (2θ ) between 4◦ and 60◦. Semi-quantitative
estimates of mineralogy from XRD data were made following the procedures of
Goehner (1982). For geochemistry, an X-ray fluorescence (Philips model PW2404,
Almelo, The Netherlands) technique was used and the instrument was calibrated using
the USGS standards Sco-1, SGR-1 and Sdo-1 (Govindaraju 1994).
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7278 K. N. Kusuma et al.

Hyperion scenes (Level L1R product) covering part of the study area were pro-
cessed using Environment for Visualizing Images (ENVI 4.5) software. The Hyperion
radiance data were preprocessed for atmospheric effects and transformed to calibrated
reflectance using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm (Matthew et al. 2000). Atmospheric correction also included
compensation for cross-track spectral shift and adjacency effects. Akin to field spectra,
noisy Hyperion bands at 1.4 and 1.9 µm representing the atmospheric water vapour
absorption region were also removed. Subsequently, spectrally coherent noise in the
Hyperion image cube was smoothed using the EFFORT polishing (Boardman 1998)
algorithm.

The incoherent noise component of the satellite data was evaluated by performing
the minimum noise fraction (MNF) transformation. MNF transformation was car-
ried out on a spectrally calibrated and smoothed reflectance image cube comprising
196 effective bands. The eigenvector plot and the MNF-transformed bands for each
input image were examined. After critical evaluation, 30 MNF bands with eigenvalues
more than 1.1 were selected for inverse MNF transformation. The resultant incoherent
noise-corrected image cube was classified using three different spectral matching and
classification techniques, namely spectral angle mapper (SAM – Kruse et al. 1993),
spectral feature fitting (SSF – Clark et al. 1990) and binary encoding (BE – Mazer
et al. 1988). We scaled the outputs of SAM (inverse of spectral angle similarity (in radi-
ans)), SSF (continuum-removed fits) and BE (average correlation fits) into a measure
ranging between 0% and 100% and then weighted each by 33% (i.e. equal weighting)
to yield an average-weighted spectral similarity score (AWSS). Although Crosta et al.
(1998) suggested that SFF is better for classifying the iron-bearing alteration miner-
als, in our earlier work (Kusuma et al. 2010) we observed that SAM yields excellent
classification results after spectrally coherent noises were removed from the field spec-
tra of bauxite, Al-laterite and Fe-laterite. Hence, most of our interpretations in this
study are based on either AWSS or SAM. The SAM classification was carried out
with several spectral angle thresholds ranging from 0.1 to 0.4 for all of the three end-
members. Each time, the classified output was compared with field data for accuracy
and spectral angle optimization. When satisfactory threshold values were achieved,
the classified images were geocorrected and mosaicked using Survey of India topo-
graphic maps re-projected using Universal Transverse Mercator (UTM) and World
Geodetic Datum (WGS-84) projection parameters. The geometric correction is fairly
accurate (with a root mean square error varying from 0.01 to 0.04) and comparable
with field GPS measurements.

In particular, SAM is a classification method that calculates the similarity between
two spectra. Spectral similarity between the two spectra is measured by the angle
between two vectors representing the spectra in n-dimensional space with dimension-
ality equal to the number of bands (nb) (Kruse et al. 1993, Van der Meer et al. 1997)
as shown in the following equation:

α = cos−1

[ ∑nb
i tiri(∑nb

i=1 t2
i

)1/2 (∑nb
i=1 r2

i

)1/2

]
, (1)

where α is the spectral angle, ti is the pixel spectrum, ri is the reference spectrum and
nb is the number of bands.

The result of SAM analysis for each pixel is an angular similarity measured in radi-
ans ranging from zero to π/2, which gives a qualitative estimate of the presence of
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absorption features that can be related to mineralogy (e.g. Van der Meer and Bakker
1997). For example, small angles between the two spectra indicate high similarity.
However, SAM being a cumulative measure of similarity between two feature vec-
tors, the presence of high frequency noise in reference and pixel spectra is expected
to reduce the similarity measure. The accuracy of mapping was estimated in this
study by (i) comparing spectral similarity between field spectra and pixel spectra and
(ii) estimating the user and producer accuracies.

