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nE to ~n–S extension is put forward that refutes the popu-
lar view of E–W India–Seychelles extension. Paleostress 
analyses indicate that this is an oblique rifted margin. 
Field criteria suggest only ~nE–SW and ~nW–SE, with 
some ~n–S strike-slip faults/brittle shear zones. We refer 
this deformation zone as the "Western Deccan Strike-slip 
Zone" (WDSZ). The observed deformation was matched 
with offshore tectonics deciphered mainly from faults 
interpreted on seismic profiles and from magnetic seafloor 
spreading anomalies. These geophysical findings too indi-
cate oblique rifting in this part of the W Indian passive mar-
gin. We argue that the Seychelles microcontinent separated 
from India only after much of the DlIP erupted. Further 
studies of magma-rich passive margins with respect to tim-
ing and architecture of deformation and emplacement of 
volcanics are required.

Keywords Deccan large igneous province · Strike-slip 
fault · Brittle shear · Paleostress · India–Seychelles rifting

Introduction

The K–T boundary, in the northern part of the western con-
tinental margin of India (in the states of Gujarat and Maha-
rashtra), is marked by emplacement of voluminous flood 
basalts: the Deccan large igneous province (DlIP). This 
event relates the separation of the Seychelles microconti-
nent (Fig. 1) from India (Plummer and Belle 1995; Plum-
mer et al. 1998; Subrahmanya 2001’s review; Hooper et al. 
2010; armitage et al. 2011; Vanderkluysen et al. 2011; 
Roy 2012’s review). These volcanic eruptions relate the 
drift (implied by the Chagos–Maldive–laccadive Ridge; 
Fig. 1) of the Indian lithosphere over the Réunion hot spot 
(e.g., Morgan 1972; De 1981; Duncan 1990; Duncan and 

Abstract This is the first detailed report and analyses of 
deformation from the W part of the Deccan large igneous 
province (DlIP), Maharashtra, India. This deformation, 
related to the India–Seychelles rifting during late Creta-
ceous–Early Paleocene, was studied, and the paleostress 
tensors were deduced. near n–S trending shear zones, line-
aments, and faults were already reported without significant 
detail. an E–W extension was envisaged by the previous 
workers to explain the India–Seychelles rift at ~64 Ma. The 
direction of extension, however, does not match with their 
n–S brittle shear zones and also those faults (sub-vertical, 
~nE–SW/~nW–SE, and few ~n–S) we report and empha-
size in this work. Slickenside-bearing fault planes, brittle 
shear zones, and extension fractures in meso-scale ena-
bled us to estimate the paleostress tensors (directions and 
relative magnitudes). The field study was complemented by 
remote sensing lineament analyses to map dykes and shear 
zones. Dykes emplaced along pre-existing ~n–S to ~nE–
SW/~nW–SE shears/fractures. This information was used 
to derive regional paleostress trends. a ~nW–SE/nE–SW 
minimum compressive stress in the oldest Kalsubai Sub-
group and a ~n–S direction for the younger lonavala, Wai, 
and Salsette Subgroups were deciphered. Thus, a ~nW/
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Storey 1992; Peng and Mahoney 1995; Widdowson et al. 
2000; Mahoney et al. 2002; Sahu et al. 2003; Kumar et al. 
2007; Sen et al. 2009; Mukhopadhyay et al. 2010; Cha-
lapathy Rao and lehmann 2011; Ganerød et al. 2011; and 
van Hinsbergen et al. 2011) through impact (White and 
McKenzie 1989) or incubation (armitage et al. 2011). In 
contrast, Sheth (2005, 2007) considered plate interactions 
led volcanism. Seafloor spreads between India and Sey-
chelles at ~64 Ma (Devey and Stephens 1991; Collier et al. 
2008), and the Deccan traps emplaced between ~68 and 
60 Ma (age estimates by lightfoot et al. 1987; Mahoney 
1988; Courtillot et al. 1988, 2000; Baksi and Farrar 1991; 
Vandamme et al. 1991; allègre et al. 1999; Sheth et al. 
2001a, b; Hofmann et al. 2000; Knight et al. 2003; Chenet 
et al. 2007; Hooper et al. 2010, etc.). While most of the 
geological publications on Deccan trap are on geochemis-
try (e.g., Babechuk et al. 2014), focussed structural and tec-
tonic works are lacking till date. Duraiswami et al. (2012) 
considered three main tectonic zones such as narmada-Son 

rift, the west coast zone, and the Cambey rift, transacted 
the Deccan trap where fractures and dykes confine. Study-
ing Deccan trap’s fractures and faults have far reaching 
implications in hydrocarbon (e.g., Varun et al. 2009; azeez 
et al. 2011; Chandrasekhar et al. 2011; Datta Gupta et al. 
2012; Pollyea et al. 2014), groundwater (such as Rai et al. 
2011; review by Pawar et al. 2012; Prasanna lakshmi et al. 
2014), carbon sequestration (Jayaraman 2007 and other), 
and geothermal energy prospects (Kumar et al. 2011).

