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Abstract This paper mainly presents a case study of landslide vulnerability zonation

along Tawaghat-Mangti route corridor in Kumaon Himalaya, India. An attempt is made to

predict landslide susceptibility using back-propagation neural network (BPNN) and pro-

pose a suitable model for that zone, which can be successfully implemented for the

prevention of slides. Various landslide affecting parameters such as lithology, slope,

aspect, structure, geotechnical properties, land use, landslide inventory, and distance from

recorded epicenter are used to model the landslide susceptibility. The database on the

above parameters derived from satellite imageries, topographic maps, and field work are

integrated in the GIS to generate an information layer. Database of this information layer is

used to train, test, and validate the BPNN model. A three-layered BPNN with an input

layer, two hidden layers, and one output layer is found to be optimal. The developed model

demonstrates a promising result, and the prediction accuracy has been found to be 80 % in

the field.
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1 Introduction

The Kumaon Himalayas, lying between the Kali River in the east and Sutlej in the west,

include a 320 km stretch of mountainous terrain. The lesser Kumaon Himalaya includes a

thrust-bound sector delineated by two tectonic planes—the Main Boundary Fault to the

south and the Main Central Thrust to the north. Kumaon Himalaya is located near

the central part of the Himalayan orogeny and is, therefore, a critical area for studying the

typical characteristics of the Himalayan tectonics, in contrast to the areas in close prox-

imity to NE and NW syntaxes where complications arise due to complex tectonics. Akin to
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other parts of Himalayan orogenic belt, the Kumaon region also possesses prominent

topographical features such as escarpment slopes, cliffs, and gorges developed due to

complex, physical, geologic, and tectonic processes. Active tectonism and high rate of

rainfall coupled with anthropogenic interference have resulted in several catastrophic

landslides in this region. The investigated area, Tawaghat-Mangti route corridor is one

such worst landslide affected areas in the Kumaon Himalaya and cause serious damages to

life and properties annually. Assessment of landslide hazard susceptibility is one of the key

tasks in disaster and management in this area.

Artificial neural networks (ANNs) are networks of highly interconnected neural com-

puting elements that have the ability to respond to input stimuli and to learn to adapt to the

environment. ANNs include two working phases, the phase of learning and that of recall.

During the learning phase, known data sets are commonly used as a training signal in input

and output layers. Recall is the proper processing phase for a neural network, and its

objective is to retrieve the information. Recall corresponds to the decoding of the stored

content, which may have been encoded in network previously. Later, if the network is

presented with a pattern similar to a member of the stored set, it may associate the input

with the closest stored pattern. The process is called auto-association. Architecture or

model of ANNs can be classified on the basis of number of layers and approach that will be

undertaken for training. Weights are assigned to the connections between nodes of pro-

cessing units, and each node has an algorithm for summing the input weights and rule for

calculating the output weight. The network is finalized by selecting appropriate transfer

functions that allows communication between nodes of respective layers. In this study,

interrelationship among different landslide conditioning and triggering variables were

modeled using back-propagation neural network (BPNN) and a landslide vulnerability map

is produced.

In this study, an integrated approach of remote sensing, geographic information system

(GIS), and ANN are used in random to generate spatial database (on landslide conditioning

parameters such as slope, lithology, land use, aspect, and anthropogenic interferences), its

analysis, and predictive modeling.

2 Literature review

Most of the conventional landslide hazard analyses take into account a reliable and

up-to-date landslide inventory that represents the fundamental tool for the identification

of the role played by different hill slope instability factors in predisposing and triggering

landslides. These approaches are either based on deterministic hazard analysis (Genevois

and Tecca 1987; Hammond et al. 1992) or on statistical techniques such as multivariate,

discriminate, and probabilistic analysis (Carrara et al. 1991, 1995; Jade and Sarkar 1993;

Clerici et al. 2002; Chung et al. 1995; Saha et al. 2005; Lee et al. 2002; Suzen and

Doyuran 2004; Ramakrishnan et al. 2005). The final product of such statistical tech-

niques is a function that allows the totaling of a score for each terrain unit, thus

expressing the probability of predicting a landslide (Carrara et al. 1995; Ramakrishnan

et al. 2005).