4. Results

4.1 Mineralogy, chemistry, field and laboratory spectroscopy

It is evident from semi-quantitative analysis of X-ray diffraction data (table 1) that the
mineralogy of bauxite is dominated by gibbsite (58–75%) over other minerals such as
haematite (19–26%) and goethite (6–11%). The Al-laterites contain gibbsite (32–42%),
haematite (29–58%) and goethite (6–25%), while the Fe-laterites are composed mostly
of haematite (55–68%), goethite (6–16%) and gibbsite (11–28%). In addition to
these minerals, small percentages of minerals such as kaolinite, anatase, quartz and
bohemite are also observed in many cases (figure 3). The pallid and mottled horizons
(saprolite) consist of kaolinite, goethite, montmorillonite, altered plagioclase feldspar,
augite, anatase and occasional quartz. Pellets of finely powdered samples representing
the duricrusts (bauxite, Al-laterite and Fe-laterite) were also prepared for the study of
bulk chemistry using X-ray flourometry. It is apparent from the results (table 1) that
the bauxite is dominated by alumina (Al2O3 = 47–55%) with subordinate amounts
of iron oxide (9.7–15.2%) and silica (3.3–4.8%). In the case of Al-laterites, the alu-
mina content ranges from 26.4% to 39.2% with an almost equal amount of iron oxide
(34.5–48.7%). Unlike the bauxites and Al-laterites, the Fe-laterite contains very high
percentages of ferric iron oxide (48.6–56.0%).

The noise-free field spectra of targets of interest were analysed and interpreted
in terms of mineralogical abundances by correlating continuum-removed field spec-
tra with USGS Spectral Library of minerals. The spectra of bauxites exhibit strong
Al–OH vibration features at wavelengths 2.26, 1.54 and 2.35 µm and weak features at
0.48 and 0.99 µm. Spectral Library mineral endmembers displaying the same absorp-
tion features include gibbsite, kaolinite and haematite. In addition to the absorption
features at 2.26 and 1.54 µm, the Al-laterites have strong absorption features at 0.48,
0.60 and 0.94 µm regions. These absorption features can be attributed to the ‘charge
transfer’ and ‘crystal field’ effects (Van Vleck 1932, Burns 1970) of iron-bearing min-
erals such as haematite, goethite and the Al–OH vibration absorption of gibbsite.
The Fe-laterites have strong absorption features at 0.55 and 0.88 µm regions and
weak features at 0.49, 2.20 and 2.40 µm regions corresponding to contributions from
haematite, goethite and gibbsite. High SAM and SFF match scores of haematite
(0.85 and 0.93) and gibbsite (0.87 and 0.79) with the field spectra also confirm the
dominance of these two minerals in the field spectra of Fe-laterites, Al-laterites and
bauxite.

Based on the LMM deconvolution results, it is evident from table 2 that the bauxite
is predominantly composed of gibbsite (45–60%), haematite (35–45%) and goethite
(5–10%). The mineralogy of Al-laterite varies from 20% to 40% of gibbsite, 50%
to 70% of haematite and 5% to 10% of goethite. Similarly, the mineralogical com-
position of Fe-laterites suggests 70–75% haematite, 5–10% goethite and subordinate
percentage of gibbsite (15–25%). Based on the highest AWSS (table 2), we arrived at
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Spectral pathways for delineation of high-grade bauxites 7281

Figure 3. Representative X-ray diffractogram depicting the mineralogy of Fe-laterite (Sample
ID-1), Al-laterite (Sample ID-3) and bauxite (Sample ID-7).

spectral mixtures representing bauxite (35% HT, 5% GT, 60% GB), Al-laterite (55%
HT, 5% GT, 40% GB) and Fe-laterite (70% HT, 10% GT, 20% GB) (HT, haematite;
GT, goethite; GB, gibbsite).

4.2 Mapping high-grade bauxite exposures using Hyperion data

The Hyperion image cube was classified using noisy and noise-free field spectra
(figures 4(a) and (b)) with spectral angle thresholds of 0.30, 0.20 and 0.10 radians
for bauxite, Al-laterite and Fe-laterite classes, respectively. These optimized spectral
angles (estimated by iterative comparison between classification results and field data)
gave the best possible classification accuracy.

