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Abstract—Velocity profiles and shear heat profiles for inclined,

layered Newtonian simple shear zones are considered. Reverse

fault-like simple shear of the boundaries and upward net pressure

gradient act together in such shear zones. As the velocity of the

boundary increases, the point of highest velocity shifts from the

lower layer of less viscosity into the upper layer. The shear heat

profile shows a temperature peak inside the lower layer. For a more

viscous upper layer, the point of highest velocity is located inside

the upper layer and shifts towards the upper boundary of the shear

zone. The shear heat profile shows a maximum temperature within

the upper layer. Depending on the flow parameters of the two

layers, the slip rate of the boundary, and the dip and thickness of

the shear zone, a shear sense in reverse to the relative movement of

the shear zone boundaries may develop. These models can decipher

thermo-kinematics of layered shear zones in plate-scale hot

orogens.

Key words: Ductile shear zones, shear sense, shear heat,

Newtonian fluid, simple shear, Poiseuille flow.

1. Introduction

Ductile simple shear zones in rocks involve very

slow movements parallel to their boundaries (TWISS

and MOORES 2007), with rates of a few millimeters per

year (mm year-1 ) or even less and develop sigmoid

S-fabrics bound by primary shear C-planes (BERTHÉ

et al. 1979; MUKHERJEE 2011). High strain shear zones

developed in polymineralic rocks segregate into lay-

ers of different mineralogies (e.g., NICOLAS 1992;

JOUSSELIN et al. 2012; MONTESI 2013; SHIELDS et al.

2014). Ductile shear zones most commonly consist of

relatively less deformed quartzofeldspathic bands al-

ternated with intensely sheared mica layers (e.g.,

Figure 5.32c of PASSCHIER and TROUW 2005; also see

DRUGUET et al. 2009). Weaker/less competent layers

equivalent to less viscous fluid in the ductile regime

may develop due to inherent rock foliations where

specific mineral aggregates occupy different layers

(ALTENBERGER 1997; LISTER and WILLIAMS 1983;

PASSCHIER and TROUW 2005). In other cases, layer-

parallel simple shear/Couette flow has been reported

(RHODES and GAYER 1978). Therefore, kinematics and

shear heat/viscous dissipation in such layered shear

zones in advanced stages of progressive deformation

are not to be equated with those for shear zones with a

single lithology modeled by many authors (e.g.,

FLEITOUT and FROIDEAVAUX 1980; RAMSAY 1980;

MUKHERJEE 2012; MUKHERJEE and MULCHRONE 2013).

This work furthers that of MUKHERJEE and MULCHRONE

(2013) to demonstrate the kinematics and shear heat

related to layered, inclined simple shear zones. Un-

derstanding kinematics of (simple) shear zones is

important to comprehend tectonics related to them

(see ROSENBERG and HANDY 2000; REGENAUER-LIEB and

YUEN 2003a, b).

2. The Model

2.1. Velocity Profiles

A shear zone with parallel, inclined rigid bound-

aries filled with two immiscible Newtonian fluids of

different densities and viscosities is considered to

undergo a top-to-up dip sense of simple shear (Fig. 1).

The model consists of two layers, an upper layer

(layer-1) with viscosity l1, density q1 and thickness

h1, and a lower layer (layer-2) with viscosity l2,
density q2 and thickness h2. We consider incompress-

ible Newtonian rheology for both layers following a

series of analytical and tectonic models that followed
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the same assumption (e.g., RAMBERG 1981; MUKHERJEE

and MULCHRONE 2012 and references therein). Rela-

tive movement between the boundaries of the shear

zone is modelled by considering the bottom boundary

to be static, and the upper boundary to shear at a

constant velocity (U) towards the up-dip direction.

This is similar to reverse/thrust fault-like movement.

In addition, as is prevalent in hot orogenic channels

(e.g., RIVERS 2009), a pressure gradient (dp/dx)

component is considered to push both layers in the

up-dip direction and is counteracted by the weight of

the fluids along the shear zone. This counteracting

component is given by ‘qigsinh’ where qi is the

density of the fluid, g is the gravity, and h is dip of the
shear zone. Both fluids are considered to flow against

gravity under net pressure gradients (Gi = dp/dx -

qigsinh). MUKHERJEE (2013a) modeled such extrusive

flows to constrain the rheology of a Himalayan shear

zone considering its single ‘representative’ lithology.

