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Heterogeneous ductile shear zones are very common in the Earth’s lithosphere and are
particularly well exposed in mountain belts (e.g. Iannace and Vitale 2004; Yonkee 2005;
Vitale et al. 2007a,b; Okudaira and Beppu 2008; Alsleben et al. 2008; Sarkarinejad et al.
2010; Kuiper et al. 2011; Dasgupta et al. 2012; Zhang et al. 2013; Samani 2013; Mukherjee
2013, 2014; also see Chapter 9), where they provide useful tools for a better
understanding of the processes and parameters controlling strain localization, type of
deformation, and rock rheology. The occurrence of strain markers such as fossils, ooids
and ellipsoidal clasts in sedimentary rocks, or equant minerals, deflected veins and dykes
in igneous rocks, allows one to quantify the finite strain by means of various methods
(e.g. Dunnet 1969; Fry 1979; Lisle 1985; Erslev 1988; Vitale and Mazzoli 2005, 2010).

Finite strains are all quantities, directly measured or derived, related to the final state of
deformation. These finite quantities, such as strain ratio, effective shear strain (sensu
Fossen and Tikoff 1993), and angle θ’ between the shear plane and oblique foliation in
heterogeneous ductile shear zones, cannot furnish unequivocal information about the
temporal strain evolution (i.e. strain path; Flinn 1962). This is because there are several
combinations of deformation types such as simple shear, pure shear and volume change,
that can act synchronously or at different times, leading to the same final strain
configuration (Tikoff and Fossen 1993; Fossen and Tikoff 1993; Vitale and Mazzoli 2008,
2009; Davis and Titus 2011). Appropriate constraints are needed to obtain a unique
solution – or at least reduce the under-determination. This also implies introducing some
assumptions in the definition of the strain model. The strain path may be envisaged as a
temporal accumulation of small strain increments, and the final strain arrangement as
the total addition (Ramsay 1967). A possible relationship between final strain
configuration and temporal evolution (i.e. incremental strains) was suggested by different
authors, such as Hull (1988), Mitra (1991) and Means (1995). The latter author envisaged
strain softening/hardening as the main rheological control on shear zone evolution: shear
zones characterized by a thickness decreasing with time (Type II) result from strain
softening, whereas shear zones characterized by increasing thickness (Type I) are
produced by strain hardening (Means 1995). Based on this view, each part of a
heterogeneous ductile shear zone is the result of a different strain evolution, and taken all
together, the various shear zone sectors may be able to record the whole strain history.



Alsleben H, Wetmore PH, Schmidt KL, Paterson SR. 2008. Complex deformation as a
result of arc-continent collision: Quantifying finite strain in the Alisitos arc, Peninsular
Ranges, Baja California. Journal of Structural Geology 30, 220–236.

Dasgupta N, Mukhopadhyay D, Bhattacharyya T. 2012. Analysis of superposed strain: A
case study from Barr Conglomerate in the South Delhi Fold Belt, Rajasthan, India.
Journal of Structural Geology 34, 30–42.

Davis JR, Titus SJ. 2011. Homogeneous steady deformation: A review of computational
techniques. Journal of Structural Geology 33, 1046–1062.

Dunnet D. 1969. A technique of finite strain analysis using elliptical particles.
Tectonophysics 7, 117–136.

Erslev EA. 1988. Normalized center-to-center strain analysis of packed aggregates.
Journal of Structural Geology 10, 201–209.

Flinn D. 1962. On folding during three-dimensional progressive deformation. Quarterly
Journal of the Geological Society of London 118, 385–428.

Fossen H, Tikoff B. 1993. The deformation matrix for simultaneous simple shearing, pure
shearing and volume change, and its application to transpression–transtension tectonics.
Journal of Structural Geology 15, 413–422.

Fry N. 1979. Random point distributions and strain measurement in rocks.
Tectonophysics 60, 89–105.

Grant JA. 1986. The isocon diagram – a simple solution to Gresens’ equation for
metasomatic alteration. Economic Geology 81, 1976–1982.

Horsman E, Tikoff B. 2007.Constraints on deformation path from finite strain gradients.
Journal of Structural Geology 29, 256–272.

Hull J. 1988. Thickness-displacement relationships for deformation zones. Journal of
Structural Geology 10, 431–435.

Iannace A, Vitale S. 2004. Ductile shear zones on carbonates: the calcaires plaquettés of
Northern Calabria (Italy). Comptes Rendues Geosciences 336, 227–234.

Kuiper YD, Lin S, Jiang D. 2011. Deformation partitioning in transpressional shear zones
with an along-strike stretch component: An example from the Superior Boundary Zone,
Manitoba, Canada. Journal of Structural Geology 33, 192–202.

Lisle RJ. 1985. Geological Strain Analysis: A Manual for the Rf/  Method. Pergamon
Press, Oxford.



Mancktelow NS, Pennacchioni G. 2005. The control of precursor brittle fracture and fluid-
rock interaction on the development of single and paired ductile shear zones. Journal of
Structural Geology 27, 645–661.

Mazzoli S, Di Bucci D. 2003. Critical displacement for normal fault nucleation from en-
échelon vein arrays in limestones: a case study from the southern Apennines (Italy).
Journal of Structural Geology 25, 1011–1020.

Mazzoli S, Invernizzi C, Marchegiani L, Mattioni L, Cello G. 2004. Brittle-ductile shear
zone evolution and fault initiation in limestones, Monte Cugnone (Lucania), southern
Apennines, Italy. In Transport and Flow Processes in Shear Zones, edited by I. Alsop, and
R.E. Holdsworth, Geological Society, London, Special Publications, 224, pp. 353–373.

Mazzoli S, Vitale S, Delmonaco G, Guerriero V, Margottini C, Spizzichino D, 2009.
“Diffuse faulting” in the Machu Picchu granitoid pluton, Eastern Cordillera, Peru. Journal
of Structural Geology 31, 1395–1408.

Means WD. 1995. Shear zones and rock history. Tectonophysics 247, 157–160.

Mitra G. 1991. Deformation of granitic basement rocks along fault zones at shallow to
intermediate crustal levels. In Structural Geology of Fold and Thrust Belts, edited by S.
Mitra, and G. W. Fisher, Johns Hopkins University Press, Baltimore, pp. 123–144.

Mukherjee S. 2013. Deformation Microstructures in Rocks. Springer, Heidelberg.

Mukherjee S. 2014. Atlas of shear zone structures in Meso-scale. Springer International
Publishing, Cham.

Okudaira T, Beppu Y. 2008. Inhomogeneous deformation of metamorphic tectonites of
contrasting lithologies: Strain analysis of metapelite and metachert from the Ryoke
metamorphic belt, SW Japan. Journal of Structural Geology 30, 39–49.

Passchier C, Trouw R. 2005. Microtectonics. Springer Verlag, Berlin.

Provost A, Buisson C, Merle O. 2004. From progressive to finite deformation and back.
Journal of Geophysical Research: Solid Earth and Planets 109, B02405.

Pennacchioni G. 2005. Control of the geometry of precursor brittle structures on the type
of ductile shear zone in the Adamello tonalites, Southern Alps (Italy). Journal of
Structural Geology 27, 627–644.

Pennacchioni G, Mancktelow NS. 2007. Nucleation and initial growth of a shear zone
network within compositionally and structurally heterogeneous granitoids under
amphibolite facies conditions. Journal of Structural Geology 29, 1757–1780.

Ramsay JG. 1967. Folding and Fracturing of Rocks. McGraw-Hill, New York.

Ramsay JG. 1980. Shear zone geometry: a review. Journal of Structural Geology 2, 83–99.



Ramsay JG, Huber M. 1983. The Techniques of Modern Structural Geology. Volume I:
Strain Analysis, Academic Press, London.

Samani B. 2013. Quartz c-axis evidence for deformation characteristics in the Sanandaj–
Sirjan metamorphic belt, Iran. Journal of African Earth Sciences 81, 28–34.

Sanderson D, Marchini RD. 1984. Transpression. Journal of Structural Geology 6, 449–
458.

Sarkarinejad K, Samani B, Faghih A, Grasemann B, Moradipoor M. 2010. Implications of
strain and vorticity of flow analyses to interpret the kinematics of an oblique convergence
event (Zagros Mountains, Iran). Journal of Asian Earth Sciences 38, 34–43.

Tikoff B, Fossen H. 1993. Simultaneous pure and simple shear: the unified deformation
matrix. Tectonophysics 217, 267–283.

Vitale S, Mazzoli S. 2005. Influence of object concentration on finite strain and effective
viscosity contrast: Insights from naturally deformed packstones. Journal of Structural
Geology 27, 2135–2149.

Vitale S, Mazzoli S. 2008. Heterogeneous shear zone evolution: the role of shear strain
hardening/softening. Journal of Structural Geology 30, 1363–1395.

Vitale S, Mazzoli S. 2009. Finite strain analysis of a natural ductile shear zone in
limestones: insights into 3-D coaxial vs. non-coaxial deformation partitioning. Journal of
Structural Geology 31, 104–113.

Vitale S, Mazzoli S. 2010. Strain analysis of heterogeneous ductile shear zones based on
the attitude of planar markers. Journal of Structural Geology 32, 321–329.

Vitale S, Iannace A, Mazzoli S. 2007a. Strain variations within a major carbonate thrust
sheet of the Apennine collisional belt, northern Calabria, southern Italy. In Deformation
of the Continental Crust: The Legacy of Mike Coward, edited by A.C. Ries, R.W.H. Butler,
and R.H. Graham, Geological Society, London, Special Publications 272, pp. 145–156.

Vitale S, White JC, Iannace A, Mazzoli S. 2007b. Ductile strain partitioning in micritic
limestones, Calabria, Italy: the roles and mechanisms of intracrystalline and
intercrystalline deformation. Canadian Journal of Earth Sciences 44, 1587–1602.

Yonkee A. 2005. Strain patterns within part of the Willard thrust sheet, Idaho–Utah–
Wyoming thrust belt. Journal of Structural Geology 27, 1315–1343.

Zhang Q, Giorgis S, Teyssier C. 2013. Finite strain analysis of the Zhangbaling
metamorphic belt, SE China e Crustal thinning in transpression. Journal of Structural
Geology 49, 13–22.



Sujoy Dasgupta1, Nibir Mandal1 and Santanu Bose2

1 Department of Geological Sciences, Jadavpur University, Kolkata, 700032, India
2 Department of Geology, University of Calcutta, Kolkata, 700019, India

Understanding the shear zone kinematics has enormous implications in interpreting a
wide variety of geological processes, ranging from the exhumation of deep crustal rocks to
the formation of sedimentary basins. Kinematically, ductile shear zones are defined as
regions marked by localization of intense non-coaxial deformations. Considering a
homogeneous strain model, Ramberg (1975) first provided a theoretical analysis of the
general non-coaxial deformations by combining pure shear and simple shear flows. Based

on the kinematic vorticity number, expressed as:  (Truesdell 1954),
where  is the principal longitudinal strain rate and W is the magnitude of the vorticity
vector, Ramberg (1975) has shown characteristic flow patterns in ductile shear zones. His
analysis derives Wk as a function of the ratio (Sr) of pure and simple shear rates, and the
orientation of the principal axes of pure shear with respect to the simple shear frame. For
Wk = 1, shear zone deformations are characterized by shear-parallel flow paths, implying
simple shear kinematics. On the other end, non-coaxial deformations in shear zones with
Wk < 1 develop open hyperbolic particle paths, which transform into closed paths as Wk >
1. However, deformations with Wk > 1 described as a pulsating type, have been rarely
reported from natural shear zones. Ramsay and his co-workers included volume strain in
the kinematic analysis of ductile shear zones (Ramsay and Graham 1970; Ramsay 1980;
Ramsay and Huber 1987). A range of natural structures (at both micro- and mesoscopic
scales), for example, anastomose mylonitic fabrics (Gapais et al. 1987), porphyroclast tail
patterns (Ghosh and Ramberg 1976; Simpson and De Paor 1997; Passchier and Simpson
1986; Mandal et al. 2000; Kurz and Northrup 2008), and instantaneous strain axis (ISA)
(Passchier and Urai 1988; Tikoff and Fossen 1993; Xypolias 2010, and references therein)
have been used to explain these structures and to demonstrate the effects of pure and
simple shear kinematics in ductile shear zones. Similarly, a parallel line of studies has
dealt with structural (e.g. stylolites; Tondi et al. 2006) and chemical criteria (e.g.
enrichment of immobile elements; O'Hara and Blackburn 1989; Mohanty and Ramsay
1994; Srivastava et al. 1995; Fagereng 2013) to determine the volume loss in shear zones.