Timing of volcanism and rifting, and eventually seafloor 
spreading, explains the geodynamics of “magma-rich” 
passive margins. Flood basalts in large igneous provinces 
(lIPs) may rift continents (Courtillot et al. 1999; Müller 
et al. 2001). Exception are Colombia River basalts, Sibe-
rian traps, Emeishan traps, and Rajmahal traps within the 
Kerguelen lIP. The lIPs were studied mainly on geo-
chronology, geochemistry, and their relation with mantle 
plumes. High-resolution (m to km scale) structural analy-
ses on the lIP exposures should reveal the relationship 
between emplacement of volcanics and breakup. Such 
deformation studies are relatively few in magmatic/magma-
rich rifts and passive margins, e.g., Klausen and larsen 
(2002) for north atlantic Igneous Province in Greenland, 
Watkeys (2002) for Karoo volcanics in SE africa, and Mig-
gins et al. (2002) for Rio Grande rift in south-central Colo-
rado and northern new Mexico.

Few studies (Table 1 of Menzies et al. 2002 and refer-
ences) revealed that volcanics in lIPs can be pre-, syn-, 
or post-rift. White and McKenzie (1995) concluded that 
the peak volcanic activity "shortly predates" the oldest 
seafloor spreading anomaly. In the specific case of micro-
continent Formation, as in ours, magmatism presumably 
predated and triggered rifting (Müller et al. 2001). How-
ever, recent geophysical studies on India–Seychelles con-
jugate margins concluded magmatism to postdate the main 
rifting. This questioned how pluming formed microconti-
nents (Calvès et al. 2008; Collier et al. 2009). In passive 
margins, magmatism postdates rifting (Péron-Pinvidic and 
Manatschal 2010) after substantial crustal thinning. In con-
trary, Richards et al. (1989) suggested that rifting postdated 
volcanism in lIPs and does not require a precursor thinned 
lithosphere.

The volcanic rocks of the Kalsubai, lonavala, and low-
ermost Wai Subgroups (see “Regional geology” section 
and Table 1 for stratigraphy; Deshpande 1998; Table 1 
of Duraiswami et al. 2012; Parthasarathy et al. 2013; 
see Schöbel et al. 2014 for magneto-stratigraphy) in the 
western DlIP) underwent maximum crustal contamina-
tion among the entire Deccan volcanic terrain (Cox and 
Hawkesworth 1984; Devey and lightfoot 1986; Ray et al. 
2014). This proves that significant crustal thinning did not 
happen by then (Saunders et al. 2007). Thus, a major rift-
ing phase was either coeval or postdated volcanism. The 

Fig. 1  Hill shaded bathymetry (light blue for shallower bathymetries 
and dark blue for deeper ones) and topography (dark brown for high-
est and green for lowest) map of a part of Indian Ocean and the ara-
bian Sea showing the major tectonic elements. Yellow line track of the 
Rèunion hot spot (from Duncan 1990); yellow dots with ages: aver-
age age of the volcanics along the hot spot track (from Mahoney et al. 
2002); LR laxmi Ridge (white dotted outline, approximate extent), 
LB laxmi Basin, GB Gop Basin, KOY Koyna Town, WCF West 
Coast fault, PF axis of the Panvel Flexure, KL Kurduwadi lineament, 
DT Dharwar trend, White rectangle area of interest for this study 
(Bathymetry data from Sandwell and Smith 2009; Topography data 
from Becker et al. 2009)
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India–Seychelles breakup indicated by organized seafloor 
spreading at ~63.4 Ma (Collier et al. 2008) postdated the 
peak volcanism (~65 Ma). a slightly older age of breakup 
(65 Ma), coinciding with the Deccan basalt eruption, has 
also been suggested (Table 3 of Bastia et al. 2010; also 
see Reeves 2013a, b). That would indicate that the rifting 
was coeval to volcanism. notice that a controversy exists 
whether volcanism leads to rifting or vice versa (Fowler 
2005).