In the present case, at the interface between the two

layers, velocity (u) and shear stress (s ¼ l du

dy
) become

equal to satisfy the equation of motion (as in

PAPANSTASIOU et al. 2000; POZRIKIDIS 2009). In other

words, at their interface, two fluids stick together,

attain a common velocity, and slip/faulting between

them is not considered. This is the ‘no slip boundary

condition’ in fluid mechanics. MUKHERJEE (2012,

2013a, b) modelled the slow flow of a single extruding

fluid along with shear at the boundary of the shear

zone (BEAUMONT et al. 2001) as a simple shear since

the distance between the two boundaries of the shear

zone remain unchanged, and fluid particles translate

parallel to the boundaries. We assume temperature

change produced by shear to be insufficient to produce

viscosity change in the two fluids.

The relevant equations are (TURCOTTE and SCHU-

BERT 2014):

l1
d2u1

dy2
¼ G1 ð1Þ

l2
d2u2

dy2
¼ G2 ð2Þ

Here u1 is the velocity in layer-1 and u2 is the

equivalent in layer-2. The required boundary condi-

tions for velocity are:

u2 0ð Þ ¼ 0; u2 h2ð Þ ¼ u1 h2ð Þ; u1 h1 þ h2ð Þ ¼ U ð3Þ

and for shear stress equality they are:

l1
du1

dy
h2ð Þ ¼ l2

du2

dy
h2ð Þ ð4Þ

Solving:

u1 yð Þ ¼ U

a
h2 l1 � l2ð Þ þ yl2ð Þ

þ G1

2l1
y2 � y

a
2h2aþ h2

1h2

� ��

þ h2

a
h1 þ h2ð Þ a� h1l1ð Þ

�

þ G2h2
2

2a
y � h1 þ h2ð Þð Þ

ð5Þ

u2 yð Þ ¼ Ul1y

a
� G1h

2
1y

2a
þ G2y

2l2
y � h2 aþ h1l2ð Þ

a

� �

ð6Þ

where

a ¼ h1l2 þ h2l1: ð7Þ

The position of the maximum velocity in each

layer can be obtained. In layer-1, the maximum, if

existing, occurs at:

y ¼
�2Ul1l2 þ G1 2ah2 þ h2

1l2
� �

� G2h
2
2l1

2aG1

ð8Þ

In layer-2, the maximum, if existing, occurs at:

y ¼ �2Ul1l2 þ G1h
2
1l2 þ G2h2 aþ h1l2ð Þ
2aG2

ð9Þ

The maximum velocity can occur in layer-1 only

when h2 � y� h1 þ h2 and similarly the maximum

Figure 1
The inclined two-layer ductile shear zone. H Dip of shear zone.

Thicknesses of layers 1 and 2 are h1 and h2, respectively
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velocity for layer-2 can occur only for 0� y� h2.

First, for simplified algebraic representation, we

define the following parameters:

b ¼ G2h2
2l1

G1h2
1

; c ¼ �G2h2
2l1 þ G1h

2
1l2

2l1l2
;

d ¼ �2G1h1h2l1 � G2h2
2l1 � G1h2

1l2
2l1l2

Upon analysis, a maximum velocity occurs in

layer-1 when any of the following conditions are

satisfied:

1. 0\l2\b; c�U � d
2. l2 ¼ b; c\U � d
3. l2 [ b; 0\U � d

However a maximum velocity occurs in layer-2

if:

4. 0\l2\b; 0\U � c

This effectively implies that a maximum velocity

occurs either in one layer or the other but not in both

layers simultaneously. Two examples of velocity

profiles are presented in Fig. 2. Starting with a

passive linear marker perpendicular to the bound-

aries, two dissimilar segments of parabolic velocity

profiles develop inside the two fluids for Gi[ 0

(profiles for U = 1–9 in Fig. 2a; Eqs. 5, 6). As

expected, parabolic profiles also develop when both

the boundaries remain static, i.e., U = 0, yet a

pressure gradient extrudes both the fluids, i.e.,

Gi[ 0 (bottommost curve in Fig. 2a). In Fig. 2a,

h2 [ h1; l1 [ l2; G1 [G2 and the critical pa-

rameters are: b ¼ 24; c ¼ 5:75; d ¼ 8:25. In this

case, l2\b, hence condition-1 above may apply.