In many tectonic settings shear zones developed under general non-coaxial deformation
show components of shear and shortening parallel and orthogonal to the shear zone
boundaries, respectively. From a kinematic point of view, these shear zones have been
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The use of grain shape foliations within shear zones as a means to quantify non-coaxial
progressive deformation and to determine sense of shear is now well established in the
literature (see Passchier and Trouw 2005, and references therein). The development of
foliations in shear zones is generally categorized into strain sensitive fabrics that record
the complete finite strain history of a shear zone, and those strain insensitive fabrics that
do not record the full strain history. One of the most common strain insensitive fabrics
observed in low to medium grade mylonitic shear zones is a microscopic oblique foliation
that is typically preserved in aggregates of small dynamically recrystallized grains (Means
1980, 1981, Lister and Snoke 1984). Typically this grain shape preferred orientation
(GSPO) fabric is defined by aligned sub-grains in monomineralic aggregates or layers
within mylonitic shear zones. Oblique foliations are typically developed in quartz (Law et
al. 1990; Lister and Snoke 1984; Dell Angelo and Tullis 1989; Mukherjee and Koyi 2010;
Mukherjee, 2013) and calcite aggregates (de Bresser 1989) but examples of oblique
fabrics in olivine peridotites have also been recorded (Van der Wal et al. 1992). The angle
between this fabric and the plane of shear (fabric attractor) typically ranges from 20° to
40° but can be as high as 60° and lower than 5° (Passchier and Trouw 2005). Oblique
foliations are thought to represent fabrics that have reached a steady state as a
consequence of two competing sets of processes; on one hand those processes that relate
to grain elongation and shape fabric development that are expected in a non-coaxial strain
environment competing against those dynamic recrystallization processes such as grain
boundary migration that tend to counteract the development of the expected strain
sensitive fabric (Means 1980, 1981; Ree 1991). Oblique fabrics are often assumed to be a
product of multiple progressive deformation cycles, whereby a fabric is being continually
created following a finite strain path and destroyed by subsequent or concomitant
dynamic recrystallization. Thus, oblique fabrics are thought to represent a stable steady
state, where the orientation and intensity of the foliation, once established, do not
significantly change over the strain history of a given shear zone. As such, the orientation
of these fabrics in the sense of shear (SOS) plane of a shear zone will therefore stabilize
and lie in an intermediate position somewhere between the orientation of instantaneous
stretching axis (ISA) of the instantaneous strain ellipse and the finite stretching axis
(FSA) of the finite strain ellipse. The implication drawn from this is that the orientation
of an oblique fabric with respect to the shear plane is a function of where the clock



foliation destroying processes (the parameter α) and also the type of deformation (β) or
kinematic vorticity number (Wk), assuming a passive response by grains to deformation.

On the other hand, if the kinematics of deformation can be confidently assumed, it is
possible to estimate the relative strength of the deformation (α) and the competency (μr)
of the inclusions.

The method and analysis presented in this chapter leads naturally to many practical
applications. For example, in a tectonic terrain containing a suite of suitable shear zones
occurring at different structural levels, and assuming simple shear, then it may be
possible to compare the viscosity ratio of host to clast material and the strength of
foliation-destroying processes between shear zones. Another possibility is that, in cases
where passive behavior can be confidently assumed, oblique foliations may be used to
estimate kinematic vorticity number and strength of foliation-destroying processes.

Analysis of experimental and natural examples are consistent with the developed models.
In particular the measured trajectory of steady state aspect ratio and orientation in
experimental data follows theoretical trajectories for estimated parameters.
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The behavior of deformable and rigid inclusions in shear flows poses a fundamental
geological problem and has thus attracted attention in the respective literature for almost
a century (for a recent review, see Marques et al. 2014). As highlighted in the literature
summary tables of Jessell et al. (2009) and Griera et al. (2013), the majority of work has
focused on rigid or deformable purely elastic or viscous inclusions in a purely elastic or
viscous matrix (e.g. Jeffery 1922; Gay 1968; Bilby and Kolbuszewski 1977; Schmid and
Podladchikov 2003). However, it seems generally accepted that the long-term, inelastic
deformation of the lithosphere is not only viscous but sensitive to elastic and plastic
contributions to rheology (Moresi et al. 2002; Kaus and Podladchikov 2006; Regenauer-
Lieb et al. 2006, 2011; Schmalholz et al. 2009; Schrank et al. 2012). Therefore, the
question arises if and how the addition of elasticity and plasticity to rheology affects the
inelastic deformation behavior of inclusions in shear. This work aims to provide a
systematic reference study of the large deformation of single, initially round, fully
bonded, deformable inclusions in isothermal two-dimensional (2D) simple shear with
Dirichlet boundary conditions (constant velocity) and a hyperelastoviscoplastic rheology
(Karrech et al. 2011b, c).

The prefix “hyper-” indicates that the stresses are derived from the strain energy potential
and not simply assumed to be a single-valued function of strain (e.g. chapter 2 of Houlsby
and Puzrin 2007). The consideration of elasticity at large strains poses a particular
challenge because the mathematical treatment of large transformations requires an
objective formulation of the stress rate considering both advective and corotational terms
(e.g. Mühlhaus and Regenauer-Lieb 2005; Beuchert and Podladchikov 2010). An



2003), and rheologically relevant feedbacks such as shear heating (Fleitout and
Froidevaux 1980; Regenauer-Lieb and Yuen 1998). Moreover, it will be worthwhile to
explore the parameter space for viscosity ratios <10 more closely because Bilby and
Kolbuszewski (1977) noted three characteristic regimes in AR–  space for simple shear of
linear viscous systems. Studies on natural (ten Grotenhuis et al. 2003; Mukherjee 2011)
and modeled (ten Grotenhuis et al. 2002; Treagus and Lan 2003) mineral fish
demonstrate the importance of (non-circular) shape for inclusion deformation, which
highlights another research avenue.
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Fluid caught between rotating cylinders has been intriguing physicists for over 300
years…

R.J. Donnelly (1991)

Ductile shear zones have so far been modeled mainly as zones of single lithology and with
straight parallel and rigid boundaries (Ramsay 1980). Following this, thermal models of
ductile shear zones were also provided (Fleitout and Froideavaux 1980). However, (i)
natural shear zones can have curved boundaries in regional-scale, and (ii) may consist of
more than one lithology. For example, crustal cross-sections of collisional orogens
deduced from geophysical studies reveal shear zones with curved boundaries (Beaumont
et al. 2001 and references therein). On the other hand, pronounced ductile shear
segregates specific mineral assemblages for polymineralic rocks into zones with their
interfaces parallel to the shear zone boundaries (Druguet et al. 2009). Layered shear
zones have been reported/studied in granulite facies rocks (Ji et al. 1997), in models with
ice (Wilson et al. 2003), from collisional terrains (Mukherjee and Koyi 2010), and in
granular materials (Börzsönyi et al. 2009), besides most common cases of micaceous
minerals alternating with quartzofeldspathic minerals in mylonites (Lister and Snoke
1984). Those two natural cases (i) and (ii) have recently been modeled individually
(Mukherjee and Biswas 2014; Mulchrone and Mukherjee, in press) to deduce velocity
profiles and shear senses. This work considers the two cases together to deduce and
interpret velocity profiles of biviscous curved ductile simple shear zones. We do not
address here shear zone related folds (see Mukherjee et al. 2016, Chapter 12).

We use the Taylor–Couette flow model (Taylor 1923) to explain the kinematics of
biviscous curved shear zone, as follows. Consider a ductile shear zone with concentric
circular boundaries of radii R1 and R2 (R1 > R2) with two immiscible incompressible
Newtonian viscous fluids within: an outer layer of fluid A with a viscosity μa, and an inner
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How continental crust and lithosphere absorbs ductile deformations is debated. In
particular, how far deformation in the middle and deep crust localizes in narrow shear
zones or is broadly distributed is discussed. Some see the continental crust as coherent
blocs separated by fault zones where most of the deformation is absorbed (e.g.
Tapponnier et al. 2001), while others perceive it as a continuous viscous medium where
deformation is widely distributed (e.g. Beaumont et al. 2001; Mukherjee 2012). If GPS
studies constrain the short-term repartition of deformation at the surface of the
continents, we know less about deeper and longer-term deformations significant for the
geological history of continents. This is because even if many theories and descriptions of
ductile deformations exist (e.g. Ramsay 1980; Mukherjee 2012, 2013), quantification of
their amount and furthermore rate are scarce. Indeed, ductile deformation rates in
natural settings have been effectively measured in only three cases (Christensen et al.
1989; Müller et al. 2000; Sassier et al. 2009). However, Boutonnet et al. (2013) proposed
recently a method to measure deformation rates in quartz bearing rocks deformed in the
dislocation–creep regime, which could be used in numerous ductile shear zones.

This method, called quartz-strain-rate-metry (QSR), relies both on a piezometer, a flow
law calibrated for quartz dislocation-creep recrystallization, and precise measurements of
the temperature of deformation (Boutonnet et al. 2013). Such a method was formalized
from laboratory experiments that quantitatively describe the properties of quartz at
millimeter scales and at deformation rates of ~10–6 s–1. A first set of experiments
established piezometer relationships linking the size of recrystallized grains to the applied
stress (e.g. Twiss 1977; Stipp and Tullis 2003) while a second set established power flow
laws linking the stress to the temperature and the deformation rate (e.g. Hirth et al. 2001;
Gleason and Tullis 1995; Paterson and Luan 1990; Luan and Paterson 1992). However,
extrapolating from the scale of the experiment to the scale of the natural shear zones is a
considerable leap across 8–10 orders of magnitude for the deformation rate, in order to
reach the natural values of ~10–14 s–1. Furthermore, for a given crystal size and a given
temperature, results of the QSR vary by five orders of magnitude, depending on the
piezometer and power flow law that are chosen (Jerabek et al. 2007). In resolving that
problem, Boutonnet et al. (2013) performed an empiric calibration of the QSR method
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Structural evolution of collisional orogens depends closely on how major shear zones
develop and evolve. These shear zones, in turn, control aspects of the geometry and
thermal structure of the orogenic wedge. Consequently, analysis of the thermal structure
along major shear zones can discriminate among large-scale thermal–mechanical models.
The Himalayan orogen provides one example where two competing orogenic models –
channel flow vs. critical taper – predict vastly different thermal gradients along the
underlying master decollement. Himalayan thrusts are not generally exposed for long
distances across strike, however, so accurate determination of down-dip thermal
gradients is difficult. Within this context, the Caledonian orogen in Norway and Sweden,
which is often compared with the Himalaya, provides an unparalleled opportunity to
investigate down-dip temperatures. Due to the unusual and consistent exposure of thrust
surfaces for ~140 km across strike, thermometry along the deeply eroded remains of this
late Silurian-early Devonian orogen (Gee and Sturt 1985) provides a unique opportunity
to test competing models of the thermal and kinematic evolution of shear zones and
orogens. Here, we report temperatures of deformation in ductilely sheared rocks
(mylonites) from a northern transect across the Scandinavian Caledonides using the
titanium-in-quartz thermobarometer (TitaniQ; Wark and Watson 2006; Thomas et al.
2010) to investigate the dynamics of quartz recrystallization during shear and to
discriminate among competing thermal models for orogenic evolution.

TitaniQ offers several advantages over other thermobarometers. First, it can be applied
over a wide range of rocks because quartz, the only phase that requires analysis, is stable
over a large range of temperatures and pressures. Second, domains with different Ti-
content can be readily identified and targeted for analysis because cathodoluminescence
(CL) intensity correlates with trace element content (Rusk et al. 2008; Spear and Wark
2009; Kohn and Northrup 2009). Last, TitaniQ is unusually precise (±3°C at a specified
pressure; Wark and Watson 2006).

