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inclined boundaries and demonstrated development of non-
uniform shear senses.

However, shear zones that were assumed simplistically 
to have parallel straight boundaries, e.g. the Main Cen-
tral Thrust and the South Tibetan Detachment System that 
bound the Higher Himalaya, were found later to be curves 
in macro-scales based on several geophysical studies (e.g. 
fig. 1 of Beaumont et al. 2001 and references therein). Such 
listric geometry of faults develops probably because the 
fault plane passes from a brittle regime at surface into a 
ductile regime at depth. Exposures of the boundaries of the 
orogen-scale shear zones are more commonly curved than 
straight (e.g. Xypolias and Doutsos 2000; Lin and Jiang 
2001; Xypolias and Kokkalas 2006). Regional reverse 
shear (thrust) planes that translate nappes are curved, and at 
places give normal shear sense (Merle 1998). Curved pri-
mary ductile shear planes have been known since 1970s in 
meso-scales (e.g. Coward 1976) and subsequently in hand-
specimen scales (figs. 2e and 7b of Gapais et al. 1987). 
Also, stressed hypoplastic granular media may develop 
curved fault planes (e.g. Tejchman 2008). Shear zones of 
high strain have been mentioned to have curved bounda-
ries, where simple shear prevailed (Simpson and De Paor 
1993; also see Coward 1976). Coward (1976) further men-
tioned that shear zones that either ‘grew’ slowly or were 
blocked at one side can curve their boundaries. He con-
sidered anastomosed foliations, what also are described 
as ‘step-overs’ or ‘over-steps’ (latest review and original 
reports in Mukherjee 2013a), inside shear zones as (an 
indirect) field evidence of their curved boundaries. Brun 
and Burg (1982) stated that curved shear zones can develop 
in collisional tectonic settings where corner flow exists. 
Curved boundaries of the Greater Himalayan Crystallines, 
viz. the Main Central Thrust at S/SW and the South Tibetan 
Detachment Zone at N/NE, are 6–50 km away in different 

Abstract We present preliminary kinematic analyses of 
Taylor–Couette flow. We consider deformation of a New-
tonian incompressible ductile material inside rotating hori-
zontal listric (concentric circular) boundaries. The velocity 
profile is curved indicating non-uniform shear strain but 
leads to the same shear sense. Each material point on pro-
gressive shear keeps increasing shear strain linearly with 
time. A curve of no movement, the ‘neutral curve’, may 
exist inside the shear zone. Irregular geometries of initially 
regular markers and their individual non-matching strain 
paths indicate inhomogeneous deformaion in such Taylor–
Couette flow.
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Introduction

Shear zones are ‘tabular or sheetlike, planar or curvipla-
nar zones in which rocks are more highly strained than 
rocks adjacent to the zone’ (Davis et al. 2012). Under-
standing shear zone kinematics is important in tectonics 
since the major plate boundaries are defined by such zones 
(Regenauer-Lieb and Yuen 2003), and extrusion and sub-
duction might be shear controlled (e.g. Beaumont et al. 
2001; Stüwe 2007). Recently Mukherjee (2012) reinter-
preted kinematics of simple shear zones with parallel and 
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rivers sections (reviews by Mukherjee and Koyi 2010a, b; 
Mukherjee 2013b). On the other hand, for the sake of sim-
plicity, structural geological texts so far presented shear 
zones to be bound by straight boundaries (e.g. Ramsay 
1980; Ramsay and Lisle 2000).

Only a few attempted to deduce the kinematics of shear 
zones in other cases, such as with non-parallel straight 
boundaries under simple shear (e.g. Mandal et al. 2002), 
and Poiseuille flow (e.g. Mukherjee et al. 2012). Even 
though deformation behaviour around particles inside 
curved shear zones were analogue modelled (e.g. Exner 
et al. 2006), kinematics of these ductile shear zones did 
not receive any focus by other geologists. This is despite 
the fact that flow between concentric rotating cylinders has 
long been discussed in fluid mechanics as ‘Taylor–Couette 
flow’, ‘circular shear’, ‘circular Couette flow’, etc. (Don-
nelly 1991; Schlichting and Gersten 1999).