As U varies from 0 to 5, condition 4 applies and the

maximum velocity occurs in layer-2. When U ranges

from 6 to 8, condition 1 applies and the maximum

velocity occurs within layer-1. For U = 9, the

maximum velocity is attained where layer-1 touches

the upper boundary of the shear zone. In Fig. 2b,

h1 [ h2; l2 [ l1; G2 [G1 and critical parameters:

b ¼ 0:08; c ¼ �5:9; d ¼ 7:3. In this case, l2 [ b and

condition 3 applies. A maximum velocity occurs in

layer-1 while U � d. Hence, a maximum velocity for

U = 8 or 9 occurs where layer-1 touches the upper

boundary of the shear zone.

Depending on (1) the algebraic relation amongst

the flow parameters (density, viscosity, net pressure

gradient) of the two layers, on (2) the slip rate of the

boundary, and dip and thickness of the shear zone,

and, (3) for a layer-1 thinner and more viscous than

layer-2, the maximum velocity attained within the

shear zone can fall inside either layer-2 (for U = 1–5

in Fig. 2a), layer-1 (for U = 6–8 onwards in Fig. 2a),

or at the contact between layer-1 and the upper

boundary of the shear zone (U = 9 in Fig. 2a). Since

the bottom boundary was considered static, velocity

profiles (U = 0–7 in Fig. 2a) in various cases for

layer-2 in contact with the boundary of the shear zone

display no movement. When both the boundaries

remain static, obviously, the velocity profile touches

the two end points of the y-axis (case U = 0 in

Fig. 2a). The ductile shear sense reverses across the

point of maximum velocity in the velocity profile if it

(a)

(b)

Figure 2
Velocity profiles: a for: h2 [ h1; l1 [ l2; G1 [G2; critical

parameters: b ¼ 24; c ¼ 5:75; d ¼ 8:25; b for: h1 [ h2; l2 [ l1;
G2 [G1; critical parameters: b ¼ 0:08; c ¼ �5:9; d ¼ 7:3. Dots

on profiles points of highest velocities. U velocity of shear of the

upper boundary of the shear zone: shown in Fig. 1
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falls inside the shear zone (cases U = 1–8 in Fig. 2a,

and U = 1–6 in Fig. 2b). If the point falls on the

boundary of the shear zone (cases U = 9 in Fig. 2a

and U = 7–9 in Fig. 2b), then a uniform shear sense

develops within the shear zone.

In both cases, the chosen parameters were such

that the parabolic segments in layer-1 in Fig. 2a and

those in layer-2 in Fig. 2b resemble straight lines

opon a cursory observation. In reality, those are

segments of parabolas of low curvatures. A uniform

ductile shear sense develops in those layers for

various slip rates (i.e., for various U values).

2.2. Shear Heat Profiles

Following LAUTRUP (2011) and MUKHERJEE and

MULCHRONE (2013), the temperature (T) distribution

in the steady state is governed by the following

general equation in layer-1 (temperature T1,

h2 � y� h1 þ h2):

k
d2T1

dy2
þ l1

du1

dy

� �2

¼ 0 ð10Þ

In layer-2 (temperature T2, 0� y� h2):

k
d2T2

dy2
þ l2

du2

dy

� �2

¼ 0 ð11Þ

Boundary conditions are T2ð0Þ ¼ T1; T1 h1 þ h2ð Þ
¼ Tu; T1 h2ð Þ ¼ T2 h2ð Þ and heat flux equality at the

boundary between the layers:

k
dT1

dy
h2ð Þ ¼ k

dT2

dy
h2ð Þ ð12Þ

where Tl and Tu are the temperatures at the lower and

upper boundaries of the shear zone, respectively.

These equations are readily solved, and the resulting

equations, owing to their length, are displayed in the

‘‘Appendix’’. The temperature profile due to shear

heating is illustrated in Fig. 3 for the parameters used

in the discussed velocity profile. In addition, the

temperature at the lower and upper boundary is set to

zero so that only the temperature due to shear heating

is plotted.

Figure 3a presents a shear heat/viscous dissipa-

tion profile in the bi-viscous shear zone for the case

of Fig. 2a. Here, when both the boundaries are static,

i.e., U = 0, the shear heat profile is almost bell-

shaped, indicating a broad zone of higher tem-

peratures at the central portion of the shear zone.

With an increasing slip rate (U = 0–9), the point of

maximum temperature developed inside layer-2 shifts

towards the fluid interface.