Since the duricrusts are associated with plateau/mesa/butte tops, it is neces-
sary to discriminate economically viable in situ bauxites from the non-economic,
downslope-transported sediments rich in iron oxides and alumina. For this purpose,
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7282 K. N. Kusuma et al.

Table 2. Linear mixtures of library spectra and spectral similarity scores for Fe-laterite,
Al-laterite and bauxite samples.

Nature of
deposit

Location
no.

Mineralogical composition
of the best match SAM SFF BE AWSS#

Fe-laterite 1 75% HT, 5% GT, 20% GB 69.9 96 88.2 84.8
2 75% HT, 10% GT, 15% GB 76.6 99 77.9 84.8
6 70% HT, 5% GT, 25% GB 82.5 91.2 88.6 87.8

10 70% HT, 10% GT, 20% GB 83.8 85 97.2 88.9

Al-laterite 3 70% HT, 10% GT, 20% GB 86.3 85.6 86.8 85.9
4 55% HT, 5% GT, 40% GB 86.6 99.8 77.9 88.1
9 50% HT, 10% GT, 40% GB 88.4 79.2 87.5 81.9

12 60% HT, 10% GT, 30% GB 77.6 71.8 77 75.8

Bauxite 5 35%HT, 5%GT, 60%GB 84.9 94.9 88.9 89.9
7 45% HT, 10% GT, 45% GB 89.3 88.6 88.6 89.9
8 45% HT, 5% GT, 50% GB 84.9 93.3 88.9 89.9

14 45% HT, 10% GT, 45% GB 81.9 86.7 88.6 85.9

Notes: HT, haematite; GT, goethite; GB, gibbsite. AWSS# is the scaled outputs of SAM,
SSF and BE into a measure ranging between 0% and 100% and then cumulated with equal
weight (33%). Bold values indicate deconvloved mineral abundance of spectra used to classify
the Hyperion image.

(a)

(b)

0 7 km

Bauxite

Aluminous laterite

Laterite

Figure 4. SAM classified maps for Fe-laterite, Al-laterite and bauxite generated using noisy
field spectra (a) and noise-corrected field spectra (b).
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Spectral pathways for delineation of high-grade bauxites 7283

a digital elevation model (DEM) of the study area was used to discriminate the in
situ bauxite deposits from high aluminous sediments accumulated at lower topo-
graphic levels (<50 m AMSL). This map (figure 5) showing the distribution of in
situ Fe-laterite, Al-laterite and bauxite was then evaluated for their classification accu-
racy by using two different procedures. In the first method, image and field spectra
corresponding to bauxite, Al-laterite and Fe-laterite (figure 6) collected at 20 specific
field locations were compared for spectral similarity (table 3). In the second technique,
the classified output was compared with ground-truth information in the form of a
confusion matrix (Congalton 1991). This was prepared by comparing the location
and class of ground spots with the corresponding location and class in the classified

Bauxite Aluminous laterite Laterite

SAVITRI RIVER

N

0 1 km

Harihareshwar

Bankot

Shipole

Figure 5. Overlay of classified map on DEM to discriminate the in situ and transported
duricrusts.

0.5

S
ta
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 r
ef

le
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an
ce
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1.0 1.5 1.5 2.5

c

c

c

b

b

b

a

a

a

Wavelength (μm)

(c)

(b)

(a)

Figure 6. Stacked reflectance spectra of Fe-laterite (a), Al-laterite (b) and bauxite (c) rep-
resenting noise-corrected field spectra (a), LMM mineral mixtures (b) and Hyperion pixel
spectra (c).
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7284 K. N. Kusuma et al.

Table 3. Spectral similarity measures (A) between field spectra and Hyperion pixel spectra and
(B) between field spectra and USGS mineral mixtures.