We evaluated TitaniQ temperatures in mylonites (T m) from the well-exposed basal thrust
zone (BTZ) of the northern Scandinavian Caledonides (Fig. 7.1) and compared them with



(Northrup 1996a) and is evidenced by spreading lineations in all directions. Therefore, we
suggest that the Caledonides dominantly formed by critical wedge kinematics
accompanied by gravitational spreading of the nappes, but without significant thermal
contributions from channel flow.

Our results provide a new approach for understanding the dynamics of thrust movement.
Most studies of temperatures and temperature gradients focus on (oblique) cross-
sections upwards or downwards through a section. Not all such gradients help
discriminate among thermal models, for example the temperature gradient across the
Main Central (basal) thrust of the Himalaya can be explained by nearly any model,
including channel flow or critical taper (Kohn 2008). TitaniQ in deformed quartz now
allows exploration of thermal gradients along the transport direction of a thrust to be
determined. In the case of critical taper vs. channel flow, the transport-parallel gradient is
far more diagnostic than cross-structure gradients. Future work could explore this novel
approach in other orogens to discriminate mechanisms of heat transport and models of
crustal deformation and evolution.
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High-strain deformation within the Earth’s crust often occurs in localized, narrow, and
sub-parallel wall-sided zones known as shear-zones, which accommodate differential
movement during the deformation of the lithosphere. They may be related to any tectonic
regime (compression, extension, or strike–slip), varying in width from
microns/millimeters (grain-scale) to kilometers (mega-shears). The heterogeneous
character of natural deformation in shear zones produces characteristic fault rocks as
mylonites and cataclasites, developed under deep-seated (10–25 km deep) ductile
(viscous) or shallow-crustal (0–15 km deep) brittle–ductile (frictional–viscous)
deformation regimes, respectively (e.g. Ramsay and Graham 1970; Sibson 1977, 1983;
Ramsay 1980; Alsop and Holdsworth 2004).

The analysis of brittle–ductile and ductile shear zones exhumed and/or extruded and
exposed at the surface through a variety of approaches and across a range of scales is
essential for unraveling deformation histories. Deciphering the kinematic significance of
deformation fabrics within fault rocks and reconstructing the regional tectonics
contribute profoundly to understand how localized crustal deformation occurs (e.g. Casas
and Sàbat 1987; Alsop et al. 2004; Carosi et al. 2004; Iacopini et al. 2008; Mukherjee
2007, 2010a,b, 2011, 2013a, b, c, 2014a, b; Mukherjee and Koyi 2010a,b; Calamita et al.
2012a; Tesei et al. 2013).

In this chapter the geometric and kinematic characteristics of shear deformation fabrics
associated with frontal and oblique ramps belonging to curve-shaped thrusts are
described. A detailed mesoscale structural and kinematic analysis is presented by
examining some remarkable examples of brittle–ductile thrust shear zones related to
regional-scale frontal and oblique thrust ramps in the Central–Northern Apennines of
Italy.

Brittle–ductile and ductile shear zones related to thrust faults generally develop under
dominant simple shear deformation (Mukherjee 2012a,b, 2014c; Mukherjee and



structures developing within in-sequence thrusting. In addition, S-C fabrics associated
with sub-simple shear deformation may develop in the footwall of reactivation-related
oblique thrust ramps along gently-propagating splay thrusts within push-up inversion
structures.

This study provides insights and potentially represents analogs when examining shear
fabrics of brittle–ductile shear zones associated to frontal and oblique ramps within
curved thrust systems belonging to thrust belts that enjoyed structural inheritance of
extensional faults, as in the Apennines.
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The Phulad Shear Zone (PSZ) is situated within the Delhi mobile belt in the state of
Rajasthan in western India (Fig. 9.1). The shear zone is marked by the occurrence of
mylonite, containing layers of metamorphosed siliciclastic rocks within a calcareous
matrix (Ghosh et al. 1999, 2003; Golani et al. 1998; Roy and Jakhar 2002; Sengupta and
Ghosh 2004, 2007). The mylonitic foliation has a general attitude of 035°/70°E. There is
strong down-dip stretching and striping lineation parallel to the transport direction. Our
detailed study of mesoscopic structures in this area shows the presence of at least three
generations of reclined folds and a later generation of subhorizontal folds (Ghosh et al.
1999, 2003; Sengupta and Ghosh 2004, 2007). These folds developed in the mylonitic
foliation during progressive ductile shearing with their axial surface parallel to the
foliation. Asymmetry of mesoscopic structures indicates a thrusting sense of movement
towards NW and a subhorizontal vorticity vector (Ghosh et al. 1999; Sengupta and Ghosh
2004).
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Ductile shear zones are storehouse of deformation fabrics that provide critical
information on the mechanism of deformation operated at meso- to microscale, the
rheology of rocks at different physicochemical conditions, and the processes that help
exhumation of deep-seated rocks at shallower crustal levels (Vernon 2004; Passchier and
Trouw 2005; Mukherjee 2012, 2013). Ductile shear zones also act as conduits for
extraneous fluids and melts (Vernon 2004; reviewed in Harlov and Austrheim 2013).
These fluids are not in equilibrium with the rocks they infiltrate and hence induce
significant changes in chemistry (major, trace, and isotope), mineralogy, and rheology,
and seismic properties of the host rocks (cf. Harlov and Austrheim 2013 and Vernon
2004). Fluid flow along crustal-scale ductile shear zones, therefore, has important
consequences for thermal and chemical evolution of the continental crust (cf. Harlov and
Austrheim 2013). Granitic rocks in the hydrated ductile shear zone display a plethora of
microstructures and reaction textures that provide valuable insight about fluid flow,
deformation kinematics, and mass transport in shear zones (cf. Vernon 2004; Passchier
and Trouw 2005; Harlov and Austrheim 2013; Mukherjee 2013). The South Purulia Shear
Zone (SPSZ) of the East Indian shield exposes complexly folded, sheared, and
dismembered rock suites including metapelites, metabasites, granitoids, alkaline rocks,
and carbonatite. No age data exist to fix the timing of deformation and metamorphism.
One deformed and metamorphosed alkaline rock suite at Sushina has been dated to be
0.93 Ga (Reddy et al. 2009; Chatterjee et al. 2013).

In this chapter we present microstructures and reaction textures of a porphyritic granite
that emplaced and subsequently deformed and metasomatized within the SPSZ.
Deformation and petrologic attributes of the porphyritic granite are thus the subject of
the present communication. Integrating the results of microstructural analyses, textural
modeling, mass balance calculations, and numerical modeling of representative bulk rock
composition, we tried to trace the physicochemical changes of porphyritic granite during
the evolution of the SPSZ.

The SPSZ, a part of the ~E W to ESE–WNW trending Tamar-Porapahar lineament of the
east Indian shield occurs at the interface between two crustal blocks with contrasting



Acharyya A, Roy S, Chaudhuri BK, Basu SK, Bhaduri SK, Sanyal SK. 2006. Proterozoic
rock suites along south Purulia shear zone, eastern India: Evidence for rift related setting.
Journal of Geological Society of India 68, 1069–1086.

Ague JJ, van Haren JLM. 1996. Assessing metasomatic mass and volume changes using
the bootstrap, with application to deep-crustal hydrothermal alteration of marble.
Economic Geology 91, 1169–1182.

Ague JJ. 1994. Mass transfer during Barrovian metamorphism of pelites, south-central
Connecticut. I: evidence for changes in composition and volume. American Journal of
Science 294, 989–1057.

Bhattacharyya DS. 1992. Early proterozoic metallogeny, tectonics and geochronology of
the singhbhum Cu-U belt, eastern India. Precambrian Research 58(1), 71–83.

Brimhall GH, Lewis CJ, Ague JJ, et al. 1988. Metal enrichment in bauxites by deposition
of chemically mature Aeolian dust. Nature 333, 819–824.

Bucholz CE, Ague JJ. 2010. Fluid flow and Al transport during quartz-kyanite vein
formation,Unst, Shetland Islands, Scotland. Journal of Metamorphic Geology 28, 19–39.

Chakrabarty A, Sen AK. 2010. Enigmatic association of the carbonatite and
alkalipyroxenite along the Northern Shear Zone, Purulia, West Bengal: a saga of primary
magmatic carbonatite. Journal of the Geological Society of India 76, 403–413.

Chatterjee P, De S, Ranaivoson M, Mazumder R, Arima M. 2013. A review of the w1600
Ma sedimentation, volcanism, and tectono-thermal events in the Singhbhum craton,
Eastern India. Geoscience Frontiers 4, 277–287.

Chowdhury P, Talukdar M, Sengupta P, Sanyal S, Mukhopadhyay D. 2013. Control of P-T
path elements mobility on the formation of corundum pseudomorphs in
palaeoproterozoic high-pressure anorthosite from Sittampundi, Tamilnadu, India.
American Mineralogist 98, 1725–1737.

Connolly J. 2005. Computation of phase equilibria by linear programming: A tool for
geodynamic modeling and its application to subduction zone decarbonation. Earth and
Planetary Science Letters 236, 524–541.

Dickson FW. 1996. Porphyroblasts of barium-zoned K-feldspars and quartz, Papoose Flat,
Inyo Mountains, California, genesis and exploration implications. In Geology and ore
deposits of the American Cordillera, edited by A.R. Cooper and P.L. Fahey, Geological
Society of Nevada, Reno, pp. 909–924.

Dunn JA, Dey AK. 1942. The geology and petrology of eastern Singhbhum and
surrounding areas. Memoir. Geological Survey of India 69, 281–450.

Grant JA. 1986. Theisocon diagram – a simple solution to Gresens_equation for
metasomatic alteration. Economic Geology 81, 1976–1982.



Gresens RL. 1967. Composition–volume relations of metasomatism. Chemical Geology 2,
47–65.

Harlov DE, Austrheim H. 2013. Metasomatism and the Chemical Transformation of Rock.
Lecture notes in Earth System Sciences, Springer-Verlag, Berlin, Heidelberg.

Hey MH. 1954. A new review of the chlorites. Mineralogical Magazine 30, 277–292.

Holland TJB, Powell R. 1998. An internally consistent thermodynamic data set for phases
of petrological interest. Journal of Metamorphic Geology 16, 309–343.

Kretz R. 1983. Symbols for rock-forming minerals. American Mineralogist 68(1–2), 277–
279

Lang HM, Wachter AJ, Peterson VL, Ryan JG. 2004. Coexisting clinopyroxene/spinel and
amphibole/spinel symplectites in metatroctolites from the Buck Creek ultramafic body,
North Carolina Blue Ridge. American Mineralogist 89, 20–30.

Mahadevan TM. 1992. Geological evolution of the Chotonagpur gneissic complex in part
of Purulia district, West Bengal. Indian Journal of Geology 64, 1–22.

Mahato S, Goon S, Bhattacharya A, Misra B, Bernhardt HJ. 2008. Thermotectonic
evolution of the north Singhbhum mobile belt: a view from the western part of the belt.
Precambrian Research 162, 102–107.

Manning CE. 2007. Solubilty of corundum+kyanite in H2O at 700°C and 10 kbar:
evidence for Al-Si complexing at high pressure temperature. Geofluids 7, 258–269.

Mukherjee S. 2007. Geodynamics, deformation and mathematical analysis of
metamorphic belts of the NW Himalaya. PhD Thesis, Indian Institute of Technology,
Roorkee, pp. 1–267.

Mukherjee S. 2010a. Structures in meso-and micro-scales in the Sutlej section of the
Higher Himalayan Shear Zone, Indian Himalaya. e-Terra 7, 1–27.

Mukherjee S. 2010b. Microstructures of the Zanskar shear zone. Earth Science India 3, 9–
27.

Mukherjee S. 2011a. Mineral fish: their morphological classification, usefulness as shear
sense indicators and genesis. International Journal of Earth Sciences 100, 1303–1314.

Mukherjee S. 2011b. Flanking microstructures from the Zanskar Shear Zone, NW Indian
Himalaya. YES Bulletin 1, 21–29.

Mukherjee S. 2012. Simple shear is not so simple! Kinematics and shear senses in
Newtonian viscous simple shear zones. Geological Magazine 149, 819–826.

Mukherjee S. 2013. Deformation Microstructures in Rocks, Springer, Berlin.



Mukherjee S. 2014a. Atlas of Shear Zone Structures in Meso-Scale. Springer, Berlin.