This work presents an analytical model of simple shear 
of a zone bound by concentric circular arcs. Although shear 
fabrics decode only the relative shear sense (Passchier and 
Trouw 2005; Mukherjee 2011, 2013c, d), this work follows 
Mukherjee (2012) to consider absolute movement of the 
shear zone boundaries.

The model

A curved ductile shear zone consisting of two horizontal 
concentric rigid circular arcs as its boundaries is consid-
ered to be full of a Newtonian viscous fluid. In this case, 
the vorticity vector (fig. 1 of Passchier and Coelho 2006) 
is vertical. An incompressible fluid with no kinematic dila-
tancy is considered. We ignore viscous dissipation (such 
as Mukherjee and Mulchrone 2013) and radioactive heat-
ing leading to any change in viscosity and/or density, any 
pure shear component and its temporal variation, widening/
narrowing of the shear zone, deformation of the bounda-
ries, why the shear zone is curved and how/whether it 
propagates spatially, heterogeneity in composition, pres-
sure gradient, (partial) melting, metamorphism, evolution 
of (micro)structures such as folds, strain partitioning, non-
Newtonian behaviour such as shear thickening/thinning, 
etc. Being a horizontal shear zone, its deformation remains 
unaffected by the acceleration due to gravity (‘g’), geother-
mal gradient and any change in density and/or viscosity 
dependent to temperature and depth. This is similar to some 
of the previous models of shear zones (e.g. Ramsay 1980; 
Ramsay and Lisle 2000; Grasemann et al. 2006; Mukherjee 
2012 etc.).

If the two boundaries rotate at same rate and at the 
same direction, no ‘shear’ develops (Eq. 1 in Appen-
dix). The velocity profile in this case is a straight line that 
passes through the centre of the two concentric boundaries 

Fig. 1  An angular velocity of −ω1 acts on the two concentric circles. 
An undeformed straight marker AB on shear attains A′B′ at a par-
ticular instant. Azimuthal velocity (vθ) and meridional angle (θ) are 
defined inside the figure

Fig. 2  Two concentric circular margins of radii R1 and R2 (R1 > R2) 
bound a ductile shear zone. Rotation of the outer boundary with an 
anticlockwise angular velocity −ω1 and the inner one with a clock-
wise ω2 creates a velocity profile A′B′. AB was the undeformed 
marker before deformation started. Intersection between A′B′and AB 
defines the neutral point ‘N’. The red circle passing through N is the 
neutral curve. Full arrows show the curvilinear flow paths of points 
5, 6 and 8. Here: R1 = 100 cm, R2 = 50 cm, ω1 = ω2 = 2° s−1. Angu-
lar shear strain (φ) at point ‘7′’: angle between a tangent on the pro-
file drawn at that point and the line AB
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(Fig. 1). However, when the boundaries rotate with (1) dif-
ferent rates (=angular velocities) in the same direction, 
(2) different rates in opposite direction, (3) same rate but 
in opposite direction, and (4) one of the boundaries rotate 
and the other remain stationary, ‘shear’ develops and the 
velocity profile is curved (Fig. 2). Points on the unde-
formed marker line keep increasing angular shear strain 
(φ) linearly with time (Fig. 3). φ at any instant is the angle 
between the lines before and after deformation. As per 
Fig. 3, a point ‘7’ was initially on line AB and is now as 
‘7′’, and φ is the angle between AB and the tangent on the 
profile at ‘7′’. Inside the shear zone, a gradient in shear 
strain develops. For example, in Fig. 3, at t = 35 s, mark-
ers 4–8 show progressive increase in shear strain. In very 
slow slip rate of the boundaries of the order of a few mm 
per year as expected in natural shear zones, flow paths will 
be curved lines parallel to the shear zone boundaries (e.g. 
Fig. 2). Unlike curved velocity profiles generated usually in 
inclined simple shear zones with straight parallel bounda-
ries (e.g. fig. 1b of Mukherjee 2012), the shear sense in the 
present case does not flip. As expected, this is in fact simi-
lar to horizontal simple shear zones with straight bounda-
ries where uniform shear sense is produced. The only sig-
nificant difference remains that while in the present model, 
and angular shear strain varies from point to point on the 
curved velocity profile; a uniform shear strain is produced 

in simple shear zones with horizontal straight boundaries. 
Thus, curvature of the boundaries of the shear zone can 
impart significant deviation in shear strain and develop 
a different kinematics. In the present case of curved hori-
zontal shear zone, the velocity profile depends on (1) the 
angular velocities and (2) the radii of the two boundaries 
(Eq. 4 in Appendix). It is thus independent of viscosity and 
density of the shear zone material.  

