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2003). Simple shear, a type of ductile shear, involves move-
ment of boundaries parallel to themselves (Ramsay 1980). 
This leads to movement of material points within the shear 
zone parallel to the shear zone boundaries. This deforma-
tion has been well described in fluid mechanics as Couette 
flow (Schlichting and Gersten 1999) where a linear velocity 
profile forms when the boundaries are parallel. A second 
classical consideration in structural geology has been that 
the ‘no-slip boundary condition’ prevails during all kinds of 
shear deformation. This means that the fluid in contact with 
the solid boundary is presumed to attain the same velocity 
as the boundary. The theory of Prandtl layer suggests this 
no-slip boundary condition (Eckert 2006).

In two aspects, the concept needs revision: (1) ‘slip 
boundary conditions’ may prevail in shear zones in rocks; 
and (2) simple shear in large hot orogens, such as in the 
Greater Himalayan Crystallines (GHC) in the Himalaya 
(Beaumont et al. 2001) and Andes (Rivers 2009), is accom-
panied by an extrusive pressure gradient-induced Poiseuille 
flow where slip boundary condition is to be applied. High-
strain zones would develop near the shear zone boundaries 
in the case of slip boundary condition, and this is similar 
to the no-slip condition. Conventional shear strain analy-
ses (Davis et  al. 2012; Mukherjee 2015 etc.) therefore 
may not discriminate ductile shear zones with from with-
out slip boundary conditions. Whether or not ‘no-slip’ or 
slip boundary conditions occur in geological shear zones 
has not been tested or discussed explicitly (e.g. in Flei-
tout and Froideavaux 1980; Ramsay 1980; Regenauer-
Lieb and Yuen 2003). However, Czeck and Hudleston 
(2004) reviewed possibility of slip boundary conditions 
in transpression zones. Typically, ductile shear fabrics 
(Berthé et  al. 1979; Mukherjee 2011), usually devoid of 
markers, are inconclusive. Note that Duprat-Oualid et  al. 
(2015) recently presented diffusion, advection and shear 

Abstract  Extrusion by Poiseuille flow and simple shear 
of hot lower crust has been deciphered from large hot oro-
gens, and partial-slip boundary condition has been encoun-
tered in analogue models. Shear heat and velocity profiles 
are deduced from a simplified form of Navier–Stokes equa-
tion for simple shear together with extrusive Poiseuille flow 
and slip boundary condition for Newtonian viscous rheol-
ogy. A higher velocity at the upper boundary of the shear 
zone promotes higher slip velocity at the lower boundary. 
The other parameters that affect the slip are viscosity and 
thickness of the shear zone and the resultant pressure gradi-
ent that drives extrusion. In the partial-slip case, depend-
ing on flow parameters (resultant pressure gradient, density 
and viscosity) and thickness of the shear zone, the velocity 
profiles can curve and indicate opposite shear senses. The 
corresponding shear heat profiles can indicate temperature 
maximum inside shear zones near either boundaries of the 
shear zone, or equidistant from them.
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Introduction

The study of ductile shear zones is of great importance in 
tectonics and earthquake studies (Regenauer-lieb and Yuen 
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heat though a numerical model as the three sources of heat 
in ductile shear zones. These authors considered all these 
three components to be important and did not undermine 
shear heat.

Lauga et al. (2007) pictorially presented ‘slip length’ (λ) 
that quantifies ‘no slip’ (λ = 0), ‘partial slip’ (∞ > λ > 0) and 
‘perfect slip’ (λ = ∞) (Fig. 1). Richardson (1973) presented 
an easy-to-comprehend diagram of channel/Poiseuille flow 
with no slip (λ = 0) and with complete slip (λ = ∞) (Fig. 2). 
It is worth noting that in Fig. 2, perfect slip is applied to both 
the upper and lower boundaries in contrast to the model pre-
sented below. A slip boundary condition is applied at a single 
boundary for the sake of simplicity. Recent fluid mechanics 
texts refer/review that slip boundary condition is not uncom-
mon in nature (Boquet and Barrat 2007; Lauga et al. 2007). 
Melts of polymers at elevated pressure flow with a slip 
boundary condition (Pozrikidis 2009). λ rises with viscos-
ity, rate of shear and wetting. Also, the less hydrophobic the 
shear zone boundary is, the higher the value of λ (Bonac-
curso et  al. 2003). Ductile deformation of rock is approxi-
mated by a linear viscous fluid.