Mukherjee S. 2014b. Review of flanking structures in meso-and micro-scales. Geological
Magazine 151, 957–974.

Mukherjee S, Koyi HA. 2009. Flanking microstructures. Geological Magazine 146, 517–
526.

Mukherjee S, Koyi HA. 2010. Higher Himalayan Shear Zone, Zanskar Indian Himalaya:
microstructural studies and extrusion mechanism by a combination of simple shear and
channel flow. International Journal of Earth Sciences 99, 1083–1110.

Mukherjee S, Mulchrone K. 2013. Viscous dissipation pattern in incompressible
Newtonian simple shear zones – an analytical model. International Journal of Earth
Sciences 102, 1165–1170.

Pace P, Calamita F, Tarvanelli E. 2016. Brittle-ductile shear zones along inversion-related
frontal and oblique thrust ramps: Insights from the Central-Northern Apennines curved
thrust System (Italy). In Ductile Shear Zones: From Micro- to Macro-scales, edited by S.
Mukherjee and K.F. Mulchrone, John Wiley & Sons, Chichester, Chapter 8.

Pamplona J, Rodrigues BC, Llana-Fúnez S, Simões PP, Ferreira N, Coke C, Pereira E,
Castro P, Rodrigues J. 2016. Structure and Variscan evolution of Malpica-Lamego Ductile
Shear Zone (NW of Iberian Peninsula). In Ductile Shear Zones: From Micro- to Macro-
scales, edited by S. Mukherjee and K.F. Mulchrone, John Wiley & Sons, Chichester,
Chapter 8.

Passchier CW, Trouw RAJ. 2005. Microtectonics, 2nd edition. Springer, Berlin.

Philpotts A, Ague JJ. 2009. Principles of Igneous and Metamorphic Petrology, 2nd
edition, Cambridge University Press, Cambridge, UK.

Ray S, Biswas S, Chakraborty M, Sanyal S, Sengupta P. 2012. Mass transport during
fennitization of granite at the contact of carbonatite at Beldihi, Purulia, West Bengal, In:
N.V. ChalapathiRao and K. Surya PrakashRao, National Seminar on recent advances and
future challenges on Geochemistry and Geophysics:the Indian scenario, BHU, Abstract
Volume, pp. 114.

Reddy SM, Clarke C, Mazumder R. 2009. Temporal constraints on the evolution of the
Singhbhum Crustal Province from U-Pb SHRIMP data. In: D. Saha and R. Mazumder,
Paleoproterozoic Supercontinents and Global Evolution, International Association for
Gondwana Research Conference Series, Abstract volume, 9, pp. 17–18.

Rosenberg CL, Stuenitz H. 2003. Deformation and recrystallization of plagioclase along a
temperature gradient; an example from the Bergell tonalite. Journal of Structural Geology
25, 389–408.

Sanyal S, Sengupta P. 2012. Metamorphic evolution of the Chotanagpur Granite Gneissic



Complex (CGGC) of Eastern Indian Shield: current status. Geological Society, London,
Special Publication on Palaeoproterozoic of India, 365, pp. 117–145.

Sengupta P, Dasgupta S. 2009. Modelling of metamorphic textures with C-space: evidence
of pan-african high-grade reworking in the eastern ghat belt, India. Indian National
Science Academy 1, 29–39.

Sengupta S, Chatterjee SM. 2016. Microstructural variations in quartzofeldspathic
mylonites and the problem of vorticity analysis using rotating porphyroclasts in the
Phulad Shear Zone, Rajasthan, India. In Ductile Shear Zones: From Micro- to Macro-
scales, edited by S. Mukherjee and K.F. Mulchrone, John Wiley & Sons, Chichester,
Chapter 8.

Spear FS. 1993. Metamorphic phase equilibria and pressure temperature time paths.
Mineralogical Society of America, Washington, D.C.

Talukdar M, Chattopadhyay N, Sanyal S. 2012. Shear controlled fe-mineralization from
parts of South Purulia Shear Zone. Journal of Applied Geochemistry 14, 496–508.

Torres-Roldan RL, Garcia-Casco A, Garcia-Sanchez P. 2000. CSpace: An integrated
workplacefor the graphical and algebraic analysis of phase assemblages on 32-bit wintel
platforms. Computers and Geosciences 26, 779–793.

Tullis J, Yund RA. 1980. Hydrolytic weakening of experimentally deformed Westerly
granite and Hale albite rock: Journal of Structural Geology 2, 439–451.

Vernon HR. 2004. A Practical Guide to Rock Microstructure. Cambridge University Press,
Cambridge.

Wennberg OP. 1996. Superimposed fabrics due to reversal of shear sense: an example
from the Bergen Arc Shear Zone, western Norway. Journal of Structural Geology 18(7),
871–889

Winter JD. 2001. An introduction to Igneous and Metamorphic Petrology. Prentice-Hall
Inc., New Jersey.

Yardley BWD, Gleeson S, Bruce S, Banks D. 2000. Origin of retrograde fluids in
metamorphic rocks. Journal of Geochemical Exploration 69–70, 281–285.



Subhadip Bhadra1 and Saibal Gupta2

1 Department of Earth Sciences, Pondicherry University, R.V. Nagar, Kalapet,
Puducherry 605014, India
2 Department of Geology and Geophysics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, West Midnapore, West Bengal, India

Zones of tectonic convergence or divergence may both develop sedimentary basins (Watts
1992). In convergent zones, crustal loading by thrusting commonly flexes the lithosphere
and forms foreland basins (Fowler 1990; Naylor and Sinclair 2008). On the other hand,
rifting is an alternative important mechanism that may form basins of extensional origin
(McKenzie 1978; Roberts and Bally 2012). Since thrusting and rifting are commonly
associated with processes of continental collision and break-up, large sedimentary basins
may sometimes be correlated with global-scale tectonic events. In such cases, the time–
space evolution of an amalgamated assembly within a Precambrian shield, or of
previously adjacent, now disintegrated landmasses currently located in geographically
separated continents, can be inferred from the spatial and temporal evolution of these
sedimentary basins.

Important in this respect are the Proterozoic sedimentary successions of Peninsular
India, preserved in the Vindhyanchal-, Cuddapah-, Chhattisgarh-, Khariar-, Indravati-,
Pranhita-Godavari, Bhima-, and Kaladgi basins (Fig. 11.1), that are collectively referred to
as “Purana basins” (Holland 1906; Ramakrishnan 1987; Kale 1991; Chaudhuri et al. 1999;
Ramakrishnan and Vaidyanadhan 2008). The association of these basins with the
underlying basement rocks of the Bastar, Dharwar, and Bundelkhand craton make them
particularly interesting, since the cratonic rocks are in juxtaposition with the lithologic
ensemble of the Proterozoic Eastern Ghats Mobile Belt (EGMB) in an intensely
tectonized set up. The evolutionary history of the polychronous, multiply deformed
EGMB is marked by a peak Grenvillian age, granulite facies metamorphism (ca. 1000 Ma,
Kelly et al. 2002; Mezger and Cosca 1999; see Gupta 2012 for review) that affected almost
the entire lithologic ensemble of the northern segment of the granulite belt: this segment
is referred to as the Eastern Ghats Province (Dobmeier and Raith 2003). This was
followed by upper-amphibolite to granulite facies reworking (Bhadra et al. 2003) related
to the juxtaposition of the Eastern Ghats Province (EGP) with the cratonic nucleus of
peninsular India during the Pan-African orogeny (ca. 550 Ma). The western boundary of
the EGP has been described as a thrust (Gupta et al. 2000; Bhadra et al. 2004), although



suggestions. We acknowledge the Elsevier for providing permission to reproduce three
illustrations mentioned in the text. We thank Soumyajit Mukherjee for a detail critical
review and editorial handling. We also thank two anonymous reviewers for their valuable
suggestions. The Council of Scientific and Industrial Research (CSIR), India is
acknowledged for the financial support (grant-in-aid no. 24/243/98/EMR-II).

Basu A, Bickford E. 2014. Contributions of zircon U–Pb geochronology to understanding
the volcanic and sedimentary history of some Purana basins, India. Journal of Asian
Earth Sciences 91, 252–262.

Beaumont C. 1981. Foreland basins. Geophysical Journal of the Royal Astronomical
Society 65, 291–329.

Bhadra S, Bhattacharya A. 2007. The barometer tremolite+tschermackite+2albite =
2pargasite+8quartz: constraints from experimental data at unit silica activity with
application to garnet-free natural assemblages. American Mineralogist 92, 491–502.

Bhadra S, Gupta S, Banerjee M. 2004. Structural evolution across the Eastern Ghats
Mobile Belt – Bastar craton boundary, India: Hot over cold thrusting in an ancient
collision zone. Journal of Structural Geology 26, 233–245.

Bhadra S, Banerjee M, Bhattacharya A. 2003. Tectonic restoration of a polychronous
mobile belt – craton assembly: constraints from corridor study across the western margin
of the Eastern Ghats Belt, India. Memoirs Geological Society of India (Milestones in
Petrology) 52, 109–130.

Bhadra S. 2003. Tectonometamorphic evolution of a craton-mobile belt assembly: the
Bhawanipatna-Deobhog transect, Orissa, India. Unpublished PhD Thesis, IIT Kharagpur.

Bickford ME, Basu A, Patranabis-Deb S, Dhang PC, Schieber J. 2011a. Depositional history
of the Chhattisgarh basin, central India: constraints from new SHRIMP zircon ages.
Journal of Geology 119, 33–50.

Bickford ME, Basu A, Patranabis-Deb S, Dhang PC, Schieber J. 2011b. Depositional
history of the Chhattisgarh basin, central India: constraints from new SHRIMP zircon
ages; a reply. Journal of Geology, 119, 553–556.

Bickford ME, Basu A, Mukherjee A, et al. 2011c. New U-Pb SHRIMP zircon ages of the
Dhamada Tuff in the Mesoproterozoic Chhattisgarh basin, Peninsular India: Stratigraphic
implications and significance of a 1-Ga thermal-magmatic event. Journal of Geology 119,
535–548.

Biswal TK, Jena SK, Datta S, Das R, Khan K. 2000. Deformation of the terrain Boundary
Shear zone (Lakhna shear zone) between the Eastern Ghats Mobile Belt and the Bastar



craton, in the Balangir and Kalahandi district of Orissa. Journal of the Geological Society
of India 55, 367–380.

Biswal TK, Sinha S, Mandal A, Ahuja H, Das MK. 2003. Deformation pattern of Bastar
Craton adjoining Eastern Ghat mobile belt, NW Orissa. Gondwana Geological Magazine,
Special Publication 7, 101–108.

Blumenfeld P, Mainprice D, Bouchez JL. 1986. C-slip in quartz from subsolidus deformed
granite. Tectonophysics 127, 97–115.

Bose S, Dunkley DJ, Dasgupta S, Das K, Arima M. 2011. India-Antarctica-Australia-
Laurentia connection in the Paleoproterozoic-Mesoproterozoic revisited: evidence from
new zircon U-Pb and monazite chemical age data from the Eastern Ghats Belt, India.
Bulletin of the Geological Society of America, 123, 2031–2049.

Bouchez JL. 1977. Plastic deformation of quartzites at low temperature in areas of natural
strain gradient. Tectonophysics 39, 25–50.

Bouchez JL, Pecher A. 1981. The Himalayan Main Central Thrust pile and its quartz-rich
tectonites in Central Nepal. Tectonophysics 78, 23–50.

Bunge HJ, Wenk HR. 1977. Three dimensional texture analysis of quartzite (trigonal
crystal and triclinic specimen symmetry). Tectonophysics 40, 257–285.

Chakraborty PP, Das P, Saha S, Das K, Mishra SR, Paul P. 2012. Microbial mat related
structures (MRS) from Mesoproterooic Chhattisgarh and Khriar basins, central India and
their bearing on shallow marine sedimentation. Episodes 35, 513–523.

Chaudhuri AK, Chanda SK. 1991. The Proterozoic basin of Pranhita-Godavari valley: an
overview. In Sedimentary Basins of India: Tectonic Context, edited by S.K. Tandon, C.C.
Pant, and S.B. Casshyap, Ganodaya Prakashan, Nainital, pp. 13–30.