Figure 3b presents a shear heat/viscous dissipa-

tion profile in the doubly viscous shear zone for the

case of Fig. 2b. The combination of flow parameters

in both the layers are such that an increase in shear

rate U (from 0 to 9) progressively creates a more

intense temperature maximum inside layer-1 closer to

the fluid interface. However, unlike the case of

Fig. 3a, an increase in U does not relocate the point

of maximum temperature significantly.

Notice that, obviously, velocity profiles and shear

heat profiles do not match geometrically (compare

Figs. 2a with 3a, 2b with 3b). In both cases (Fig. 3a,

b), no shear heat is produced at the boundaries of the

shear zone. In addition, when all the other parameters

remain constant, an increase in slip rate increases the

(a)

(b)

Figure 3
Temperature profiles corresponding to the parameters as stated in

caption of Fig. 2. Dots on profiles indicate points of highest

temperatures. U velocity of shear of the upper boundary of the

shear zone: shown in Fig. 1
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shear heat. These conclusions in one way match with

univiscous shear zones in terms of (1) the location of

shear heat development, and (2) the relationship

between slip rate of the boundary and shear heat

(MUKHERJEE and MULCHRONE 2013). Shear heat has

been deciphered from field data (STARIN et al. 2000)

and has been described by analytical models (e.g.,

TURCOTTE and SCHUBERT 2014). Extending the concept

of shear heat to multi-layered sequences with ‘n’

layers, we can say that two shear senses may develop

under coeval extrusive flow and simple shear of shear

zone boundaries. If we consider that the dp/dx com-

ponent does not exist in the natural shear zone, the

present work still remains valid. In that case, we need

consider Gi = -qigsinh in the beginning to get the

velocity and the shear heat profiles. Considering a

set of realistic magnitudes for a biviscous shear

zone: h = 45�, G1 = 1 kbar km-1, G2 = 3 9 105

kbar km-1, U = 2 mm year-1, h1 = 2 km, h2 =

4 km, k1 = 4.2 W m K-1, k2 = 2.1 W m K-1, and

l1 = l2 = 1021 P, a Tmax = 62 �C is attained within

layer-2. On the other hand, taking l1 = 1021 P and

l2 = 1022 P and all other parameters to be the same,

Tmax = 200 �C develops within layer-2.

3. Applicability

Deformation in shear zones, where Poiseuille flow

and ductile shear work together, as in the present

case, has been modeled as Newtonian fluid flow

(WARREN et al. 2008a, b, c), and especially for molten

granites and creep of ultra-high pressure rocks by

dissolution precipitation and granular flow (MUKHER-

JEE and MULCHRONE 2012). Strictly speaking, (1) if the

sizes of mineral grains remain the same during duc-

tile deformation, and/or (2) for very slow deformation

as in the geological cases, the deformation can be

approximated as Newtonian fluid flow (HOBBS 1972).

The first condition seems unlikely in natural ductile

shear zones (see MUKHERJEE 2013b, 2014). It has been

argued that some shear zones reaching the mantle

(PILI et al. 1997) can be Newtonian (RANALLI 1984).

The biviscous model elaborated here ignores

many complicated details of shear zones such as the

effects of geothermal gradient (such as temperature

and, hence, depth dependence of density and

viscosity), the feedback between viscosity and shear

heat, curved (MUKHERJEE and BISWAS 2014) and/or

non-parallel shear zone boundaries (MANDAL et al.

2002), gravitational spreading and/or erosion of the

extruded mass, partial melting, volume change/com-

pressible rheology, strain localization, the occurrence

of pure shear, i.e., widening/narrowing of the shear

zone (e.g., XYPOLIAS 2010), and grain growth, etc.

The present model assumes immiscible Newtonian

viscous fluids to represent layers within rocks, and is

quite unlike two-phase materials under deformation

where one of the phases is an inclusion within the

other (VIGNERESSE 2004). Shear zones can also have

diffuse boundaries (DÍAZ AZPIROZ and Fernández

2005), and contacts between different rock types may

not be perfectly linear nor accurately parallel to the

shear zone boundaries. For ductile shear zones con-

sisting of pinch and swell structures, mullions

(review in HUDLESTON and LAN 1993), microboudins

(MASUDA and KIMURA 2004), mylonites (CHEN et al.

2014), and containing folds of quite different styles/

very high cylindricity (HUDLESTON and TREAGUS

2010), the rheology and has been interpreted to be

non-Newtonian. In such shear zones, the models

presented here would not fit. Crustal ductile shear

zones at shallow depth are heterogeneous (e.g., VI-

TALE and MAZZOLI 2008, 2015) and are not to be

modeled in the way this work did.