When the two boundaries of the shear zone slip oppo-
sitely, the resultant velocity profile intersects the ini-
tial position of that line in undeformed state at a point 
(Fig. 2). This point is the ‘neutral point’. Its coordination 
is presented in the Appendix after Eq. (4). A circle passing 
through this point and concentric to the shear zone bounda-
ries defines a ‘neutral curve’ of no movement during ductile 
shear. Without mentioning its significance much, Lister and 
Williams (1983) described the neutral curve in simple shear 
zones with parallel boundaries as a straight line and called 
it the ‘plane of shear’. However, shear strains on points 
lying on neutral curve are not zero. Even if the two bounda-
ries shear with the same magnitude of angular velocity but 
in opposite directions, the neutral point does not plot at 
the middle of the circular shear zone (as in Fig. 2). This 
mismatches with what Mukherjee (2012) showed for hori-
zontal simple shear zone with parallel boundaries. The rea-
son is that while in the second case, the velocity profile is 
straight, and in the present model, it is a curved line. If the 
two boundaries of the shear zone slip in the same direction, 
the neutral point lies outside the shear zone. The neutral 
point in this case is located by extrapolating both the veloc-
ity profile and the undeformed marker line before shear ini-
tiated. In other words, in such cases, all points inside the 
shear zone undergo slip and movement. Neutral point exists 
in simple shear zones with parallel boundaries. However, in 
that case, the neutral curve is a straight line (e.g. Mukher-
jee 2012; Mukherjee and Mulchrone 2013). Deviation in 
angular velocities (=slip rates) of the boundaries obviously 
relocates the neutral point.

Deformations of several circular markers inside the 
circular shear zone show that unlike simple shear zones 
with straight boundaries, the markers do not turn ellipti-
cal (Fig. 4). Their irregular shapes indicate that the stud-
ied deformation pattern is in fact inhomogeneous. Even if 
we had taken smaller markers, those would have deformed 
inhomogeneously. At any particular instant, different mark-
ers attain different irregular shapes. The markers deform in 
such a manner that relative rotation direction of the outer 
boundary of the shear zone is from the convex sides of 
the deformed markers towards their concave sides. This 
can be understood from Fig. 4 by comparing the direc-
tion of rotation of the outer boundary and the geometries 
of the deformed markers. The exact geometries of individ-
ual strain ellipses will depend also on the radii of the two 

Fig. 3  Variation of angular shear strain (φ) with time (t) for points 4, 
5, 6, 7 and 8 as shown in Fig. 2



600 Int J Earth Sci (Geol Rundsch) (2014) 103:597–602

1 3

circular arcs as well as that of the circular markers. A plot 
of aspect ratios (R) of the deformed markers versus time 
(t) shows that R in general increases temporally (Fig. 5). 
Aspect ratio (R) in this study is defined as: R = length of 
the line (PQ) joining the farthest points on the markers 
divided by the maximum thickness of the marker perpen-
dicular to PQ. The parameters in the numerator and the 
denominator are shown for deformed markers in two cases 
in Fig. 4. Interestingly, the R-t paths for these markers are 
‘non-parallel’ (or are ‘different’). This is expected in an 
inhomogeneous deformation. In contrast, horizontal simple 
shear zones with straight parallel boundaries give parallel 
(or same) strain paths for different circular markers indicat-
ing they attain the same strain at any particular instant.

For inclined shear zones with parallel boundaries, the 
velocity profile depends additionally on the dip of the 
shear zone, and the viscosity and the density of the rock 
material (e.g. Mukherjee 2012). These parameters appear 
since a component of weight of the shear zone material 
acts along its down-dip direction. Since we considered 
horizontal shear zones, these parameters did not come 
into the velocity profile, i.e. Eq. 4 in Appendix. A com-
ponent of pressure gradient sometimes act in inclined 
shear zones either to subduct (e.g. Stüwe 2007) or to 
extrude (e.g. Beaumont et al. 2001) rocks by Poiseuille 
flow mechanism (Schlichting and Gersten 1999). Since 
we considered horizontal shear zones that neither sub-
ducts nor extrudes, no pressure gradient component was 
considered.