Chaudhuri AK, Howard JD. 1985. Ramgundam Sandstone—a middle Proterozoic shoal-
bar sequence. Journal of Sedimentary Petrology 55, 392–397.

Chaudhuri AK, Mukhopadhyay J, Patranabis-Deb S, Chanda SK. 1999. The Neoproterozoic
cratonic successions of Peninsular India. Gondwana Research 2, 213–225.

Crawford AR. 1969. Reconnaissance Rb-Sr dating of the Precambrian rocks of southern
Peninsular India. Journal of the Geological Society of India 10, 117–166.

Crawford AR, Crompston W. 1970. The age of the Vindhyan system of peninsular India.
Quaternary Journal of the Geological Society of London 125, 351–371.

Crawford AR, Compston W. 1973. The age of the Cuddapah and Kurnool systems,
Southern India. Journal of the Geological Society of Australia 19, 453–464.

Culshaw N. 1987. Microstructure, c-axis pattern, microstrain and kinematics of some S-C



mylonites in Grenville gneiss. Journal of Structural Geology 9, 299–311.

Dahlen FA. 1990. Critical taper model of fold-and-thrust belt and accretionary wedges.
Annual Review of Earth and Planetary Sciences 18, 55–90.

Das DP, Kundu A, Das N, et al. 1992. Lithostratigraphy and sedimentation of Chhattisgarh
basin. Indian Minerals 46, 271–288.

Das N, Dutta DR, Das DP. 2001. Proterozoic cover sediments of southeastern
Chhattisgarh state and adjoining parts of Orissa. Geological Survey of India, Special
Publication 55, 237–262.

Das K, Yokoyama K, Chakraborty PP, Sarkar A. 2009. Basal tuffs and contemporaneity of
the Chattisgarh and Khariar basins based on new dates and geochemistry. Journal of
Geology 117, 88–102.

Das K, Bose S, Karmakar S, Dunkley DJ, Dasgupta S. 2011a. Multiple tectonometamorphic
imprints in the lower crust: first evidence of ca. 950Ma (zircon U-Pb SHRIMP)
compressional reworking of UHT aluminous granulites from the Eastern Ghats Belt,
India. Geological Journal 46, 217–239.

Das P, Das K, Chakraborty PP, Balakrishnan S. 2011b. 1420 Ma diabasic intrusives from
the Mesoproterozoic Singhora Group, Chattisgarh Supergroup, India: Implications toward
non-plume intrusive activity. Journal of Earth System Science 120, 1–14.

Davis D, Suppe J, Dahlen FA. 1983. Mechanics of fold-and-thrust belts and accretionary
wedges. Journal of Geophysical Research 88, 1153–1172.

Dewey JF, Holdsworth RE, Strachan RA. 1998. Transpression and transtension zones.
Geological Society of London, Special Publications 135, 1–14.

Dobmeier CJ, Raith M. 2003. Crustal architecture and evolution of the Eastern Ghats Belt
and adJacent regions of India. In Proterozoic East Gondwana: supercontinent assembly
and breakup, edited by M Yoshida, BF Windley, and S Dasgupta, Geological Society,
London, Special Publications 206, pp. 145–168.

Fossen H, Tikoff B. 1993. The deformation matrix for simultaneous simple shearing, pure
shearing and volume change, and its application to transpression-transtension tectonics.
Journal of Structural Geology 15, 413–422.

Gupta S. 2012. Strain localization, granulite formation and geodynamic setting of ‘hot
orogens’: a case study from the Eastern Ghats Province, India. Geological Journal 47,
334–351.

Gupta S, Bhattacharya A, Raith M, Nanda JK. 2000. Contrasting pressure-temperature-
deformation history across a vestigial craton-mobile belt boundary: the western margin of
the Eastern Ghats belt at Deobhog, India. Journal of Metamorphic Geology 18, 683–697.



Fowler CMR. 1990. The Solid Earth: An Introduction to Global Geophysics. Cambridge
University Press, Cambridge, UK.

Hippert JF. 1993. Microstructures and c-axis fabrics indicative of quartz dissolution in
sheared quatrzites and phyllonites. Tectonophysics 229, 141–163.

Hippert J, Rocha A, Lana C, Egydio-Silva M, Takeshita T. 2001. Quartz plastic segregation
and ribbon development in high-grade striped gneisses. Journal of Structural Geology 23,
67–80.

Holland TH. 1906. Classification of the Indian strata. Presidential Address, Transaction
Mining and Geological Institute, India 1.

Holland TJB, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their
bearing on amphibole-plagioclase thermometry. Contribution to Mineralogy and
Petrology 116, 433–447.

Jayaprakash AV, Sundaram V, Hans SK, Mishra SN. 1987. Geology of the Kaldgi–Badami
basins, Karnataka. In Purana basins of Peninsular India (Middle to Late Proterozoic).
Memoir Geological Society of India, 6, 201–225.

Jessel MW, Lister GS. 1990. A simulation of temperature dependence of quartz fabric.
InDeformation Mechanism, Rheology and Tectonics, edited by RJ Knipe and EH Rutter,
Geological Society Special Publication, 54, pp. 353–362.

Joy S, Saha D. 2000. Dynamically recrystallised quartz c-axis fabrics in greenschist facies
quartzites, Singhbhum shear zone and its footwall, eastern India – influence of high fluid
activity. Journal of Structural Geology 22, 777–793.

Kale VS. 1991. Constraints on the evolution of the Purana basins of Peninsular India.
Journal of the Geological Society of India 38, 231–252.

Kelly NM, Clarke GL, Fanning CAM. 2002. A two-stage evolution of the Neoproterozoic
Rayner Structural Episode: new U–Pb sensitive high resolution ion microprobe
constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambrian
Research 116, 307–330.

Kreuzer H, Karre W, Karsten M, Scnitzer WA, Murti KS, Srivastava NK. 1977. K-Ar dates
of two glauconites from the Chandrapur series (Chattisgarh/India): On the stratigraphic
status of the late Precambrian basins in central India. Jahrbuch Der Geologischen
Bundesanstalt 28, 23–36.

Law RD. 1987. Heterogeneous deformation and quartz crystallographic fabric transitions:
natural examples from the Stack of Glencoul, northern Assynt. Journal of Structural
Geology 9, 819–833.

Lisker S, Fachmann S. 2001. The Phanerozoic history of Mahanadi region, India. Journal
of Geophysical Research: Solid Earth 106, 22027–22050. DOI: 10.1029/2001JB000295.



Lister GS, Dornsiepen UF. 1982. Fabric transition in the Saxony granulite terrain. Journal
of Structural Geology 1, 283–297.

Mainprice D, Bouchez JL, Blumenfeld P, Tubia JM. 1986. Dominant c slip in naturally
deformed quartz: implication for dramatic plastic softening at high temperature. Geology
14, 819–822.

McKenzie DP. 1978. Some remarks on the development of sedimentary basins. Earth and
Planetary Science Letters 40, 25–32.

Meijerink AMJ, Rao DP, Rupke J. 1984. Stratigraphic and structural development of the
Precambrian Cuddapah Basin, S.E. India. Precambrian Research 26, 57–104.

Mezger K, Cosca MA. 1999. The thermal history of the Eastern Ghats Belt (India) as
revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals:
implications for the SWEAT correlation. Precambrian Research 94, 251–271.

Misra S, Gupta S. 2014. Superposed deformation and inherited structures in an ancient
dilational step-over zone: post-mortem of the Rengali Province, India. Journal of
Structural Geology 59, 1–17.

Mukherjee S. 2010. V-pull apart structure in garnet in macro scale. Journal of Structural
Geology 32, 605.

Mukherjee S. 2011. Mineral fish: their morphological classification, usefulness as shear
sense indicators and genesis. International Journal of Earth Sciences100 (6), 1303–1314.

Mukherjee S. 2013. Deformation Microstructures in Rocks. Springer, Berlin, pp. 97–111.

Mukherjee S, Koyi HA. 2010. Higher Himalayan Shear Zone, Zanskar Indian Himalaya -
microstructural studies and extrusion mechanism by a combination of simple shear and
channel flow. International Journal of Earth Sciences 99, 1083–1100.

Mukherjee S, Mulchrone KF. 2013. Viscous dissipation pattern in incompressible
Newtonian simple shear zones: an analytical model. International Journal of Earth
Sciences 102, 1165–1170.

Murti KS. 1987. Stratigraphy and sedimentation in Chattisgarh basin, In Purana Basins of
Peninsular India, edited by BP Radhakrishna, Memoirs of the Geological Society of India,
vol. 6, pp. 239–261.

Nanda J, Gupta S. 2012. Intracontinental orogenesis in an ancient continent-continent
collision zone: Evidence from structure, metamorphism and P-T paths across a suspected
suture zone within the Eastern Ghats Belt, India. Journal of Asian Earth Sciences 49,
376–395.

Nanda J, Panigrahi MK, Gupta S. 2014. Fluid inclusion studies on the Koraput Alkaline
Complex, Eastern Ghats Province, India: implications for granulite facies metamorphism



and exhumation. Journal of Asian Earth Sciences82, 10–20.

Nasipuri P, Bhadra S. 2013. Structural framework for the emplacement of Proterozoic
anorthosite massif in the Eastern Ghats Granulite Belt, India: Implications for post-
Rodinia – pre Gondwana tectonics. Mineralogy and Petrology107,861–880.

Naylor M, Sinclair HD. 2008. Pro- vs. retro-foreland basins. Basin Research 20, 285–303.

Passchier CW, Trouw RAJ. 2005. Microtectonics. Springer, Berlin, New York.

Patranabis-Deb S, Chaudhuri AK. 2002. Stratigraphic architecture of the Proterozoic
succession in the eastern Chattisgarth Basin, India: tectonic implications. Sedimentary
Geology, 147, 105–125.

Patranabis-Deb S, Bickford ME, Hill B, Chaudhuri AK, Basu A. 2007. SHRIMP ages of
zircon in the uppermost tuff in Chattisgarh Basin in central India require 500Ma
adjustment in Indian Proterozoic stratigraphy. Journal of Geology 115, 407–415.

Pryer LL. 1993. Microstructures in feldspars from a major crustal thrust zone: the
Grenville Front, Ontario, Canada. Journal of Structural Geology 15, 21–36.

Ramakrishnan M, Vaidyanadhan R. 2008. Geology of India. Geological Society of India,
Bangalore, vol 1, 556 pp.

Ramakrishnan M. 1987. Stratigraphy, sedimentary environment and evolution of the Late
Proterozoic Indravati basin, central India. In Purana Basins of Peninsula India, edited by
BP Radhakrishna, Geological Society of India Memoir vol. 6, pp. 139–160.

Ratre K, Waele BD, Biswal TK, Sinha S. 2010. SHRIMP geochronology for the 1450 Ma
Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar
Craton and 1450–517 Ma depositional age for Purana basin (Khariar), Eastern Indian
Peninsula. Journal of Asian Earth Sciences 39, 565–577.

Roberts DG, Bally AW. 2012. Regional Geology and Tectonics: phanerozoic rift systems
and sedimentary basins. Elsevier, Oxford.

Rogers JJW, Santosh M. 2002. Supercontinents in earth history. Gondwana Research 6,
357–368.

Saha D, Patranabis-Deb S. 2014. Proterozoic evolution of Eastern Dharwar and Bastar
cratons, India – An overview of the intracratonic basins, craton margins and mobile belts.
Journal of Asian Earth Sciences 91, 230–251.

Santosh M, Maruyama S, Yamamoto S. 2009. The making and breakingof
supercontinents: Some speculations based on superplumes, superdownwelling and the
role of tectosphere. Gondwana Research 15, 324–341.

Sarkar G, Corfu F, Paul DK, McNaughton NJ, Gupta SN, Bishui PK. 1993. Early Archean



crust in Bastar craton, central India – a geochemical and isotopic study. Precambrian
Research 62, 127–137.

Schmid SM, Casey M. 1986. Complete fabric analysis of some commonly observed quartz
c-axis patterns. Mineral and rock deformation: laboratory studies. The Paterson Volume,
American Geophysical union, Geophysical Monograph 36, pp. 263–286.