Shear zones associated with rifts formed in the lower 
crust and upper mantle can be hydrated significantly, and 

simple shear can be the dominant deformation mechanism 
(Muntener and Hermann 2001). Shear zones in ridge tecton-
ics allows fluid infiltration (Boudier and Al-Rajhi 2014) and 
subsequent additional lubrication. That melt influx/partial 
melting can augment ductile shear is well known (Hollister 
and Crawford 1986). Such melt-triggered shear happens usu-
ally in low-grade rocks (Passchier and Trouw 2005). Pres-
ence of leucogranitic melt along both S- and C-shear planes 
observed in migmatites in meso-scale has been interpreted 
as syn-shear migmatization (Mukherjee 2007, 2010, 2014a; 
Mukherjee and Koyi 2010). Melts in ductile shear zones 
might lubricate and create a slip boundary condition.

The GHC, recognised as a ductile shear zone (Mukher-
jee and Koyi 2010), dips ~N/NE at 30°–60° (Mukherjee 
2013), and there was an influx of fluid into the GHC across 
its lower and southern boundary: the Main Central Thrust 
(MCT) (Guo and Wilson 2012). This suggests that slipping 
might occur along the southern boundary of the GHC dur-
ing the evolution of the shear zone whatever be the fluid 
influx mechanism. It is not possible to quantify λ at the 
southern boundary.

Simple shear experiments performed in geological labo-
ratories have created partial-slip conditions despite aiming 
for ‘no-slip’ conditions (Frehner et  al. 2011). Mukherjee 
et al. (2012) documented Poiseuille flow with slip in their 
analogue-modelled slow extrusive flow of Newtonian vis-
cous polydimethylsiloxane through an inclined channel. 
Velocity profiles for (1) plane Poiseuille flow with slip and 
no-slip conditions, (2a) Poiseuille flow through inclined 
channel and (2b) Couette–Poiseuille flow are already avail-
able (Papanstasiou et  al. 2000; see Warren et  al. 2008a, 
b, c for geological/tectonic contexts). Shear heat profiles 
for a single- layered and double-layered simple shear 
zones under no-slip boundary condition too were deduced 
(Mukherjee and Mulchrone 2013; Mulchrone and Mukher-
jee in press). This paper deduces velocity and shear heat 
profiles for ductile simple shear zones with an extrusive 
Poiseuille flow component and a slip boundary condition.

The model

Velocity profiles

A shear zone inclined at an angle θ to the horizontal is con-
sidered with thickness h (Fig. 3). The shear zone comprises 
a Newtonian viscous fluid of density ρc and viscosity µ. A 
pressure gradient of dp/dx acts along the channel which is 
related to a gravity component acting on the material inside 
shear zone (ρcg sin θ) and an extrusion component (E) 
which may be due to a number of factors including density 
driven extrusion or possibly orogenic collapse. A veloc-
ity of U in the positive x direction is present at the upper 

Fig. 1   Couette flow with three possibilities of slip. Blue lines veloc-
ity profiles. Drawn following Fig. 19.1 of Lauga et al. (2007). a No 
slip λ =  0, b partial slip 0 < λ ∞, c perfect slip λ = ∞

Fig. 2   Poiseuille flow with no slip and perfect slip. Blue lines veloc-
ity profiles. Drawn following Fig. 1 of Richardson (1973)
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boundary (Fig.  3), and slip occurs at the lower boundary. 
Slip is modelled by a Navier boundary condition (Boquet 
and Barrat 2007) whereby the shear stress at the slipping 
interface is proportional to the difference in velocity across 
the boundary with constant of proportionality κ. In this 
model, � =

µ
κ
.