Fieldworks and geochronologic studies from the Indian 
W coast margin (India–Seychelles conjugate margin) 
revealed that most of the volume (> 80 %: Chenet et al. 
2007) of the exposed ~68–60 Ma Deccan traps emplaced 
before rifting initiated (Devey and Stephens 1991; Saun-
ders et al. 2007; Hooper et al. 2010; Ganerød 2010; Gan-
erød et al. 2011). Deformation in the Deccan traps exposed 
along the n part of the W coast of India should therefore 
reflect the tectonics of the India–Seychelles rifting, which 
ended with their breakup at ~63.4 Ma (Devey and Stephens 
1991; Collier et al. 2008).

as per current understanding, a ~E–W extensional tec-
tonics, deciphered plausibly from n–S-trending dykes, 
coeval to late phases of Deccan volcanisms explains the 
India–Seychelles rifting (Hooper 1990; Bhattacharya et al. 
1994; Hooper et al. 2010; Vanderkluysen et al. 2011). 
Three sets of sub-vertical fracture planes were deciphered 
from Powai, Mumbai, and two of them (nW and nE 
trending) were considered to be conjugate to decipher an 
approximate n–S extension (Sen 2011). Dessai and Ber-
trand (1995) and Hooper et al. (2010) reported ~n–S (brit-
tle) shear zones from coastal areas of Deccan. However, 

they did not resolve stresses that deformed these rocks. 
Interestingly, ~n–S vertical strike-slip shear zones cannot 
result from a ~E–W extension. Ju et al. (2013) deciphered 
~E–W paleostress fields from the DlIP based solely on 
~n–S trends of mafic dyke swarms mapped by others (viz. 
Beane et al. 1986; Sheth 2000; Vanderkluysen et al. 2011). 
Recently, some evidences of compression by W verging 
thrusts (Kaplay et al. 2013) were deciphered near nanded 
city, which is ~400 km E from the coast. Tectonic signifi-
cance with respect to the passive margin Formation is dif-
ficult to ascertain from Kaplay et al. (2013). The reasons 
are (1) though a “recent” age has been indicated, no par-
ticular age has been confirmed for the event; and (2) it is 
far off from the continental margin and with a large area in 
between with no faults/dykes reported.

a detail study on the deformation structures seemed 
necessary to explore the tectonics of the coastal Deccan 
basalts (Fig. 2) around Mumbai (formerly known as “Bom-
bay”). We deduced and examined the “apparent” mismatch 
between the trend of the shear zones and direction of exten-
sion. We analyzed paleostresses from field and remote sens-
ing studies. We covered ~150 km along ~n–S and ~100 km 
along ~E–W in the field and a larger area in remote sens-
ing. Only the brittle deformation structures were studied 
since (semi-) ductile structures were absent.

Sub-vertical brittle shear zones/faults trend ~nW–SE 
or ~nE–SW and some ~n–S. The paleostress analyses 
yielded a wide range from nW to nE-trending extension 
in the terrain. This contradicts the present ~E–W exten-
sion. This would be a crucial input for the tectonics of the 
west coast of India because a near n–S extension implies 

Table 1  Stratigraphy of the Deccan large Igneous Province 
(after Beane et al. 1986; Mitchell and Widdowson 1991; Godbole 
et al. 1996; Widdowson et al. 2000; and Vaidhyanadhan and Ram-

akrishnan 2008; lithologies from District Resource Maps of Mumbai, 
Thane, Raigad, Ratnagiri, Pune districts, Geological Survey of India 
2001). See Fig. 2 for occurrence of Formations.

Subgroups Formations Dominant lithology

lithostratigraphy Chemostratigraphy

Salsette Borivali Mumbai volcanics Trachytes, rhyolites, tuff, agglomerates, intertrappeans, etc.

Desur

Wai Mahabaleshwar Panhala

Mahabaleshwar Fine to medium-grained, moderate to sparsely porphyritic flows

Purandargarh ambenali

Diveghat Poladpur

Elephanta

lonavala
Karla Bushe

Indrayani Khandala Fine to medium-grained aphyric flows

Kalsubai
Ratangarh Bhimashankar Dense aphyric to phyric flows with moderately porphyritic 

pahoehoe flowsSalher Thakurwadi

neral

Igatpuri

Jawhar
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that the margin is a “sheared margin” or an “oblique rifted” 
margin. On the other hand, an E–W extension would indi-
cate an orthogonal extension.