After the literature survey of various methods for the prediction of landslide move-

ments, every method is found to be deficient in more than one ways (Sarkar et al. 2008;

Singh et al. 2008; Ramakrishanan et al. 2008). On the basis of detailed investigation, a

viable approach for the prediction of mass movement is necessary, and an artificial neural

network (ANN) comes in handy to fulfill this approach. ANN is gaining significance in
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landslide-related modeling by virtue of its capability to handle case-specific, nonlinear

relationship among the conditioning and triggering factors. ANNs have been applied to the

prediction of rock parameters and landslides in particular, with reference to the determi-

nation of the triggering parameters (Aleotti and Chowdhury 1999; Mayoraz et al. 1996;

Singh et al. 2004), landslide susceptibility analysis (Lee et al. 2002, 2004; Ferna‘ndez-

Steeger et al. 2002), and spatial mapping of hazard zones (Ermini et al. 2005). Artificial

neural network takes an edge over other conventional methods due to its capability of

mapping the nonlinear relations, thus enabling to determine the relationship among

complex data pattern (Rumelhart et al. 1986) and to generalize (Widrow et al. 1962). Here,

generalization refers to the ability of the neural networks to produce reasonable outputs for

inputs not encountered during the training (learning) procedure.

3 The study area

The investigated area (Fig. 1) is located in the northeastern part of the Indian State of

Uttarakhand bordering Nepal. The Tawaghat-Jipti route corridor (80o3405300/29o5602100–
80o4401600/30o0000000) runs all along the Kali river valley for about 30 km distance.

Physiographically, this part of Himalayan province rises to an elevation of 1,500–2,500 m

and exhibits an active tectonics-related topography. Geologically, the investigated area

comprises rock of lesser Himalayan meta-sedimentaries (phyllite, schists, micaceous

quartzites, and amphibolites) and crystalline rocks like granitic gneiss. The investigated

area receives an average annual rainfall of 2,200 mm mostly confined to monsoonal

months (July–September). Sudden cloud burst with a very heavy rainfall (150–200 mm/day)

is a recurrent phenomenon in this area. This area experiences frequent landslides and

alarming rate of erosion.

4 Methodology and thematic database generation

In this study, a variety of data related to the study of landslides such as satellite images,

digital elevation model, geological map, and rainfall are used. The spatial data on rock

types and structure are obtained from the published maps of Geological Survey of India.

Geotechnical parameters such as RQD for each litho units are estimated from the field.

Calibrated digital elevation model (DEM) derived from shuttle radar topographic mission

(SRTM) is used to derive the slope map. Slope map of the study area is derived from the

calibrated SRTM-DEM using ERDAS imagine inbuilt inverse distance weighted (IDW)

interpolation technique. Land use maps are prepared using Indian remote sensing satellite

(IRS-LISS-IV) data. Integration of vector coverage and collateral data is carried out using

ARC/Info GIS software. The course of investigations adopted is given in Fig. 2. The

attribute table of the output layer with unique identity for each polygon and information on

conditioning and triggering parameters is used as an input for ANN analyses. Brief

description about the derived thematic database is given below.

4.1 Lithology and geotechnical characteristics

Lithology of the study area comprises 11 major rock types namely quartzite, biotite gneiss,

chlorite schist, amphibolite, micaceous quartzite, carbonaceous phyllite, calc-silicate, talc

chlorite schist, phyllite, graphite schist, along with unconsolidated rocks such as talus/scree
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Fig. 1 Location map of the study area

Fig. 2 Flow chart depicting the adopted methodology
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deposits (Fig. 3). The meta-sedimentary rocks are characterized by 4–5 sets of disconti-

nuity planes. The geotechnical quality of rock mass expressed through the rock quality

designation (RQD) is derived for each of the above said rock types and added as an

attribute to the lithology vector layer. The rock quality designation (RQD) value of each

litho unit is estimated using the following empirical relationship (Palmstrom 1982)

RQD ¼ 115� 3:3JV

where Jv—total number of joints per m3. RQD of 100 is considered when Jv exceeds 4.5.

The estimated RQD values vary from 64 to 80 %.

4.2 Landslide inventory and land use

Information on landslide inventory and land use is very crucial for slope stability studies.