Natural curved shear zone may not have perfectly cir-
cular boundaries. In those cases, the velocity profile and 
therefore the location of the neutral point would vary. How-
ever, in absence of models with curved boundaries same as 
the natural prototypes, this work cannot specify the extent 
of this modification.

Conclusions

Ductile shear zones in depth are usually curved. As a first 
step to understand their kinematics, we assume that these 
zones are incompressible Newtonian viscous and bound 
by concentric rigid circular arcs. For the sake of simplic-
ity, listric horizontal shear zones were considered. This is 
practically same as the well known Taylor–Couette flow 
in fluid mechanics. The velocity profiles of simple shear 
in such cases are functions of the radii of the two circu-
lar boundaries and their rates of slip (=rotation). Even 
though the profile is not a straight line, the sense of shear 
inside the shear zone remains uniform, and the angular 
shear strain at different points on the marker line increases 
linearly with time. The point that remains stationary on 
the velocity profile, either inside the shear zone, or out-
side when the profile is extrapolated, is called the ‘neu-
tral point’. A line passing through this point and parallel 
to the curved boundary defined a ‘neutral curve’ of no 

Fig. 4  A circular shear flow when only the outer boundary rotates 
and the inner boundary is stationary. Five circular markers undergo 
inhomogeneous deformation and produce irregular geometries—
shown in four instances. Here, the outer circular boundary is consid-
ered to have a radius of 100 cm and the inner one of 50 cm. Also con-
sidered are: ω1 = 2° s−1; blue markers after 60 s; red markers after 
90 s; violet markers after 120 s; green markers after 150 s

Fig. 5  Aspect ratios (R) versus time (t) variations for the five mark-
ers, as in Fig. 4, are plotted
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movement. Had we considered circular shear zone to be 
inclined, the velocity profile would presumably depend-
ent on density and viscosity of the shear zone material as 
well.

The new points coming out of this work are (1) shear 
strain at any particular time instant at different points on 
the deformed marker is unequal, (2) deformation in circu-
lar shear zone is inhomogeneous where the aspect ratios 
of markers keeps increasing in a non-uniform manner and 
(3) curvature of shear zone boundaries significantly con-
trols the velocity profiles and the location of the neutral 
point. However, for gently curved boundaries, almost lin-
ear velocity profile would be expected. The present model 
applies theoretically to curved shear zones of any arc 
length.
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Appendix

Fluid motion in the annulus between two rotating concen-
tric cylinder is (eqn 15.38 of Williams and Elder 1989):

Here, vθ: linear velocity of fluid along the azimuthal 
direction; θ: meridional angle (defined in Fig. 1); r: dis-
tance between the centre and the spot where the velocity 
(vθ) is considered.

Integrating Eq. (1) twice:

Here, C1 and C2 are integration constants.
When both the boundaries rotate in the same direction 

with the same speed, i.e. at both r = R1, R2; vθ = −R1ω1, 
the velocity profile becomes:

When the outer boundary rotates anticlockwise with an 
angular velocity −ω1 and the inner one clockwise with ω2, 
i.e. at r = R1, vθ = −R1ω1; and at r = R2, vθ = R2ω2, the 
velocity profile (Fig. 2) is given by:
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In Eq. (3), putting vθ = 0, and solving r, we obtain the 
polar coordinate of the ‘neutral point’:

One of these coordinates falls inside the shear zone, and 
the other outside it.

When only the outer boundary is static (ω1 = 0; ω2 ≠ 0), 
one of the neutral points (0, R1) lies on the outer boundary 
of the shear zone. Similarly, when only the inner boundary 
is static (ω2 = 0; ω1 ≠ 0), one of the neutral points (0, R2) 
lies on the outer boundary.

At least one of the neutral points lies inside the shear 
zone if the two boundaries rotate in opposite directions (i.e. 
if ω1 > 0 then ω2 < 0 and vice versa) (Fig. 2). Both the neu-
tral points plot outside the shear zone if both the bounda-
ries rotate in the same direction but with unequal speed (i.e. 
either ω1 ≠ ω2 > 0 or ω1 ≠ ω2 < 0).
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