Studying different aspects of this exposed magma-rich 
sheared passive margin, supposedly its proximal part would 
reveal relationships between the lIPs and the rift-related 
processes. This could explain various microcontinent For-
mation processes.

Regional geology

Stratigraphy

The DlIP is well studied lithostratigraphically (Table 1; 
Godbole et al. 1996; Vaidyanadhan and Ramakrishnan 
2008) and chemostratigraphically (Beane et al. 1986; 
Mitchell and Widdowson 1991; Widdowson et al. 2000; 
Peng et al. 2014 and others). In these schemes, “Forma-
tions” differ, yet the Subgroups remain the same (Vaidhy-
anadhan and Ramakrishnan 2008; Table 1 for comparison). 
From n to S, Kalsubai, lonavala, and Wai Subgroups com-
prising mainly basaltic flows of various thicknesses show 
progressive younging (Fig. 2; Devey and lightfoot 1986; 
Beane et al. 1986; Widdowson et al. 2000). Compound 
flows occur in western part of Deccan trap, whereas sim-
ple flows in other areas (fig. 1 of Duraiswami et al. 2012). 
The Salsette Subgroup volcanics (Borivali Formation or 
Salsette Island volcanics or Mumbai volcanics) is acidic. 
It consists of minor intrusives and intertrappean sediments 
(Cripps et al. 2005) restricted within the Mumbai region 
(Fig. 2). The DlIP emplaced possibly in pulses (Chenet 
et al. 2007) during ~68–60 Ma. This contradicts emplace-
ment in a shorter duration (e.g., Courtillot et al. 1986; Dun-
can 1990) around the K/T boundary.

Dykes

The dykes in the DlIP are of three regional groups of 
similar lithologies viz. gabbro, dolerite, lamprophyres, and 
nepheline syenite. (e.g., Dessai and Bodas 1984; Ray et al. 

2007, 2008; Hooper et al. 2010). These are (1) the linear 
EnE–WnW narmada–Satpura–Tapti feeder dyke system; 
(2) the ~n–S West Coast dyke swarm; and (3) the nnE–
SSW weakly oriented nasik–Pune swarm (Deshmukh and 
Sehgal 1988; Bondre et al. 2006; Ray et al. 2007; Valdiya 
2011; also see Powar 1981; Duraiswami et al. 2012). Geo-
chemical and some geological descriptions of dyke sys-
tems are available in Beane et al. (1986), Dessai and Viegas 
(1995), Sheth (2000), Vanderkluysen et al. (2004), Jain and 
Gupta (2013), etc. Only the EnE–WSW dykes are present 
in the study area. Detailed study of the lineaments, which 
are mostly dykes (see “Remote sensing analyses” section, 
this work) reveal that the coastal swarm also widely vary 
in trend (Fig. 2). Dykes are absent eastwards from 75°E 
(Deshmukh and Sehgal 1988) and reappear in the narmada 
region.

an estimated average extension ratio expressed in % 
(see Ju et al. 2013 for details) deciphered from the dykes 
yielded values ~30 % (Dessai and Bertrand 1995), 18 % 
(Bhattacharji et al. 1996), ~5 % specifically from Rajpipla 
sector (Valdiya 2010), and ~4–5 % in different areas (Ju 
et al. 2013).

Hooper et al. (2010) identified three sets of dykes geo-
chemically and geochronologically from Mumbai and 
nearby regions. Their ages are 66–65, ~65, and 65–63 Ma. 
They reported two of these sets to be strongly ~n–S ori-
ented regionally, i.e., parallel to the ~n–S shear zones, but 
some cut across shear zones locally. The third group has 
reportedly weak orientation and predates the shear zones. 
Hooper et al. (2010) concluded that (1) deformation took 
place after the bulk of the Deccan traps existed; (2) rift-
related structures developed by 65–64 Ma; and (3) the Sal-
sette Subgroup erupted during the break up and attenuation 
of the western continental margin.