Simmat R, Raith MM. 2008. U-Th-Pb monazite geochronometry of the Eastern Ghats
Belt, India: Timing and spatial disposition of poly-metamorphism. Precambrian Research
162, 16–39.

Srivastava P, Mitra G.1996. Deformation mechanisms and inverted thermal profile in the
North Almora thrust mylonite zone, Kumaon Lesser Himalaya. Journal of Structural
Geology 18, 27–39.

Stipp M, Stunitz H, Heilbronner R, Schimd SM. 2002a. The eastern Tonale fault zone: a
'natural laboratory' for crystal plastic deformation of quartz over a temperature range
from 250 to 700 °C. Journal of Structural Geology 24, 1861–1884.

Stipp M, Stunitz H, Heilbronner R,Schimd SM. 2002b. Dynamic recrystallization of
quartz: correlation between natural and experimental conditions. In Deformation
Mechanisms, Rheology and Tectonics: current status and future perspectives, edited by S
De Meer, MR Brury, JHP De Brasser, and GM Pennock, Geological Society of London,
Special Publication, vol. 200, pp. 171–190.

Tullis JA. 1977. Preferred orientation of quartz produced slip during plane strain.
Tectonophysics 39, 87–102.

Tullis J. 1983. Deformation in feldspars. In Feldspar Mineralogy, edited by P.H. Ribbe,
Mineralogical Society of America Reviews in Mineralogy vol. 13, pp. 297–323.

Valdiya KS. 1982. Tectonic perspective of the Vindhyanchal region. In Geology of
Vindhyachal, Prof. RC Mishra volume, edited by KS Valdiya, SB Bhatia, and VK Gaur,
Hindustan Publication Corporation, Delhi, pp. 23–29.

Vernon RH. 2004. A Practical Guide to Rock Microstructure. Cambridge University Press,
Cambridge, UK.

Vinogradov AP, Tugarinov AI, Zhykov CI, Stapricova NI, Bibicova EV, Khorre KG. 1964.
Geochronology of the Indian Precambrian. In Proceedings of the 2nd International
Geological Congress, Pt. 10, pp.553–567.

Westbrook GK, Ladd JW, Buhl P, Bangs N, Tiley GJ. 1988. Cross section of an
accretionary wedge: Barbados Ridge complex. Geology, 16 631–635.

Watts AB. 1992. The formation of sedimentary basins. In Understanding the Earth, edited
by G. Brown, C. Hawkesworth, and C. Wilson, Cambridge University Press, Cambridge,
UK, pp. 301–326.



Wenk HR, Canova G, Molinari A, Cocks UF. 1989. Viscoplastic modelling of texture
development in quartzite. Journal of Geophysical Research 94, 17895–17906.

Wilson CJL. 1975. Preferred orientation in quartz ribbon mylonites. Bulletin of the
Geological Society of America 86, 968–974.

Xypolias P. 2009. Some new aspects of kinematic vorticity analysis in naturally deformed
quartzites. Journal of Structural Geology 31, 3–10.

Zadins ZZ, Mitra G. 1986. Brittle-ductile deformation along thrust faults, an example
from the Hudson Valley thrust Belt. Geological Society of America Annual Meeting
Abstracts 18, 799.

Zhao G, Sun M, Wilde SA, Li S. 2004. A Paleo-Mesoproterozoic supercontinent: assembly,
growth and breakup. Earth Science Review 67, 91–123.



Soumyajit Mukherjee1, Jahnavi Narayan Punekar2, Tanushree Mahadani1, and Rupsa
Mukherjee1

1 Department of Earth Sciences, Indian Institute of Technology Bombay, Powai,
Mumbai 400076, Maharashtra, India
2 Department of Geosciences, Princeton University, Princeton, NJ, USA

Folds are perhaps the most intensively studied structures in geology (for example Ramsay
1967; Ez 2000; Harris et al. 2002, 2003, 2012a,b; Alsop and Holdsworth 2004; Mandal et
al. 2004; Carreras et al. 2005; Bell 2010; Hudleston and Treagus 2010; Godin et al. 2011).
Depending on morphologies and orientations, folds can be classified using several
schemes (reviews by Ghosh 1993; Davis et al. 2012, etc.). Besides their rheological
aspects, deciphering whether folds inside any shear zones are produced by shear has been
emphasized (e.g. Mandal et al. 2004; Carreras et al. 2005; Bell et al. 2010). A couple of
shear zone models altogether neglected fold formation within them, for example Koyi et
al. (2013), Mukherjee and Biswas (2016, Chapter 5), Mulchrone and Mukherjee (in
press). Mukherjee (2012a, 2014a) investigated the issue in terms of deformation of
inactive markers in inclined shear zones undergoing extrusion and subduction. Folds
related to shear zones are broadly of two types: (i) those with low interlimb angles and
with significantly curved hinge lines developed before shear, some of which are sheath
folds; and (ii) flow perturbed syn-shear folds that may be overturned and “intrafolial”
(Alsop and Holdsworth 2004). In shear zones, locally overturned isoclinally folded
foliations bound by straight foliation planes are most commonly called “intrafolial folds”
(intra = inside; folia = foliation) (Dennis 1987; Allaby 2013). Intrafolial folds are found
most commonly in mylonites (Trouw et al. 2000). Such folds have also been reported
from cataclasites and obsidian (Higgins 1971), deformed soft sediments (Jirsa and Green
2011), slump structures (Woodcock 1976) and debris flows (Gawthrope and Clemmey
1985). The vergence of these folds is in conformity with shear sense of the shear zones
they occur in. Intrafolial folds are disrupted to rootless folds if shear is more intense than
in the adjacent layers even on a local scale. The adjacent rocks might be undeformed as
well (Neuendorf et al. 2005). These folds tightened as shear continued (Longridge et al.
2011). Early references to classical intrafolial folds as “drag folds” (e.g. fig. IX-38 in Hills
1965) were subsequently not followed. Carrerras et al. (2007) viewed intrafolial folds both
as “syn-shear folds”, and “shear-related late folds” (their fig. 1c). Depending on other
mechanisms perceived for intrafolial folds, they have also been described as “intrafolial
strain-slip folds” (Ratcliffe and Harwood 1975) and “intrafolial shear folds” (Keiter et al.
2011). Intrafolial folds can tear apart by pronounced shear into rootless folds showing
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The Malpica–Lamego Ductile Shear Zone (MLDSZ) is a polyphasic structure developed in
the NW of the Iberian Peninsula. The northern sector (NW Spain) of this shear zone is
associated with a complex geological history that ranges from earlier Variscan to the
emplacement of the Variscan nappes (allochthonous). Variscan intracontinental
deformation after the allochthonous nappes emplaced, recognizably strike–slip, explains
its spatial and structural continuity from the NW (Malpica, Spain) to the South (Lamego,
Portugal). Here we focus on the Variscan development of the MLDSZ and characterize,
longitudinally, this crustal mega-structure.

At the NW tip of the MLDSZ was considered an area (segment 1) with very good exposure
of the Variscan intracontinental strike–slip component on outcrops of the coastline (e.g.
Llana-Fúnez 2001). In sequence, we address segment 2, with excellent left-hand
kinematic markers (shear band boudins and folds), on a metapelitic rock series
(Pamplona and Rodrigues 2011). In the southernmost part of the MLDSZ, strike–slip
deformation, emplacement of granitic rocks (segment 3 – based on Simões 2000; and
segment 5), regional structures (segment 4: based on Coke et al. 2003), and secondary
manifestations of the southern tip of MLDSZ (segment 6) were studied.

Detailed geological mapping was done. Kinematic interpretation of structures in micro-
(Passchier and Trouw 2005; Mukherjee 2011) and mesoscale (e.g. Spry 1969; Goscombe
and Passchier 2003; Mukherjee and Koyi 2010), quartz c-axis analysis (e.g. Schmid and
Casey 1986), thermodynamic conditions inferred from textural equilibrium (e.g. Winkler
1979), magmatic fabrics (Fernández 1982), and U-Pb geochronology on zircons and
monazites (Heaman and Parrish 1991), are integrated.



Along the MLDSZ lineament, and mainly on its southern tip, brittle–ductile and brittle
structures (e.g. Penedono segment) were described that are not directly related with
Variscan activity of MLDSZ. However, they are possibly due to the late Variscan or Alpine
deformation.
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Deformation microstructures in minerals represent an extremely valuable tool to
determine the physical conditions of ductile deformation of rocks (e.g. Vernon 2004;
Passchier and Trouw 2005; and references therein). Nevertheless, most of the existing
experimental studies and natural examples are based on the rheologic behavior of
monomineral aggregates, eminently of quartz (Hirth and Tullis 1992 and references
therein; Stipp et al. 2002 and references therein). On the contrary, the available
information for the interpretation of polymineral aggregates -where the interaction
between phases with different compositional and chrystallographic characteristics can
influence its rheological behavior considerably- is scarce (e.g. Renard et al. 2001;
Herwegh et al. 2005, Huet et al. 2014).

Another major drawback when performing a comparative analysis between deformation
microstructures observed in natural samples and those obtained in experimental studies
is that most of them involve coarse-grained monomineral aggregates as starting
materials. Consequently, recrystallized grains smaller than the parent crystals are
produced, which increase its size with the increasing of temperature and/or fall in strain
rate. This is the most frequently used reference when deformation mechanisms in
minerals and associated microstructures, are used to estimate the thermal conditions of
ductile deformation of natural felsic and intermediate rocks (see for example, Spear 1993;
Vernon 2004; Passchier and Trouw 2005; Trouw et al. 2010, and references therein).

But what happens to the rocks generated from fine-grained polymineralic sediments
undergoing prograde metamorphism? The characteristics of the microstructural
development of fine-grained polymineralic sediments undergoing progressive
metamorphism and deformation, is less well understood. It is well known that ductile
behavior of previously formed coarse-grained quartz aggregates begins at ~250–300°C,



intracrystalline deformation in the other silicates. As a result, grain boundary
migration growth of quartz and metamorphic growth of plagioclase are favored,
instead of quartz subgrain rotation crystallization and bulging recrystallization in
feldspars. Adjacent coarse-grained rocks with granular textures (leucosome veins and
bodies), show typical microstructures of recrystallization connoting conditions for
ductile deformation.

3. At ~600°C typical of upper amphibolite facies, grain growth and dehydration reactions
promote significant mineralogical and microstructural changes. Reduction of
phyllosilicate proportions and discontinuation of micaceous cleavage domains allow
mutual contact between anhydrous phases and promote strain-induced grain
boundary migration recrystallization of feldspars. Free water might enhance grain
boundary migration and recrystallization of quartz and feldspars.

4. At >600°C, coarse-grained metapelitic–metapsamitic rocks behave as typically
observed in natural and experimental studies of ductile deformation. Quartz forms
Type 3 and 4 ribbons, whereas dynamic recrystallization of feldspars through the grain
boundary migration mechanism forms progressively bigger new grains. Observed
microstructures point to microfracturing–microshearing combined with fluid-assisted
grain boundary migration as the most suitable deformation mechanism for feldspars
recrystallization.

5. At >700°C (typical of granulite facies), quartz ribbons coalesce and enclose feldspars.
At these thermal conditions, first evidence of rotation recrystallization is observed in
plagioclase porphyroclasts. Low-strain sectors of coarse-grained rocks show
microstructures typical of ductile deformation at very-high temperature, like diffusion
creep between quartz and feldspars grains.
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edited and reviewed this work. Review by S. Verdecchia and an anonymous researcher
helped a lot.

Bailey J, Hirsch P. 1962. The recrystallization process in some polycrystalline metals.
Proceedings of the Royal Society of London A267, 11–30.

Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M., 1992. Non-Ideal mixing in the
phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and
formation of the biotite-garnet geothermometer. Contributions to Mineralogy and
Petrology 111, 87–93.



Berman RG. 1991. Thermobarometry using multi-equilibrium calculations: a new
technique, with petrological applications. Canadian Mineralogist 29, 833–855.

Boullier A, Bouchez J. 1978. Le quartz en rubans dans les mylonites. Bulletin de la Societé
Géologique de France 7, 253–262.

Brogioni N, Ribot A. 1994. Petrología de los cuerpos La Melada y La Gruta, faja máfica-
ultramáfica del borde oriental de la Sierra de San Luis. Revista de la Asociación Geológica
Argentina 49, 269–283.