Noisy field spectra
Noise-corrected field

spectra

SAM
(%)

SFF
(%)

BE
(%)

AWSS#
(%)

SAM
(%)

SFF
(%)

BE
(%)

AWSS#
(%)

(A) Matching score for Hyperion pixel spectra∗
Bauxite 33 61 66 52 71 66 94 76
Al-laterite 38 63 69 59 68 59 84 70
Fe-laterite 03 72 69 47 63 61 82 70

(B) Matching score for USGS mineral mixtures∗
Bauxite (35% HT, 5% GT, 60%

GB)
68 93 79 80 85 95 89 90

Al-laterite (55% HT, 5% GT,
40% GB)

53 93 81 75 87 99 78 88

Fe-laterite (35% HT, 5% GT,
60% GB)

56 90 81 75 84 85 97 89

Note: ∗Median values of 20 sample points.

images (table 4). To understand the effect of spectrally coherent noise in reference
spectra and its impact on classification accuracy, image cubes were classified using
both noisy and noise-corrected reference spectra, and their classification accuracies
were then compared (tables 3 and 4). It is evident from tables 3 and 4 that when noise
was removed, the AWSS increased considerably for Fe-laterites (+23%), Al-laterites
(+11%) and bauxites (+24%). A similar effect could also be noticed when AWSS was
measured between the USGS mineral mixtures and reference spectra. Such an increase
in the similarity score is mainly attributed to a significant increase in the SAM and BE
scores. Based on the confusion matrix, it is obvious that the user’s and producer’s
classification accuracies also significantly improved (table 4) after noise was removed
from the reference spectra. Relating the duricrust distribution to slope and elevation
(figure 6) helped us to augment further classification accuracies of Fe-laterite (89%),
Al-laterite (71%) and bauxite (100%) classes.

5. Summary, discussion and conclusions

The Konkan region of India (figure 1) has proven reserves of about 10 million tons
of various grades of bauxite deposits. These bauxite deposits are mostly confined to a
narrow strip of coast parallel landform unit called OKP. This geomorphic unit has a
gentle westward slope and is enveloped by lateritic regolith of varying compositions.
Based on field studies, it is evident that the composition of the duricrust varies spatially
from iron-rich facies (Fe-laterite) to aluminium-rich facies (bauxite). Considering the
economic viability of aluminium resources, we were able to classify them into three cat-
egories: Fe-laterite, Al-laterite and bauxite, based on their total iron and aluminium
contents. The percentages of alumina and iron oxide considered for qualifying a duri-
crust as bauxite are over 46% of Al2O3 and less than 18% of Fe2O3 respectively (Anand
et al. 1991). Duricrusts with a relatively higher percentage of both Al2O3 (28–39%)
and Fe2O3 (34–45%), but not amenable to the present ore processing technology, are
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Spectral pathways for delineation of high-grade bauxites 7285

Table 4. Accuracy estimates for classification made using (A) noisy field spectra, (B) noise
smoothened field spectra and (C) noise smoothened spectra and DEM.

Fe-
laterite

Al-
laterite Bauxite Unclassified

Total
samples

User’s
accuracy

(%)

(A) Classification statistics using noisy spectra
Class1 Fe-laterite 0 4 2 12 18 0.00
Class2 Al-laterite 4 6 0 4 14 42.86
Class3 Bauxite 0 0 4 2 6 66.67
Class4 Unclassified 0 0 2 2 4

4 10 8 20 42

Producer’s 0.00 60.00 50.00
accuracy (%)

Overall 23.81
accuracy (%)

(B) Classification statistics using noise-corrected spectra
Class1 Fe-laterite 14 4 0 0 18 77.78
Class2 Al-laterite 4 8 0 2 14 57.14
Class3 Bauxite 0 0 6 0 6 100.00
Class4 Unclassified 0 0 4 0 4

18 12 10 2 42

Producer’s 77.78 66.67 60.00
accuracy (%)

Overall 66.67
accuracy (%)

(C) Classification statistics using noise-corrected spectra and topographic corrections
Class1 Fe-laterite 16 2 0 0 18 88.89
Class2 Al-laterite 2 10 0 2 14 71.43
Class3 Bauxite 0 0 8 0 8 100.00
Class4 Unclassified 0 0 2 0 2

18 12 10 2 42
Producer’s 88.89 83.33 80.00

accuracy (%)
Overall 80.95

accuracy (%)

typically designated as Al-laterites. All other types of duricrusts with very high iron
content (Fe2O3 > 45%) are referred to as Fe-laterites. In the study area, we observed
that the bauxite deposits often spatially grade into Al-laterites and Fe-laterites, which
can result in the mining of inferior grade ores and production of rejected stock piles.
The conventional approach for mapping high-grade bauxites involves detailed field
mapping, sampling and extensive chemical and mineralogical analyses.