Tectonics

although Plummer and Belle (1995) and Ganerød et al. 
(2011) considered that a plume rifted India from Sey-
chelles, it may also be due to far-field stresses leading 
to extensional tectonics in the West Indian passive mar-
gin (Malod et al. 1997; Courtillot et al. 1999; review by 
Mahadevan 1994; Balasubrahmanyan 2006; Hooper et al. 
2010; Vanderkluysen et al. 2011). Seychelles rifted from 
India after the lowermost Formations of the Wai Subgroup 
(Table 1; Fig. 1) emplaced (Hooper 1990; Hooper et al. 
2010). Hooper et al. (2010) concluded that the main vol-
canism predated rift-related extension. The bulk volcanism 
completed before ~66–65 Ma, and Seychelles broke away 
from India by the start of the magnetic chron C28n–C27n 
(64–63 Ma) (Todal and Edholm 1998; Collier et al. 2008; 
Ganerød 2010; Ganerød et al. 2011). This proves that 
the rifting happened after the bulk of the Deccan basalts 

Fig. 2  Study area showing the Formations (“Fm”) of the Deccan vol-
canic province (coastal region). Salher Fm is the oldest while Borivali 
Fm is the youngest. Younger Formations are encountered towards 
south.Brown lines dykes; blue lines faults as per Geological Survey of 
India (District Resource Maps 2001); blue large dots sizeable settle-
ments; red smaller dots field locations; red solid line western Deccan 
strike-slip zone mapped. The n and S limits await mapping and hence 
marked as dotted red lines. Blank areas (in white): either limits of dis-
trict boundaries or water bodies or alluvial cover. Green line Western 
Ghats escarpment (Widdowson and Cox 1999). Black rectangle at 
nE: location of Fig. 14d, e; K: Kalsubai Subgroup; l: lonavala Sub-
group; W: Wai Subgroup; S: Salsette Subgroup. Inset map indicates 
the extent (in red rectangle) of the area around Indian west coast

◂
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emplaced within 68–65 Ma. Dykes and other alkaline fel-
sic rocks from Seychelles Islands of ages 63.5–61 Ma 
(Ganerød et al. 2011) resemble geochemically the dykes 
and other volcanics in and around Mumbai (Hargraves 
and Duncan 1990; Devey and Stephens 1991, 1992; Gan-
erød et al. 2011; Owen-Smith et al. 2013). Owen-Smith 
et al. (2013) conclude that the Seychelles alkaline felsic 
suite represents the peak Deccan volcanism and start of 
the India–Seychelles rifting. These evidences point that 
breakup postdated the major/bulk Deccan volcanism. 
again, lagoonal to shallow marine intertrappeans (Cripps 
et al. 2005) confined within the Borivali Subgroup (~63–
60 Ma) implies marine influence to begin by this age. From 
this constrain on the age of the Deccan basalts, and the 
timing of India–Seychelles breakup, Deccan rocks should 
reveal deformation related to rifting.

The Panvel flexure (Fig. 1) is a regional monocline 
(auden 1949) dipping W to ~2–15° and formed at 65–
64 Ma (Hooper et al. 2010) or 63–62 Ma and thereafter 
(Sheth and Pande 2014) by rifting India from Seychelles. 
Increase in dips of the volcanic flows toward the arabian 
Sea defines it (see Dessai and Bertrand 1995; Sheth 1998). 
Dykes define the extent and the trend of this flexure (Des-
sai and Bertrand 1995). The area presently shows micro-
seismicity from shallow to deep (~2–15 km) levels (Mohan 
et al. 2007; also see Guha and Padale 1981; Mishra 2012a, 
b; Rai and Ramesh 2012). Mahadevan (1994) reviewed 
Deccan crustal structure. The Panvel flexure was explained 
as either a rift-related primary flexure (Devey and lightfoot 
1986) or a flexural response of the Western Ghats uplift and 
associated offshore subsidence (Watts and Cox 1989). The 
Panvel flexure was described as a syn- or post-rift exten-
sional fault structure comprising of tilted fault blocks (Des-
sai and Bertrand 1995; Dessai and Viegas 1995). Sheth 
(1998) explained it as a reverse drag (Mukherjee 2013a) 
on a large listric fault in the Mumbai offshore. However, 
seismic data in Mumbai offshore did not reveal such fault 
(Verma et al. 2001; naik et al. 2006; Misra et al. 2013). 
The flexure, thus, awaits a tectonic explanation, but we do 
not address this.