Brun J, Cobbold P. 1980. Strain heating and thermal softeningin continental shear zones:
a review. Journal of Structural Geology 2, 149–158.

Bucher K, Grapes R. 2011. Petrogenesis of Metamorphic Rocks. Springer, Heidelberg,
Dordrecht, London, New York.

Burg J, Gerya T. 2005. The role of viscous heating in Barrovian metamorphism of
collisional orogens: thermomechanical models and application to the Lepontine Dome in
the Central Alps. Journal of Metamorphic Geology 23, 75–95.

Caminos R. 1973. Some granites, gneisses and metamorphites of Argentina. In
Symposium on Granites, Gneisses and Related Rocks, edited by L. Lister, Geological
Society, South Africa, Special Publication, vol. 3, pp. 333–338.

Caminos R. 1979. Sierras Pampeanas Noroccidentales de Salta, Tucumán Catamarca, La
Rioja y San Juan. Segundo Simposio de Geología Regional Argentina. Academia Nacional
de Ciencias, Córdoba 1, 225–291.

Castro de Machuca B, Arancibia G, Morata D, et al. 2008. P-T-t evolution of an Early
Silurian medium-grade shear zone on the west side of the Famatinian magmatic arc,
Argentina: implications for the assembly of the Western Gondwana margin. Gondwana
Research 13, 216–226.

Castro de Machuca B, Delpino S, Mogessie A, et al. 2010. 40Ar/39Ar age dating of ductile
deformation in a shear zone from the Sierra de La Huerta, San Juan, Argentina: evidence
of the Famatinian orogeny. 7° South American Symposium on Isotope Geology Extended
Abstract, 186–189. Brasilia.

Castro de Machuca B, Delpino S, Previley L, et al. 2012. Evolution of a high-to medium-
grade ductile shear zone from the Famatinian Orogen, Western Sierras Pampeanas,
Argentina. Journal of Structural Geology 41, 1–18.

Connolly J. 1990. Multivariable phase-diagramas – an algorithm based on generalized
thermodynamics. American Journal of Science 290, 666–718.

Cruciani G, Franceschelli M, Groppo et al. 2008. Formation of clinopyroxene+spinel and
amphibole+spinel symplectites in coronitic gabbros from the Sierra de San Luis
(Argentina): a key to post-magmatic evolution. Journal of Metamorphic Geology 26, 759–



774

Cruciani G, Franceschelli M, Brogioni N. 2011. Mineral re-equilibration and P-T path of
metagabbros, Sierra de San Luis, Argentina: insights into the exhumation of mafic-
ultramafic belt. European Journal of Mineralogy 23, 591–608.

Cruciani G, Franceschelli M, Brogioni N. 2012. Early stage evolution of the mafic-
ultramafic belt at La Melada, Sierra de San Luis, Argentina: P-T constraints from
metapyroxenite pseudosection modelling. Journal of South American Earth Sciences 37,
1–12.

Dalla Salda L. 1987. Basement tectonics of the Southern Pampean Ranges, Argentina.
Tectonics 6, 249–260.

Dahlquist J, Pankhurst R, Rapela C, et al. 2008. New SHRIMP U–Pb data from the
Famatina Complex: constraining Early–Mid Ordovician Famatinian magmatism in the
Sierras Pampeanas, Argentina. Geologica Acta, 6, 319–333.

Delpino, S., Dimieri, L., Bjerg, E., et al. 2001. Geometrical analysis and timing of
structures on mafic–ultramafic bodies and high-grade metamorphic rocks, Sierras
Grandes of San Luis, Argentina. Journal of South American Earth Sciences 14 (1), 101–
112.

Delpino S, Bjerg E, Ferracutti et al. 2002. Upper-amphibolite facies mylonitization of
mafic-ultramafic rocks and gneissic-migmatitic country rocks, Sierras de San Luis,
Argentina: implications in the remobilization of ore sulfides. In Mineralogía y
Metalogenia 2002, edited by M. Brodtkorb, M. Koukharsky, and P. Leal, Universidad
Nacional de Buenos Aires, Buenos Aires, pp. 123–126.

Delpino S, Bjerg E, Ferracutti et al. 2007. Counterclockwise tectono-metamorphic
evolution of the Pringles Metamorphic Complex, Sierras Pampeanas of San Luis
(Argentina). Journal of South American Earth Sciences 23 (2–3), 147–175.

Delpino S, Grasemann B, Bjerg et al. 2012. Thermal evolution model for the Pringles
Metamorphic Complex, Sierra de San Luis, Argentina. 15° Reunión de Tectónica,
Resúmenes CD: 42. San Juan, Argentina.

Drury M. Humphreys F. White S. 1985. Large strain deformation studies using
polycrystalline magnesium as rock analogue. Part II: dynamic recystallisation
mechanisms at high temperatures. Physics of the Earth and Planetary Interiors 40, 208–
222.

Farver J, Yund R. 1990. The effect of hydrogen, oxigen and water fugacity on oxigen
diffusion in alkali feldspar. Geochimica et Cosmochimica Acta 54, 2953–2964.

Gallien F, Mogessie A, Bjerg E, et al. 2010. Timing and rate of granulite facies
metamorphism and cooling from multi-mineral chronology on migmatitic gneisses,



Sierras de La Huerta and Valle Fértil, NW Argentina. Lithos 114, 229–252.

González P, Sato A, Basei M, et al. 2002. Structure, metamorphism and age of the
Pampean–Famatinian Orogenies in the western Sierra de San Luis, XV Congreso
Geológico Argentino (CD), El Calafate.

González Bonorino F. 1961. Petrología de algunos cuerpos básicos de San Luis y las
granulitas asociadas. Revista de la Asociación Geológica Argentina 16 (1–2), 61–106.

Gower R, Simpson C. 1992. Phase boundary mobility in naturally deformed, high-grade
quartzofeldspathic rocks: evidence for diffusional creep. Journal of Structural Geology 14,
301–314.

Hauzenberger Ch, Mogessie A, Hoinkes G, et al. 1997. Platinum group minerals in the
basic to ultrabasic complex of the Sierras de San Luis, Argentina. In Mineral Deposits:
Research and Explorations – Where Do They Meet, edited by H. Papunen, A. A. Balkema,
Rotterdam, pp. 439–442. .

Hauzenberger Ch, Mogessie A, Hoinkes G, et al. 1998. Metamorphic Evolution of the
Southern Part of the Sierras de San Luis, Argentina. IV Reunio´n de Mineralogía y
Metalogenia y IV Jornadas de Mineralogía, Petrología y Metalogénesis de Rocas Máficas y
Ultramáficas, pp. 121–130.

Hauzenberger Ch, Mogessie A, Hoinkes G, et al. 2001. Metamorphic evolution of the
Sierras de San Luis: Granulite facies metamorphism related to mafic intrusions.
Mineralogy and Petrology 71 (1/2), 95–126.

Henry D, Guidotti Ch, Thomson J 2005. The Ti-saturation surface for low-to-medium
pressure metapelitic biotites: Implications for geothermometry and Ti-substitution
mechanisms. American Mineralogist 90, 316-328,

Herwegh M, Berger A, Ebert A 2005. Grain coarsening maps: A new tool to predict
microfabric evolution of polymineralic rocks. Geology 33 (10), 801–804.

Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates. Journal of
Structural Geology 14, 145–159.

Holdaway M. Lee S. 1977. Fe-Mg cordierite stability in high-grade pelitic rocks based on
experimental, theoretical and natural observations. Contribution to Mineralogy and
Petrology 63, 175–98.

Holland T. Powell R. 1998. An internally consistent thermodynamic data set for phases of
petrological interest. Journal of Metamorphic Geology 16, 309–343.

Holyoke C, Tullis J. 2006. Mechanisms of weak phase interconnection and the effects of
phase strength contrast on fabric development. Journal of Structural Geology 28, 621–
640.



Huet B, Yamato P, Grasemann B. 2014, The Minimized PowerGeometric model: An
analytical mixingmodel for calculating polyphase rockviscosities consistent with
experimental data, Journal of Geophysical Research: Solid Earth119, 1–28.

Hunter J, Hasalová P, Weinberg R. 2013. Strain partitioning in crustal shear zones: the
effect of interconnected micaceous layers on quartz deformation. In Deformation
Mechanisms, Rheology and Tectonics, Programme and abstract, International
Conference, Leuven 2013, p. 35.

Iannizzotto N, Rapela C, Baldo et al. 2013. The Sierra Norte-Ambargasta batholith: late
Ediacaran early Cambrian magmatism associated with Pampean transpressional
tectonics. Journal of South American Earth Sciences 42, 127–143.

Kostadinoff J, Bjerg E, Delpino S, et al. 1998a. Gravimetric and magnetometric anomalies
in the Sierras Pampeanas of San Luis. Revista de la Asociación Geológica Argentina 53
(4), 549–552.

Kostadinoff J, Bjerg EA, Dimieri L, et al. 1998b. Anomalías geofísicas en la faja de rocas
máficas-ultramáficas de la Sierra Grande de San Luis, Argentina. IV Reunión de
Mineralogía y Metalogenia y IV Jornadas de Mineralogía, Petrografía, Metalogénesis de
Rocas Máficas y Ultramáficas, Actas, 139–146, Bahía Blanca.

Kronemberg A, Tullis J. 1994. Flow strengths of quartz aggregates: grain size and pressure
effects due to hydrolytic weakening. Journal of Geophysical Research 89, 4281–4297.

Kruhl JH. 1996. Prism- and basal -plane parallel subgrain boundaries in quartz: a
microstructural geothermobarometer. Journal of Metamorphic Geology 14, 581–589.

Landis C. 1971. Graphitization of dispersed carbonaceous material in metamorphic rocks.
Contribution to Mineralogy and Petrology 30, 34–45.

Larrovere M, de los Hoyos C. Toselli A. et al. 2011, High T/P evolution and metamorphic
ages of the migmatitic basement of northern Sierras Pampeanas, Argentina:
characterization of a mid-crustal segment of the Famatinian belt: Journal of South
American Earth Sciences 31 (2–3), 279–297.

Mariani E, Brodie K, Rutter E. 2006. Experimental deformation of muscovite shear zones
at high temperatures under hydrothermal conditions and the strength of phyllosilicate-
bearing faults in nature. Journal of Structural Geology 28, 1569–1587.

Martelat J, Schulmann K, Lardeaux J, et al. 1999. Granulite microfabrics and deformation
in southern Madagascar. Journal of Structural Geology 21, 671–687.

Mogessie A, Hoinkes G, Stumpfl EF, et al. 1994. The petrology and mineralization of the
basement and associated mafic–ultramafic rocks, San Luis Province, Central

Argentina. Mitteilungen der O¨ sterreichischen Mineralogischen Gesellschafl 139, 347–
348. Austria.



Mogessie A, Hoinkes G, Stumpfl et al. 1995. Occurrence of Platinum Group Minerals in
the Las Aguilas Ultramafic Unit within a Granulite Facies Basement, San Luis Province,
Central Argentina. In Mineral Deposits: From Their Origin to Their Environmental
Impacts, edited by J. Paiava, B. Ktibek, and K. Zak, A. A. Balkema, Rotterdam, pp. 897–
900. .

Mogessie A, Hauzenberger Ch, Hoinkes et al. 1998. Origin of Platinum Group Minerals in
the Las Aguilas Mafic-Ultramafic Intrusion, San Luis Province, Argentina. IV Reunio´n de
Mineralogı´a y Metalogenia y IV Jornadas de Mineralogía, Petrografía, Metalogénesis de
Rocas Máficas y Ultramáficas, Actas, 285–289, Argentina.

Montési L. 2013. Fabric development as the key for forming ductile shear zones and
enabling plate tectonics. Journal of Structural Geology 50, 254–266.

Mukherjee S. 2011. Mineral fish: their morphological classification, usefulness as shear
sense indicators and genesis. International Journal of Earth Sciences 100(6), 1303–1314.

Mukherjee S. 2013. Deformation Microstructures in Rocks. Springer-Verlag, Berlin.

Mukherjee S, Mulchrone K 2013. Viscous dissipation pattern in incompressible
Newtonian simple shear zones: an analytical model. International Journal of Earth
Sciences 102 (4), 1165–1170.