Since reactivation of existing landslides is one of the commonest mode of slope failures,

inventory of stabilized and active landslides is generated from satellite imaginary (IRS-

LISS-IV) for the periods May and October 2002. Information on land use and pattern of

their spatial distribution is derived by classifying the above satellite data by supervised

classification technique using the Bayesian maximum likelihood classifier (MLC). MLC, a

parametric decision rule, is a well-developed method from statistical decision theory that

has been applied to the problem of classifying image data (Settle and Briggs 1987).

Information collected from the state forest department, survey of India (SOI) topographic

maps and field studies on the watershed area used to identify the signatures representing

various land use classes. They are then evaluated to make sure that, there is suitable

discrimination of individual classes. After obtaining a suitable grouping for satisfactory

discrimination between the classes during signature evaluation, the final classification is

carried out. The classification accuracy evaluated by confusion or error matrix showed 92

and 95 % accuracy for the producer and the user estimates, respectively. In all, eight major

land use classes, namely open forest, dense forest, scrub land, plantation, active/stabilized

landslides, barren/rocky, fallow, river bed, have been considered (Fig. 4).

Fig. 3 Lithological map of the study area. Values in parenthesis indicate the RQD
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4.3 Slope and aspect

Since, slope is a vital conditioning parameters for slope instability, an accurate slope map

is necessary in identifying the landslide vulnerable areas. In this study, a slope map is

prepared using the calibrated SRTM-DEM. The finished and filled SRTM-DEM is cali-

brated with information on latitude, longitude, and altitude collected in the field with

differential global position system (DGPS). In all, data from 72 ground control points

(GCP) are used to fit a second-order polynomial equation and calibrate the DEM. The slope

map is classified into eight categories such as \14, 14–25, [25–30, [30–34, [34–39,

[39–45,[45–60, and[60 % (Fig. 5). These eight categories of slope were made based on

the Jenks natural breaks optimization technique (Jenks 1967). Such classification was

Fig. 4 Land use/land cover map of the area indicating the spatial distribution of active and stabilized
landslides

Fig. 5 Slope map of the area
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observed to be efficient in portraying the terrain-specific information content relating the

slope and landslide vulnerability (Ramakrishnan et al. 2005).

The direction of slope face (aspect) plays an important role in controlling different types

(plane, wedge, toppling, and soil) of slope failures. Formation of wedge and daylight

surface is a function of interrelation among strike, dip of the discontinuities, and slope face.

In this study, the aspect map is generated (Fig. 6) from the DEM and classified into eight

classes like 0–45; 45–90, 90–135, 135–180, 180–225, 225–270, 270–315, and 315–360

degrees.

4.4 Geological structure/lineament

Fractures, rock cleavages, and fault/thrust play a vital role in affecting the rock mass

quality and pore pressure built-up. The above linear features (lineaments) can be measured

and mapped from the toposheets and satellite images. In this study, lineament map is

prepared from the satellite data following the edge enhancement techniques and field

checks (Fig. 7). In all, three predominant lineament trends bearing azimuth direction 10�,

48�, and 90� trends are observed. These lineaments are classified as major (thrusts and

faults running over 1 km.) and minor (fractures running lesser than 1 km) based on their

length of continuity. After critical field evaluation, the major and minor lineaments are

buffered to (100, 50, and 5 m distances, respectively, for thrust, fault, and fracture) rep-

resent their spatial influence.

4.5 Anthropogenic interference

In the study area, cut slopes for the road is the major anthropogenic interference. Building

loads alter the earth pressure in the slopes, and frequent vibrating loads from traffic affect

the slope stability. It is found that the embedded depth of some building foundations were

higher than that of retaining walls, which meant the building foundations failed to lie in

stable horizons. Deformation of the buildings and slopes should be monitored; control

measures such as cutting off the beams of reinforced concrete and use of anti-slide piles

should be taken to control lateral deformation of the slopes or the retaining walls. Cut

Fig. 6 Prevailing aspect classes of the area (values are in degrees)
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slopes and associate roads are classified into two categories such as treated (where the

slopes are provided with drain holes, meshes, and the roads are asphalted) and untreated

(where no treatments are done).