Steep mesas in and around Mumbai under a tropi-
cal climate possibly indicates the role of some hitherto 
undiscovered structures from the Deccan trap (Bhat-
tacharya 2013). The ~nW–SE trending, ~500 km long 
Kurduwadi/Kurudwadi lineament, has been previously 
envisaged, from gravity anomalies, to be a subtrappean rift 
(Brahmam and negi 1973; also see Qureshy 1981; Mishra 
et al. 2008; Mishra 2012a, b). alternately, from geomorpho-
logical studies and from satellite and areal imagery, Peshwa 
and Kale (1997) interpreted the Kurduwadi lineament to be 
a deep crustal-scale shear zone in the sub-trappean Precam-
brian rocks comprising of several ~nW–SE dextral faults. 
The Kurduwadi lineament correlates the dextral ~nW–SE 

Wadi fault in the neo-proterozoic Bhima basin and in the 
archean Dhawar granite gneisses (Kale and Peshwa 1995; 
Peshwa and Kale 1997). This lineament has also been con-
firmed as a sub-trappean fault zone from magnetotelluric 
studies (Harinarayana et al. 2007). The Kurduwadi linea-
ment depicts deformation in the Quaternary sediments in 
its northernmost part near Sangamner (Dole et al. 2000) 
and southernmost part in the Terna River basin (Babar et al. 
2012). Few authors (Dole et al. 2000; Babar et al. 2012) 
considered the deformation by reactivation of the faults, 
and seismicity by differential compaction and loading of 
the Deccan volcanics. The ~nnW West Coast fault (Chan-
drasekharam 1985; Biswas 1987) and the nnE-trending 
Koyna fault (Sarma et al. 2004) are two important fault 
zones that might have played key role in the tectonics of 
the western continental margin of India. The West Coast 
fault was possibly passive during Triassic–Jurassic and 
reactivated in Cretaceous–Early Paleocene (Biswas 1987), 
whereas the Koyna fault depicts recent activity as under-
stood from geophysical studies (Kaila et al. 1981; Sarma 
et al. 2004). a nnE-trending strike-slip fault zone dipping 
~60° toward WnW has also been confirmed near Koyna 
dam from drilling (Gupta et al. 1999) and geophysical stud-
ies (Sarma et al. 2004 and references therein). The sense of 
slip of the Koyna fault is not confirmed till date. Both the 
West Coast fault and the Koyna fault follow the Dharwar 
foliation trend (see fig. 2 of Gombos et al. 1995) (Fig. 1). 
Geophysical and remote sensing studies (Harinarayana 
et al. 2007; Chandrasekhar et al. 2011; Kumar et al. 2011) 
identified faults in the Deccan traps. The faults are concen-
trated in the rifted zones, viz., narmada rift zone, Cambay 
rift, and West Coast passive margin. Those faults are steep 
and trend variedly from nE to nW. Sense of slip, dips of 
fault planes, and other such details of these faults are not 
available.

Kolla and Coumes (1990) reviewed and compared the 
structural trends in the onshore and offshore continental 
sectors along the Indian western continental margin. While 
across major parts of the DlIP, the volcanic flows are hori-
zontal, they dip variably around the Mumbai coastal area. 
Their westerly dips steepened during Tertiary due to sub-
sidence by crustal thinning and sediment loading at the pas-
sive margin (Sheth 1998; Chaubey et al. 2002; Mohan and 
Kumar 2004; Cripps et al. 2005).

a number of researchers investigated the magnetic sea-
floor spreading anomalies in the n arabian Sea (e.g., Bhat-
tacharya et al. 1994; Dyment 1998; Miles et al. 1998; Todal 
and Edholm 1998; Collier et al. 2008; Misra et al. 2013). 
“Discussion and conclusions” section summarizes the 
results of their mapping, n and S of the laxmi ridge, and 
the magnetic anomalies trend ~E–W. Magnetic anomalies 
between the laxmi ridge and the Indian continent trend 
~nnW–SSE (Bhattacharya et al. 1994; Talwani and Reif 
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1998) or ~nW–SE (Todal and Edholm 1998). Yatheesh 
et al. (2009) demonstrated a mismatch between the mag-
netic anomalies in this region and the “typical” anomaly 
patterns. They also cautioned that the same magnetic 
data can interpret multiple ages (their fig. 8). Calvès et al. 
(2011) too supported this in their fig. 2.