4. Discussions

4.1. Small-Scale Context

An alternation of quartzo-feldspathic and mica

layers occurs in ductile shear zones at the cm and mm

scale. The quartzo-feldspathic layers have a density

q = 2,630–2,650 kg m-3 (that of quartz and albite)

and a thermal conductivity k = 2.2–8.4 W m K-1

(that of orthoclase, albite, microcline, anorthite,

quartz and quartzite). On the other hand, mica-rich

layers have q = 2,790–3,050 kg m-3 (that of biotite,

muscovite, phlogopite) and a k = 1.9–4.9 W m K-1

(that of biotite, muscovite, talc, chlorite; HENDERSON

and HENDERSON 2009). Depending on the anisotropy/

imperfection in minerals and pressure–temperature

conditions, the thermal conductivity can vary further.

Thus, variations in ‘q’ and ‘k’ in such layers during

Vol. 172, (2015) Shear Senses and Viscous Dissipation 2639



ductile deformation is expected to develop behaviour

like that shown in Fig. 2a and b.

4.2. Regional Context

In the Greater Himalayan Crystallines, the net

pressure gradient ‘Gi’ has been reported to range

from 0.20 to 6 kbar km-1 (reviewed in MUKHERJEE

2013a). Crustal Poiseuille flow of a single fluid along

with shear of the boundary has been inferred in a few

‘hot’ orogens such as the Andes (RIVERS 2009). For

example, the total slip rate of the lower and the upper

boundaries of the Greater Himalayan Crystallines,

i.e., the Main Central Thrust and the South Tibetan

Detachment System, respectively, were reported to be

as high as 0.7–131 mm year-1 within their periods of

activation. The Greater Himalayan Crystallines com-

plex is 6–58 km thick, ranges in density from 2,200

to 3,100 kg m-3 and has a viscosity within 1017–1024

P (MUKHERJEE 2013a). However, recent field-studies

considered the Greater Himalayan Crystallines to

consist of two layers parallel to its boundaries: the

lower non-migmatitic schists of various metamorphic

grades, and the upper migmatitic layer, presumably

less viscous (MUKHERJEE 2010, 2013a; LARSON et al.

2010). The timing of development of the different

grades of metamorphism within the schist has not

been constrained (YIN 2006). However, Himalayan

geologists assume implicitly that they were coeval.

Secondly, as the amphibolite and greenschist facies

schists are not layered, the present study cannot

create finer models suitable for the prototype. In

addition, the timing of the contact between schists

and migmatites is not constrained in the Himalayan

geological literature (YIN 2006; MUKHERJEE 2013a).

Simultaneous reverse ductile shear has been

established geochronologically for the Greater Hi-

malayan Crystallines (GODIN et al. 2006): top-to-S/

SW shear from the Main Central Thrust and top-to-N/

NE from the South Tibetan Detachment System

around the mid-Miocene period. This is similar to the

presented case in which reverse ductile shear occurs

within two-layered shear zones (Fig. 2a, b).

Density and viscosity of migmatities range from

2.8–3.1 gm cm-3 and 1017–1021 P, respectively. In

schists they range from 2.4–2.9 gm cm-3 and 1019–

1020 P, respectively (Table 1 of MUKHERJEE 2013a).

Ductile shear in the two-layered Greater Himalayan

Crystallines happened during migmatization of the

upper layer during the mid-Miocene (GODIN et al

2006; YIN 2006). Therefore, the density difference

mentioned between the schists and the migmatites

holds true.

It can finally be concluded that the present two-

layer ductile shear zone can help achieve a better

understanding of shear senses and shear heat. Taking

‘Gi’\ 0 and U = 0, it can be applied to predict

kinematics and shear heat profiles of layered sub-

duction channels (WARREN et al. 2008b).
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Appendix

Solutions of Eq. (12): shear heat profile for layer-

1 and 2:

T1 yð Þ ¼ 1

24k h1 þ h2ð Þl1l2 h2l1 þ h1l2ð Þ2

� �G2
2h4

2 �yþ h1 þ h2ð Þl1ðh2
2l1 l1 � 3l2ð Þ

� �

þ 3yh2l1l2 þ h1l2 3yl1 þ 2h1l2ð ÞÞ
þ 2G2ðy� h1 � h2Þh2

2l1l2ð2Ul1ðh2
2ðl1

� 3l2Þþ 3yh1l2 þð3y� 2h1Þh2l2Þ
þG1ð2ðy� h2Þ2h2

2l1 � h3
1ðy� 2h2Þl2

þ h2
1ðyh2ð2l1 � 5l2Þ� h2

2ðl1 � 3l2Þ
þ 2y2l2Þþ 2h1ðy� h2Þh2ðyl1 þðy� h2Þl2ÞÞÞ
þ l2ð4UG1ðy� h1 � h2Þl1l2ð2ðy� h2Þ2h2