5 Results and discussions

Prior to selecting any of the conventional method for assessing the landslide susceptibility,

it is important to determine the weight value representing different factors according to

their importance for landslide occurrence. Conventionally, the weights are assigned on the

basis of the experience of the experts about the subject and the area (Lee et al. 2004). This

weighting system was highly subjective and might therefore contain some implicit biases

toward the assumptions made (Lee et al. 2004). In this study, an attempt is made to derive

the weights for individual conditioning and triggering parameters using BPNN so as to

reduce the biases and associated errors.

5.1 Artificial neural network weighting procedure

Multilayer feed forward model network was selected because of its efficiency and also

found to be an appropriate one in this case. It generally consists of three layers, that is,

input, hidden, and output layer. Number of neurons in the input layer depends on the

number of input data sources. Input in the form of neurons comprises the first layer and

each neuron is connected to the neuron of the successive layer, where each connection is

carrying the initial set weights. Features extracted from the thematic layers are used as

input in the input layer, number of hidden layers and number of neurons in the hidden

layers are determined by the hit and trial process.

One of the basic element of the any ANNs architecture is the squashing function or

signal function. The role of the signal function is to squash (limit) the output signal of the

neuron to a certain (finite) range. Squashing function maps a (possibly infinite) domain (the

input) to a prespecified range (the output). A great number of mathematical functions

should be suitable for the role of the activation function of a neuron. Any nonlinear

function can be used as a squashing function, but a tan-sigmoid function which constrains

Fig. 7 Field validated lineament map indicating the major structural features
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the output of network between 0 and 1 is widely in use (Gill et al. 1981; Sinha et al. 2009).

A schematic diagram of the most appropriate model is given in Fig. 8.

5.1.1 Training

Network weights are adjusted during the training sessions and the application of the

learning rule. Learning is realized through updation at synaptic, neural and network levels,

as it take place in the entire network.

One of the widely used paradigms of learning algorithm in neural network is the back-

propagation learning algorithm (BPLA). The BPLA is applied on multilayer feed forward

networks, also known as multilayer perceptrons (MLP). It is based on an error correction

learning rule, that is, on the minimization of the mean squared error that is a measure of the

difference between the actual and the desired output, and is the most commonly used

generalization of the ‘‘delta rule.’’ There are number of algorithms which are based on

back-propagation learning (Ripley 1996; Haykin 1999; Zhou 1999; Gomez and Kavzoglu

2005; Zurada 2006). Most frequently used back-propagation algorithms are gradient des-

cent and gradient descent with momentum.

The algorithm is based on the back-propagation of the errors (the differences between

the actual and the desired output). The simulation of algorithm involves two phases, the

forward phase that occurs when the inputs (external stimuli) are presented to the neurons of

the input layer and propagated forward to compute the output, and the backward phase

Fig. 8 Back-propagation neural network
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when the algorithm performs modifications in the backward direction. With respect to the

convergence rate, the back-propagation algorithm is relatively slow and often too slow for

the solution of practical problems. This is mainly due to the stochastic nature of the

algorithm that provides an instantaneous estimation of the gradient of the error surface in

weight space. When the error surface is fairly flat along a weight dimension, the derivative

of the error surface with respect to that weight is small in magnitude; therefore, the

synaptic adjustment applied to the weight is small, and thus many iterations (epochs) of the

algorithms may be required to produce a significant reduction in the error performance of

the network. However, faster algorithms use standard numerical optimizers such as con-

jugate gradient (Powell 1977), quasi–Newton, and Levenberg–Marquardt approach (Battiti

1992). In this study, quasi-Newton algorithm (implemented as TRAINOSS in MATLAB

software) has been use for training the network. The neural network processing has been

implemented in Neural Network tool box of MATLAB software. The characteristic

functioning aspects of the network are given in Table 1.

Trainoss is of the quasi-Newton algorithm, adapting the one-step secant method to

calculate the new search direction without computing a matrix inverse. It works on a

principle similar to momentum to reduce oscillation of weight changes.

Tan-sigmoid transfer function maps all inputs to the range of -1 to 1 as shown in Fig. 9.