The governing equation for velocity u in the x direction 
is (Turcotte and Schubert 2002, pp. 227–228):

where in the present case: G = E − ρc gsin θ; dp/dx = −G.
In other words when E > ρcg sin θ, then G > 0 and the 

Poiseuille component of the flow is up the channel. Rele-
vant boundary conditions are:

Noting that τ = µ du
dy

 is the shear stress, κ in the second 
boundary condition represents the proportionality between 
shear stress and the difference in velocity across the lower 
boundary, i.e. u(0)− 0. For lower values of κ, the bound-
ary slips more easily, whereas for higher values of κ, the 
boundary becomes stickier.

Upon solution the expression for velocity across the 
shear zone is given by:

The velocity at the base of the shear zone is generally 
nonzero and is given by:

This shows that the higher the velocity (U) at the upper 
boundary, the higher the slip velocity at the lower boundary. 

(1)µ
d2u

dy2
=

dp

dx

u(h) = U; u(0) =
µ

κ

(

du

dy

)

y=0

(2)u(y) =
U(κy + µ)

hκ + µ
+

G(h− y)(yµ+ h(κy+ µ))

2µ(hκ + µ)

(3)u(0) =
Gh2 + 2Uµ

2(hκ + µ)

However, no such simple statement can be made about the 
relationship between slip velocity and viscosity. Noting 
that G > 0 for movement up the channel, this expression is 
always positive. When the shear stress is zero along the base 
(i.e. κ = 0 perfect slip with � = ∞), the basal velocity is:

Maximum velocity inside the shear zone will occur at 
one of the boundaries or inside the shear zone. Using stand-
ard analysis the location of the maximum occurs at:

This means that if κ = 0, then the maximum velocity 
occurs at the base of the shear zone as long as G > 0. In 
general the corresponding maximum velocity is:

However, this maximum lies inside the shear zone (i.e. 
0 ≤ y ≤ h) only if:

along with κ > 0. This implies that the ductile shear sense 
is swapped inside the shear zone across the maximum. For 
example in Fig.  4a, the top two profiles have G ≥ γa and 
the shear sense changes from sinistral to dextral going from 
the lower to upper boundaries. In all other cases, the maxi-
mum velocity occurs at either the upper or lower bound-
ary of the shear zone. Consequently, a single shear sense 
occurs throughout the shear zone. By comparing velocities 
at the two boundaries, the velocity at the base is greater 
than that at the top only if:

When k > 0, then γbγa > 0 allowing visualisation of 
typical expected velocity profiles (Fig. 4).

The velocity at the slipping boundary depends on many 
factors including µ, G, U, h and κ. In Fig.  4a κ > 0. The 
velocity profile with G = 0 is linear and increases from the 
lower to upper boundaries. This is similar to the velocity pro-
file in a horizontal shear zone (green velocity profile in Fig. 2 
of Mukherjee 2013) except that with slip there is a velocity 
discontinuity at the base. When G > γa > 0, the profile is 
quadratic and the maximum velocity is present at the upper 
no-slip boundary. However, when G > γa, the maximum 
velocity occurs inside the shear zone. If G > γb, then the 
velocity at the slipping base of the shear zone exceeds that 
at the upper no-slip boundary and the maximum velocity 
occurs inside the shear zone.

(4)u(0) = U +
Gh2

2µ

(5)y =
κ
(

Gh2 + 2Uµ
)

2G(hκ + µ)

(6)umax =

(

2Uµ+ Gh2
)(

2κ2Uµ+ G(hκ + 2µ)2
)

8Gµ(hκ + µ)2

(7)G ≥ γa =
2κUµ

h2κ + 2hµ

(8)G > γb =
2κU

h

x

y

θ

h

Fig. 3   Layout of the inclined channel considered in model in ‘The 
model’ section
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When the perfect slip condition is applied (κ = 0, see 
Fig. 4b), the maximum velocity always occurs at the lower 
slipping boundary, and velocity profiles are quadratic for 
G > 0. When G = 0, a plug-type flow, like that in Fig. 1c, is 
present. All material points inside the shear zone translate 
identically, and no shear sense develops. In this case, it is 
better not to call the zone a shear zone.