2l1

� yh3
1l2 þ h2

1ð2y� 3h2Þðh2ðl1 � l2Þþ yl2Þ
þ 2h1ðy� h2Þh2ðyl1ðy� h2Þl2ÞÞ� 12l1

�ðh1ð�2kh2
1Tl �U2y2l1 þ yh1ð2kTl � 2kTu
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þU2l1ÞÞl22 þ h3
2l1ð�2KTll1 þU2ðl1

� l2Þl2Þ� h2l2ðU2y2l1l2 þ 2kh2
1Tlð2l1

þ l2Þ� 2yh1l1ð2kTl � 2KTu þU2l2ÞÞ
þ h2

2l1ð�2kyTul1 þU2l2ðð�yþ h1Þl1
þð2y� h1Þl2Þþ 2kTlððy� h1Þl1 � 2h1l2ÞÞÞ
þG2

1ðy� h1 � h2Þð2ðy� h2Þ3h3
2l

2
1

þ 2h1ðy� h2Þ2h2
2l1ðyl1 þ 2ðy� h2Þl2Þ

þ h4
1l2ð3h2

2ðl1 � l2Þ� 2y2l2 þ 5yh2l2

þ 2h2
1ðy� h2Þh2ðy2l2ð2l1 þ l2Þþ h2

2l2ð2l1
þ l2Þþ yh2ðl21 � 4l1l2 � 2l22ÞÞþ 2h3

1ðy3l22
� 4y2h2l

2
2 � 2h3

2l
2
2 þ yh2

2ðl21 þ 5l22ÞÞÞÞÞ

T2 yð Þ ¼ 1

24kðh1 þ h2Þl1l2ðh2l1 þ h1l2Þ
2

� ðyG2
2l1ð�h3

2ð�2y3 þ 4y2h2 � 3yh2
2

þ h3
2Þl21 þ 2h3

1ðy3 � 4y2h2 þ 6yh2
2 � 4h3

2Þl22
þ h1h

2
2l1ðð2y3 � 4y2h2 þ 3yh2

2 � 2h3
2Þl1

þ 4ðy � h2Þ3l2Þ þ h2
1h2l2ðð4y3 � 12y2h2

þ 12yh22 � 7h3
2Þl1 þ 2ðy3 � 4y2h2 þ 6yh2

2

� 3h2
3Þl2ÞÞ � 2yG2l1l2ð�2Ul1ðh2

2ð2y2

� 3yh2 þ h2
2Þl1 þ h2

1ð2y2 � 6yh2 þ 3h2
2Þl2

þ h1h2ðyð2y � 3h2Þl1 þ 2ðy2 � 3yh2

þ 2h2
2Þl2ÞÞ þ G1h

2
1ðh2

2ð2y2 � 3yh2 þ h2
2Þl1

þ h2
1ð2y2 � 6yh2 þ 5h2

2Þl2 þ h1h2ðð2y2

� 3yh2 þ 2h2
2Þl1 þ 2ðy2 � 3yh2 þ 2h2

2Þl2ÞÞÞ
þ l2ð�4UyG1h

2
1l1l2ðh1ð3y � 4h2Þl1

þ 3ðy � h2Þh2l1 � h2
1l2Þ þ yG2

1h4
1ð3ðy

� 2h1Þh2l1l2 � h2
2l1ð2l1 þ 3l2Þ

þ h1l2ð3yl1 � h1l2ÞÞ � 12l1ð�2kh2
3Tll

2
1

þ h1l2ð�U2y2l21 � 2kh1ðð�y þ h1ÞÞTl

þ yTuÞl2 þ U2yh1l1l2Þ � h2l2ðU2y2l21
� 2yh1l1ð2kTl � 2kTu þ U2l1Þ
þ 2kh21Tlð2l1 þ l2ÞÞ þ h2

2l1ðyl1ð�2kTu

þ U2l2Þ þ 2kTlððy � h1Þl1 � 2h1l2ÞÞÞÞÞ
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