The training (back-propagation of error) is repeated iteratively until error is minimized

to an acceptable value and validation of model is completed. The presentation of the entire

training data set during the training process is known as an epoch. When the learning

algorithm is applied on an epoch-by-epoch basis, it means back-propagation algorithm is

applied in sequential mode or pattern-by-pattern mode. Performance of the network is

illustrated (Fig. 10), which plots the plot between time required to converge vs mean

square error convergence goal.

The weights obtained at the validation stage of the model can be used for forecasting

purpose. The performance of network depends upon the accuracy of the validation of data

set. Thus, after data are trained and validated to an acceptable accuracy, the model is used

to determine the output of the unknown data set.

In the present study, a multilayer feed forward network with one input layer and two

hidden layers and one output layer has been considered. The input layer contains nine

neurons, each representing a factor contributing in the occurrence of landslide. Output

layer consists of one neuron representing one of the two vulnerability classes (i.e., land-

slide vulnerable areas and non-vulnerable areas).

The most appropriate neural network architecture based on the accuracy of results was

arrived by training and testing different hidden layers and associated neurons. After testing

various network combinations, the network with 9-5-7-1 architecture with learning rate of

0.1 and momentum of 0.01 (Table 2) is found to be giving the best results.

The complete data set of the study area is then processed in the identified model to

delineate landslide vulnerable areas. For this purpose, the database of the output vector

Table 1 Parameters for network
Parameter Values

Learning parameters 8

Momentum parameters: 0.7

Networks training function Trainoss

Activation (transfer) function for all layers Tansig
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layer of overlay analysis is used. Out of 8,060 polygons representing the entire study area,

information pertaining to conditioning and triggering parameters of 2,045 polygons is used

to establish the relationship (training) between landslide occurrence and influence factors.

Rest of 6,015 polygons is used to evaluate the accuracy of prediction (testing) by com-

paring ANN-derived vulnerability with actual field data on landslide occurrence. In all, 63

events were identified in the entire area. Point coverage of landslide occurrence was

overlaid on the ANN-derived results (Fig. 11) and compared for accuracy. Out of 63

occurrences (58 old and 5 new), it is observed that 61 events fall within the high (47

events) and moderate (14 events) vulnerable classes. It is also evident from the recent

Fig. 9 Tan-sigmoid transfer
function

Fig. 10 Epochs versus mean square error for convergence goal of 0

Table 2 Training and testing
data accuracies for a 9-5-7-1
architecture with 800 epochs and
2,045 patterns (bold indicates the
best acceptable architecture in
this study)

Learning rate (g) Momentum (a) Absolute error

0.2 0.10 3.98

0.4 0.09 3.60

0.1 0.05 3.45

0.5 0.08 3.33

0.7 0.01 2.84
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(2010) satellite data (IRS-LISS-IV) that the area has witnessed five new landslides

(Table 4) of different dimensions and magnitude. It is interesting to note that 80 % of the

new slides occurred in the high vulnerability class.

Details of the optimum weights derived among the input-hidden layer 1–hidden layer 2–

output layer are presented in Table 3a, b, c.

The output derived from the network was related to the vector coverage for further

spatial analyses and visualization (Fig. 11). Blue lines in the figure show the direction of

flowing Kali River. On the basis of histogram distribution, the vulnerability prediction is

classified into three classes such as low vulnerability, moderate vulnerability, and high

vulnerability for probability ranges 0–0.57, 0.57–0.85, and [0.85, respectively (Table 4).

Fig. 11 Landslide hazard vulnerability map

326 Nat Hazards (2013) 65:315–330

123



Table 3 Weight distribution characteristics of the best performing network used in this study

(a) Weights distribution between input (I) and first hidden (HA) layer

Input (I) HA1 HA2 HA3 HA4 HA5

Aspect -0.8384 0.1292 -0.6218 1.0871 0.4693

Lithology 0.4668 2.5274 0.9371 0.8032 -0.4211

RQD -0.0299 -0.8582 0.2030 -0.5102 -0.4859

Class 0.4094 -0.1201 0.2559 -0.2501 0.3562

Road type 0.7924 0.9211 -1.1714 1.0019 3.2696

Lithology -0.6497 0.0736 -0.4444 -0.4868 0.1207

Slope 0.0494 0.0164 0.2131 0.1147 -0.0235

Lineament 0.1377 0.1377 -0.9604 -1.1481 -0.1633

Landslide inventory -0.8857 -0.8857 0.1228 -0.3271 -0.2621

(b) Weight distribution between first hidden (HA) layer and second hidden layer (HB)