where k is thermal conductivity. Suitable boundary condi-
tions are:

where Tl and Tu are the temperatures at the lower and upper 
boundaries of the channel, respectively. The solution is:

T(0) = Tl, T(h) = Tu

(a)

(b)

Fig. 4   Example velocity profiles with a κ > 0, γa =
2
3
, γb = 2 and b 

κ = γa = γb = 0

(a)

(b)

Fig. 5   Example temperature profiles corresponding to the parameters 
used in Fig. 4, with a κ > 0, γa =

2
3
, γb = 2 and b κ = γa = γb = 0. 

Temperature is scaled with the maximum temperature inside the shear 
zone (Tmax)

Temperature profiles

Following Turcotte and Schubert (2002), Lautrup (2011) 
and Mukherjee and Mulchrone (2013), the temperature (T) 
distribution inside the shear zone is governed by the fol-
lowing general equation:

(9)k
d2T

dy2
+ µ

(

du

dy

)2

= 0

(10)

T(y) = Tl +
(Tu − Tl)y

h
+

U2(h− y)yκ2

2k(hκ + µ)2
−

GU(h− y)yκ(h(h− 2y)κ − 2(h+ y)µ)

6kµ(hκ + µ)2

+
G2

(

h2(h− y)y
(

h2 − 2hy+ 2y2
)

κ2 + 4h(h− y)y3κµ+ 2y
(

h3 − y3
)

µ2
)

24kµ2(hκ + µ)2

Temperatures at the upper and lower boundaries are 
taken to be zero so that only the temperature due to shear 
heating (i.e. viscous dissipation) is shown. The tempera-
ture profile due to shear heating is illustrated in Fig.  5 
for the parameters used in the velocity profile examples 
above. Asymmetrical temperature profiles occur for G > 0 
(Fig. 5). For G > γb, the profile tends to attain it maximum 
near the upper boundary, whereas for γb > G > 0, the max-
imum is towards the lower boundary. If G = 0, parabolic 
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profiles symmetric about the shear zone centre are present. 
Interestingly, the same pattern of shear heat profile was 
deduced for no-slip boundary condition when G = 0 (Fig. 1 
in Mukherjee and Mulchrone 2013). If in addition κ > 0,  
then the material translates with uniform velocity and no 
shear heating is present (Fig. 5b).

Applicability

The model developed applies to ductile simple shear 
zones whose behaviour can be approximated by a New-
tonian fluid (Mulchrone and Mukherjee in press). Fortu-
nately, sheared rocks with several chemical phases and 
minerals approximate as a single fluid in terms of defor-
mation and flow behaviour, and this is especially true for 
oceanic crustal mafic rocks, lower continental crustal-
hydrated mafic rocks and ophiolites (Hirth 2015). Sec-
ondly, the work remains valid so long that shear heating 
is insufficient to change the viscosity of the rock body 
(similar to Ramsay 1980; Mukherjee 2012 etc.). Thus, 
smaller the ductile shear zone, better would be the pre-
sented model. The perfect slip condition (κ = 0, � = ∞) 
will not be present in natural materials including rocks. 
Therefore, Figs.  2b and 3b are not considered realis-
tic models for flow in shear zones in rocks. Instead, the 
κ > 0 (partial-slip) cases shown in Figs.  2a and 3a are 
considered much more likely. The model presented can 
be extended for subduction channels (Mukherjee and 
Mulchrone 2013) and ductile simple shear zones where 
normal fault-like movement takes place possibly because 
an extrusive pressure gradient is not present (i.e. G < 0, 
Mukherjee 2014b). The shear zone was considered to be 
unaffected by metamorphism. As granitoids do not alter 
rheology due to metamorphism (Gerbi et  al. 2015), the 
present work would fit more in ductile shear granitoids. 
Noting actual complicacy in ductile shear zones in proto-
type, Gerbi et al. (2015) rightly stated ’… a simple algo-
rithm predicting shear zone formation will not succeed in 
many geologically relevant instances’.
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