Structural geology

Brittle shears and striated fault planes

We studied sub-horizontal and sub-vertical outcrops in 
field at rocky beaches, road cut sections, quarries, river 

Fig. 3  Outcrops of brittle shears on sub-horizontal exposures with 
prominent P- and Y-planes, a sub-vertical strike-slip brittle shear, 
with close-spaced Y- and sigmoid P-planes, define a strike-slip brit-
tle shear (nandgaon Beach, loc: 18°23′34.37″n, 72°55′14.47″E); 
b curved Y-plane and P-planes define a brittle shear. Mineralized 
shear planes at Janjira (loc: 18°20′51.78″n, 72°55′8.54″E); c sub-
vertical brittle shears with evident P- and Y-planes at aksa Beach 

(loc: 19°10′2.83″n, 72°46′53.49″E); d conspicuous P-, Y-, T-planes 
on outcrop, with a possible R′ shear associated with a sinistral brit-
tle shear at Korlai–Kashid (loc: 18°29′16.02″n, 72°54′1.23″E); e 
small unambiguous brittle shear at Murud (loc: 18°18′42.84″n, 
72°57′32.80″E); f intricate network of close-spaced sigmoidal 
P-planes by planar Y-planes at Harihareshwar (loc: 17°59′21.23″n, 
73° 1′37.24″E). Refer Fig. 2 for locations
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terraces, etc., in and around Mumbai (Fig. 2 for field loca-
tions). Brittle shears were documented from all the four 
Subgroups (stratigraphy in Table 1). We documented brit-
tle shears, slickensided fault planes, steps, asymmetric 

elevations (Doblas 1998), slipped markers, Riedel shears 
(Petit 1987; Passchier and Trouw 2005; Fossen 2010), etc. 
We define this zone of brittle deformation along the west 
coast India as the “Western Deccan Strike-slip Zone” (or 

Fig. 4  Outcrops of Riedel shears on sub-horizontal exposures, a 
R shears (top), with line drawing (below), at Korlai–Kashid rocky 
beach, north of Kashid beach. R- and P-planes are marked by solid 
lines. Incipient R′ fractures marked by broken lines and the “aver-
age slip plane” (M shear) by a bold black line (loc: 18°29′58.52″n 

72°54′13.89″E); b sub-vertical dextral Riedel shears with mineral-
ized (zeolite) M- and R-planes at nandgaon (loc: 18°23′34.37″n, 
72°55′14.47″E); c mineralized M- and R-planes dextral sheared at 
Janjira (loc: 18°20′51.78″n, 72°55′8.54″E). Refer Fig. 2 for loca-
tions
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WDSZ). Figure 2 shows the possible extent of the WDSZ. 
It extends from the Western Ghats escarpment (Fig. 1) to 
the coast. The n-S extent of the WDSZ needs delineation.

The sub-vertical Y-planes (see p. 157 of Passchier and 
Trouw 2005 for brittle shear nomenclatures) trend ~nW–
SE/~nE–SW (with some ~n–S) in the older lower and 
Upper Ratangarh Formations and ~nW–SE/~nE–SW 
(with minor ~nnE-SSW) in the younger Elephanta, 
Karla, and Borivali Formations. The P-planes of the brit-
tle shears, bound within the Y-planes, are sigmoid. In other 
words, the Y-planes are tangential to the P-planes. The 
shear sense is deciphered from the angular relationship 
between the Y- and the P-planes (see Passchier and Trouw 
2005 for details; Mukherjee 2007, 2010a, b, 2012c, 2013b, 
c, d; Mukherjee and Koyi 2010a, b), similar to C- and 
S-planes for ductile shears (Berthé et al. 1979; Mukherjee 
2011; Chen et al. 2014). The angles between the Y- and the 
P-planes range 25–45° (Passchier and Trouw 2005; Fossen 
2010; Davis et al. 2012), and our estimated angles (~30–
40°) fall within this. Y-planes, same as the “fault planes” 
(Davis et al. 2012). In some exposures, sub-vertical ~nE 
to ~EnE-trending Riedel shears (Figs. 3d, 4a) associate 

with the brittle shears. Since sub-vertical (> 80°) R-, R′-, 
and M-planes (Petit 1987; Passchier and Trouw 2005) were 
found on sub-horizontal outcrops, they denote a strike-
slip deformation. Markers such as mineralized fractures at 
aksa Beach (Fig. 5a), veins at Kharghar hills (Fig. 5b), and 
dykes near Murud (Fig. 5c) slipped dextrally along ~nnE–
SSW to ~nE–SW sub-vertical, strike-slip faults. Strike-
slip brittle shears (Fig. 3a–f) are prominent at aksa Beach, 
Kashid-Murud stretch, and nagothane–Harihareshwar 
locations (Fig. 2 for field locations) with dominantly dex-
tral shear. Secondary mineralizations (Figs. 3b, 4a, b) seen 
often along brittle/Riedel shears (R- and R′-planes), made 
the shear sense indicators more conspicuous. R-planes 
have a typical angle of 10–20° and the R′-planes 70–110° 
with the M-planes (Petit 1987; Passchier and Trouw 2005; 
Fossen 2010). In our case, the angle between the R- and 
the M-plane is 10°–15° and that between the R′- and the 
M-plane 70°–90°. Sinistral brittle shears were rare (Figs. 3d 
and 4a). However, a km-scale regional sinistral shear, what 
we designate as the “Jawhar–Malshej shear zone,” is evi-
dent in the satellite images (“Data and methods” section). 
Shear fractures crosscut (Fig. 6) at nagothane and near 