HA1 HA2 HA3 HA4 HA5

HB1 0.3308 -0.5768 -0.4971 -1.4552 -0.9914

HB2 0.4123 1.0764 -1.2543 0.1010 1.7734

HB3 -1.5293 1.4267 -0.3068 1.1991 2.2236

HB4 -1.3424 0.3373 0.8981 0.7919 -1.4872

HB5 -0.9338 -1.2779 0.7093 -0.7129 -0.8292

HB6 0.0003 -1.1531 0.4502 -1.3133 -2.1357

HB7 -1.2777 -0.1621 0.1593 1.0532 -1.2139

(c) Weight distribution between second hidden layer (HB) and output (O) layer

Weights

HB-Output1 0.2645

HB-Output2 1.6663

HB-Output3 2.9171

HB-Output4 -0.8433

HB-Output5 -0.1401

HB-Output6 -2.1400

HB-Output7 0.3901

Table 4 Landslide events vis-à-vis hazard zonation

Location Latitude and longitude Area of slide (m2) Classified hazard zone

A 80 37 54 N
29 58 39 E

250 Moderate

B 80 39 33 N
29 57 22 E

640 High

C 80 38 55 N
29 56 57 E

450 High

D 29 57 03 N
80 40 55 E

980 High

E 80 41 28 N
29 56 54 E

260 High
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6 Conclusions

The Tawaghat-Mangti route corridor of Kumaun Himalayas is one of the worst affected

areas due to frequent landslides. This causes serious threat to human lives, properties, and

disturbs the supply routes. The interplay between conditioning parameters (lithology,

slope, aspect, land use, fracture) and triggering parameters (rainfall, seismicity, and

anthropogenic interference) plays a pivotal role in the stability of slopes of this region. It is

often difficult to estimate the significance of one parameter over the other in evaluating its

criticality in making a slope unstable. Conventional statistical- and heuristic-based

approaches try to relate a landslide event to individual contributory parameters through

relative weights and ranks. Probability prediction based on such expert-based weights and

rank assignments is often subjective and prone to errors (Gupta et al. 2008). From this

point, artificial neural network is more generic and fairly considerably accurate in estab-

lishing the interrelationship among the variables and associated weight in predictive

modeling (Kanungo et al. 2006; Chung and Chao 2006). In this study, BPNN-based weight

retrieval was carried out between the failed slopes and different spatial parameters asso-

ciated with it. Final network architecture with an input layer, two hidden layers (with five

and seven neurons, respectively), and an output neuron was arrived after testing number of

networks on hit and trial process. Similarly, numbers of trial runs were also performed at

different learning rates and momentum to optimize the performance of network. From

these trails, learning rate of 0.7 was found to be stable and optimum. When results of the

predicted data are compared with the field data, more then 97.16 % results are found to be

accurate with an absolute error of 2.84 %, indicating a highly satisfactory prediction

model. It is also evident that the accuracy of prediction by ANN is better than the infor-

mation value-based approaches for the same area (Tiwari et al. 2006).

In this study, the primary and derived data pertaining to different conditioning and

triggering parameters were derived from satellite images, field investigations, published

maps, and topographic sheets. Spatial and non-spatial data integration and generation of

input database for ANN were carried out using the overlay concepts of GIS. The derived

database comprises 8,060 individual data sets with information on parameter attributes and

presence or absence of a landslide. Out of the total 8,060 data sets, 2,045 were used for

training and the rest for testing and validate the network. The output of the ANN predictive

model is classified into three probability categories such as 0–0.57, 0.57–0.85, and [ 0.85

corresponding to hazard classes low, medium, and high, respectively, on the basis of his-

togram distribution. Validation of the hazard zones was carried out by analyzing the

landslides for a subsequent period. The overall accuracy of the proposed model is 80 %,

which indicates the efficacy of methodology adopted and recommended in the present study.
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