In this study, we took advantage of the advancements in field and satellite spec-
troscopic techniques (figure 7) for distinguishing higher grade bauxite ores from
each other and other types of lateritic duricrust deposits. This was done using rep-
resentative field spectra. Field spectra often contain spectrally coherent noise from
various sources. In this study, noise-corrected reference spectra representing bauxites,
Al-laterites and Fe-laterites were generated using the noise-to-signal index threshold
technique (Kusuma et al. 2010).
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Laboratory
data Field data

S/N threshold
index 

Reference 
spectra 

Atmospheric
correction 

SAM

Target mapping

MNF

Spectral
characterization

and mineral
mixture

Spectral
database

Hyperion data

Accuracy
assess

Geochemistry and
Mineralogy 

Meteorological
data

Mineral
abundance

Figure 7. Workflow depicting the adopted procedures.

Considering the complexities of the intimate mixture modelling in terrains with high
photometric roughness, such as Savitri Basin, LMM was carried out to estimate the
aerial abundances of the three target groups. Linear unmixing of the field spectra with
the aid of Spectral Library data revealed that the spectra of duricrusts are dominated
by the minerals gibbsite and haematite, with lesser amounts of goethite. Based on
weighted averages of rescaled spectral similarity outputs such as SAM, SFF and BE
(collectively, AWSS), linear mixtures comprising 60% gibbsite, 35% haematite and 5%
goethite were found to have the highest spectral match score (89.9%) for bauxite spec-
tra. Similarly, Al-laterite spectra are best represented by linear mixtures of gibbsite
(40%), haematite (55%) and goethite (5%). The Fe-laterite spectra correspond best to
a mixture of 10% gibbsite, 70% haematite and 10% goethite. The laboratory data on
geochemistry and mineralogy of all the three duricrusts commensurate well with the
results deconvolved using field spectroscopy.

To understand the effect of spectral noise on classification, we used spectral similar-
ity scores and user and producer accuracies as measures of classification efficacy. It is
apparent from the results that noise correction significantly improved spectral classi-
fication between reference spectra and image spectra in all the three classes. The same
results were obtained when noise-corrected spectra were matched with USGS min-
eral mixtures. It is interesting to observe from table 2 that the SFF technique seems
to be more effective in classifying the laterites and bauxite than SAM and BE tech-
niques. However, the efficacy of SAM and BE classification increased considerably
when noise-free reference spectra were used (table 3, figure 5).

Although satellite multispectral imagery has been used to map bauxites, laterites
and regoliths by various workers globally (Hickey 2005, Deller 2006, Sanjeevi 2008),
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Spectral pathways for delineation of high-grade bauxites 7287

multispectral imagery lacks the spectral resolution (i.e. smaller number of bands and
broader band passes) for estimating mineral abundances as compared to hyperspectral
imagery such as EO-1 Hyperion.

The following conclusions emerge from this study.

1. The procedure adopted involving field spectroscopy and Hyperion data analysis
is capable of distinguishing bauxite from other lateritic-duricrust types of lesser
economic value.

2. When noise-free field spectra are used for classification, Fe-laterite was more
clearly discriminated from Al-laterite, and the classification accuracy in all the
three classes increased significantly.

3. When representative reference spectra are deconvolved to estimates of their
mineral abundances, it is possible to classify images directly to those same
mineral abundance classes. In this study, LMM produced reasonably good min-
eral abundance estimates for Fe-, Al-laterites and bauxitic duricrusts. Besides
the limitations of LMM, we observed that mineral abundances estimated from
spectroscopy match well with mineralogy estimated by XRD and geochemistry
estimated by X-ray fluorescence procedures. Thus, spectroscopy can be used as
a proxy for conventional exploration procedures for bauxites.

4. Combining classification outputs with slope and other topographic attributes
derived from a DEM facilitated the identification of in situ bauxites from lower
grade colluvial deposits on the lower slopes. This procedure further improves
classification accuracy.
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