Mulchrone K Mukherjee S 2015. Shear senses and viscous dissipation of layered ductile
simple shear zones. Pure and Applied Geophysics, in press.

Pankhurst R, Rapela C. 1998a. The proto-Andean margin of Gondwana: an introduction.
In The Proto-Andean Margin of Gondwana, edited by R. Pankhurst and C. Rapela,
Geological Society, London, Special Publication, vol. 142, pp. 1–9.

Pankhurst RJ, Rapela CW, Saavedra J, et al. 1998b. The Famatinian magmatic arc in the
central Sierras Pampeanas: an Early to Mid-Ordovician arc on the Gondwana margin. In
The Proto-Andean Margin of Gondwana, edited by R. Pankhurst and C. Rapela, Geological
Society, London, Special Publication vol. 142, pp. 343–367.

Pankhurst R, Rapela C, Fanning C. 2000. Age and origin ofcoeval TTG, I- and S-type
granites in the Famatian belt of NWArgentina. Transaction Royal Society Edinburgh:
Earth Sciences 91, 151–168.

Passchier C. Trouw R. 2005. Microtectonics. Springer-Verlag, Berlin.

Perchuk L, Lavrent'eva L. 1983. Experimental investigation of exchange equilibria in the
system cordierite-garnet-biotite. In Kinetics and Equilibrium in Mineral Reactions, edited
by S.K. Saxena, Springer-Verlag, New York, pp. 199–239.

Ranalli G. 1995. Rheology of the Earth, 2nd edition. Chapman & Hall, New York

Rapela C, Pankhurst R, Casquet R, et al. 1998. The Pampean Orogeny of the southern



proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In The Proto-
Andean Margin of Gondwana, edited by R.J. Pankhurst and C.W. Rapela, Geological
Society, London, Special Publication vol. 142, pp. 181–217.

Renard F, Dysthe D, Feder et al. 2001. Enhanced pressure solution creep rates induced by
clay particles: Experimental evidence in salt aggregates. Geophysiscal Research Letters 28
(7), 1295–1298.

Rueda M, Delpino S, Grasemann et al. 2013. From sedimentary precursor to anatectic
products, field, petrographic and geochemical constraints: Pringles Metamorphic
Complex, Sierra de San Luis, Argentina. In Avances en Mineralogía, Metalogenia y
Petrología 2013, pp. 349–356.

Sawyer E. 2008. Working with migmatites: Nomenclature for the constituent parts. In
Working with Migmatites, edited by E. Sayer and M. Brown, Mineralogical Association of
Canada, Short Course Series vol. 38, pp. 1–28.

Scholz C. 1980. Shear heating and the state of stress on faults. Journal of Geophysical
Research 85, 6174–6184.

Shengelia D, Akhvlediani R, Ketskhoveli D. 1979. The graphite geothermometer. Doklady
Akademii Nauk SSSR 235, 132–134.

Siegesmund S, Steenken A, Martino R, et al. 2010. Time constraints on the tectonic
evolution of the Eastern Sierras Pampeanas (central Argentina). International Journal of
Earth Science (Geologische Rundschau) 99, 1199–1226.

Simpson C, De Paor D. 1991. Deformation and kinematics of high strain zones. Annual
GSA Meeting, Structural and Tectonics Division, 116 p. San Diego.

Sims J, Skirrow R, Stuart-Smith P, et al. 1997. Informe geológico y metalogénico de las
Sierras de San Luis y Comechingones (Provincias de San Luis y Córdoba), 1:250000.
Anales XXVIII, Instituto de Geología y Recursos Minerales, SEGEMAR, Buenos Aires.

Sims J, Ireland T, Camacho A, et al. 1998. U–Pb, Th–Pb and Ar–Ar geochronolgy from the
southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic
evolution of the western Gondwana margin. In The Proto-Andean Margin of Gondwana,
edited by R. Pankhurst and C. Rapela, Geological Society London, Special Publication vol.
142, pp. 259–281.

Spear F. 1995. Metamorphic Phase Equilibria and Pressure–Temperature-Time Paths.
Mineralogical Society of America, Washington.

Steenken A, Siegesmund S, López deLuchi et al. 2006. Neoproterozoic to early Palaeozoic
events in the Sierra de San Luis: implications for the Famatinian geodynamics in the
Eastern Sierras Pampeanas (Argentina). Journal of the Geological Society of London 163,
965–982.



Steenken A, López de Luchi M, Martínez Dopico C, et al. 2011. The Neoproterozoic-early
Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: An
Overview. International Journal of Earth Sciences 100, 465–488.

Stipp M, Stunitz H, Heilbronner R, et al. 2002. The eastern Tonale Fault Zone: a “natural
laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to
700°C. Journal of Structural Geology 24, 1861–1884. Stüwe K. 2002, Geodynamic of the
Lithosphere: An introduction. Springer Verlag, Berlin.

Trouw R, Passchier C, Wiersma DJ. 2010. Atlas of Mylonites – and related
microstructures. Springer-Verlag, Berlin.

Tullis J, Yund R. 1985. Dynamic recrystallization of feldspars: a mechanism for ductile
shear zone formation. Geology 13, 238–241.

Tullis J, Yund R. 1987. Transition from cataclastic flow to dislocation creep of feldspar:
mechanisms and microstructures. Geology 15, 606–609.

Urai J. 1983. Water assisted dynamic recrystallization and weakening in polycrystalline
bischofite. Tectonophysics 96, 125–127.

Vernon R. 2004. A practical guide to Rock Microstructure. Cambridge University Press,
New York.

von Gosen W. 1998. Transpressive deformation in the southwestern part of the Sierra de
San Luis (Sierrras Pampeanas, Argentina). Journal of South American Earth Sciences
11(3), 233–264.

von Gosen W, Prozzi C. 1996. Geology, Structure, and Metamorphism in the Area South of
La Carolina (Sierra de San Luis, Argentina). XIII Congreso Geolo´gico Argentino y III
Congreso de Exploración de Hidrocarburos, Actas 2, 301–314, Buenos Aires.

von Gosen W, Prozzi C. 1998. Structural evolution of the Sierra de San Luis (Eastern
Sierras Pampeanas, Argentina): implications for the proto-Andean margin of Gondwana.
In The Proto-Andean Margin of Gondwana, edited by R. Pankhurst and C. Rapela,
Geological Society, London, Special Publication vol. 142, pp. 235–258.

von Gosen W, Loske W, Prozzi C. 2002. New isotopic dating of intrusive rocks in the
Sierra de San Luis (Argentina): implications for the geodynamic history of the Eastern
Sierras Pampeanas. Journal of South American Earth Sciences 15 (2), 237–250.

Yardley B. 1989. An Introduction to Metamorphic Petrology. Longman Scientific &
Technical, New York.



Pitsanupong Kanjanapayont
Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok
10330, Thailand

Mainland south-east Asia includes development of numerous intraplate strike–slip
deformations. These intense deformations confine show in narrow and sub–parallel sided
zones, which normally are termed as “shear zones” (Ramsay 1980). Shear zones can
reveal brittle, brittle–ductile, and ductile deformations. Many brittle shear zones are also
described as fault zone, where rocks in the shear planes could be brecciated. The brittle–
ductile shear zones are associated with fault rocks with some ductile deformation, while
the ductile shear zones are commonly in the high plastic deformed rocks or mylonites
(Ramsay 1980; White et al. 1980).

Strike–slip ductile shear zones in Thailand are the Mae Ping shear zone, the Three
Pagodas shear zone, the Ranong shear zone, and the Khlong Marui shear zone (Fig. 15.1).
In the last few years, geological studies on the strike–slip shear zones in Thailand have
been carried out by a number of workers (Watkinson et al. 2008, 2011; Morley et al. 2011;
Kanjanapayont et al. 2012a, b; Nantasin et al. 2012; Palin et al. 2013) to understand their
genesis and kinematics. The whole system of strike–slip shear zones in Thailand requires
a review. First, I present an overview tectonics of Thailand. I also present the meso- and
microstructural analyses, plus previous geochronological data in the best exposed
mylonite shear zones in Thailand.



Fig. 15.15. Summary of age constraints for periods of shear along the Mae Ping, Three
Pagodas, Ranong, and Khlong Marui shear zones.

The data are taken from Table 15.1.

The meso- and microstructures of the mylonites within the strike–slip shear zones in
Thailand include asymmetric folds, σ-objects, δ-objects, strain shadow, S–C and S–C'
fabrics, shear band types, domino types, mica fish, stair stepping, asymmetric
mymerkites, and “V”-pull-apart structures. The dynamic recrystallization in the shear
zones were expressed by the undulose extinction, basal gliding, bulging, subgrain
rotation, and grain boundary migration. Rocks deformedunder the ductile strike–slip
motion. The NW–SE Mae Ping and Three Pagodas shear zones deformed by sinistral
movement, while the NNE–SSW Ranong and Khlong Marui shear zones have undergone
dextral motion. Geochronology data indicates Late Cretaceous timing for the Ranong
shear zone, and Eocene–Oligocenefor all four strike–slip zones. These ages suggest the
timing of shear.
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The Japanese Islands are situated on the eastern margin of the Asian Continent before
opening of the Sea of Japan during Miocene time (Otofuji and Matsuda 1984; Maruyama
et al. 1989). In the Japanese Islands, Cretaceous to Paleogene sinistral shear zones are
widely distributed along the Median Tectonic Line (MTL; e.g. Takagi 1986; Takagi et al.
1989; Shimada et al. 1998), the Tanagura Tectonic Line (TTL; Koshiya 1986), the
Hatakawa Tectonic Line (Sasada 1988; Takagi et al. 2000; Shigematsu and Yamagishi
2002) and in the Kitakami Mountains (Sasaki and Otoh 2000; Sasaki 2001) (Fig. 16.1).
Therefore, studies on the geological and temporal relations among these shear zones are
important to understand the pre-Neogene tectonics of the eastern margin of the Asian
Continent.
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Flanking structures (FS)/flanking folds are deflections of a planar layer or host fabric
elements (HE) such as bedding, foliation or compositional layering around a cross cutting
element (CE) such as a fault, vein, joint, a patch of melt, a mineral grain, or even a boudin
(Passchier 2001; Coelho et al. 2005; Mulchrone 2007; Mukherjee and Koyi 2009;
Mukherjee 2014a). The first descriptions of flanking structures were based mainly on
sub-meter scale (Passchier 2001). Microscale examples of the structures came later
(Mukherjee 2007, 2010a, b, 2011, 2014b; Mukherjee and Koyi 2009; Grasemann et al.
2011). Description of flanking structures is an expansion of the concept of fault drag-the
deflection of layers in the vicinity of the fault (Gayer et al. 1978; Hudleston 1989; Druguet
et al. 1997). Between the two end members of simple shear and pure shear, the resulting
flanking structures are classified as s-type flanking folds, a-type flanking folds and shear
bands (Grasemann et al. 2003). As contractional or extensional offset of central markers,
both s-type and a-type FS may exhibit normal or reverse drag (Hamblin 1965) of the
central markers in reference to the shear sense along the CE (Wiesmayr and Grasemann
2005). Two new schemes of classification of flanking structures have recently been
proposed (Mukherjee 2014b). First, whether (i) the CE is a sharp plane of discontinuity
or, (ii) it consists of rock(s)/mineral(s). In case (ii), FS is again divided in to whether HE
penetrates CE or not. The second classification is based on drag and slip along the CE
margins. It is already defined that along the direction of shear if a convex HE is reached,
the sense of drag is “normal” and in the opposite case is “reverse” (Grasemann et al.
2003). What controls the sense of drag is a long studied issue. The latest view is that it
depends on (i) angle between the HE and the CE before deformation started; and (ii)
relative values of vertical separation and throw of faulting along the CE (reviewed in
Mukherjee 2014b). A clear convex/concave drag does not always develop in all the
mesoscopic FS. Also, the HE could be thicker near the CE. The two latest classification
schemes consider all possible slip and drag of the HE.

s-type flanking structures are regarded as reliable shear sense indicators (Exner et al.
2004) and are used here for that purpose under contractional tectonic setting.

Numerous flanking structures developed in a ductile shear zone affecting the Higher
Himalayan migmatitic gneisses around the Tato area of the West Siang District,
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