Fig. 5  Examples of slipped markers on sub-horizontal outcrop 
a mineralized fractures slipped dextrally at aksa Beach (loc: 
19°10′2.83″n, 72°46′53.49″E); b slipped vein along a fault plane 
at Kharghar hills (loc: 19°02′28.21″ n, 73°03′05.21″E); c dis-

placement of a dyke along shears, at Murud (loc: 18°18′42.84″n, 
72°57′32.80″E). The group of dykes deformed by the shears forms 
the Group I dykes of Hooper et al. (2010), which predate the defor-
mation. Refer Fig. 2 for locations
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Mhasala (Fig. 2 for field locations) with sinistral ~330°n 
trending shears (= Y-plane) and dextral ~20°n trending 
shear. Both the crosscutting shears accompany sub-ver-
tical P-planes making ~10–20° angles with the Y-planes. 
Since these crosscutting shears are not compatible with 
the σ1 (maximum compressive stress) bisector of the small 
angle of the crosscutting pair, which is typical of “conju-
gate shear fractures” (Fossen 2010), we considered both 

the brittle shear planes as independent data points for the 
stress analyses in “Paleostress analyses” section.Whether 
the strike slip brittle sheared rock under optical microscope 
reveal trapezoid-shaped minerals (as in Mukherjee 2012a, 
b) is a subject of future study.   

Riedel shears (Petit 1987) are common in strike-slip 
domains but were reported subsequently from other shear 
zones (Davis et al. 1999; Katz et al. 2004). The Riedel 

Fig. 6  Crosscutting shear fractures on sub-horizontal outcrops near 
Mhasala (loc: 18°09′14.06″n, 73°09′27.64″ E). The shear fractures 
trending nW–SE (left side in photograph) are sinistral, whereas 
those trending nE–SW (right side in photograph) are dextral. a and 

b zooms into parts (marked by respective labeled boxes) of the main 
photograph (above) to show the details of the shears. White arrows 
mark the P-planes. Sinistral shear not well-formed, refer Fig. 2 for 
locations
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shear zones can show the secondary R and R′ shears (or 
R1 and R2, respectively, as per Ramsay and Huber 1987) 
and T- (T = tensile) fractures/planes with the “average” or 
“mean” or “main” slip plane (M-plane) (Petit 1987). This 
M-plane is not to be confused with “movement plane” 
(see Fossen 2010). The “movement plane” is an imaginary 
plane required for the construction of “tangent-lineation 
diagrams” for fault populations (Fossen 2010). We denote 
“M-plane” here as the main slip plane. If Riedel and non-
Riedel brittle shears coexist, the M- and the Y-planes coin-
cide. In this case, the M-plane is equivalent to the Y-plane. 
The R shears develop first (Ramsay and Huber 1987) in 
strike-slip regimes and are thus more abundant. The main 
movement occurs along the M-plane (thus = fault plane) 
and so often they bear slickensides (Petit 1987). The shear 
sense is deciphered from the slickensides and/or the angu-
lar relationship between the R/R′ shears with the M-plane. 
We noticed Riedel shears (R and R′), occurring along with 
Y–P planes, T-fractures, and ~nE–SW trending M-planes 
on sub-horizontal outcrops at nandgaon and Korlai–Kashid 

(Fig. 4; Fig. 2 for field locations). R and R′ shear planes 
occur at ~10–20° and ~70–90°, respectively, with the 
Y-planes.

Slickensides on striated fault planes (Fig. 7; see fig. 1 of 
Doblas 1998’s review) were observed in the quarries and 
road cut sections at Kharpada, Panvel, Kharghar, Varcha-
Owle, and Murbad (Fig. 2: field locations). In general, 
they occur on freshly exposed, thin (~1–5 mm), mineral-
ized (secondary quartz, zeolite, calcite, etc.) fault planes 
and show dominantly a dextral slip. Mineralized films are 
prone to erosion (Whiteside 1986; Doblas et al. 1997; Dob-
las 1998; Kranis 2007). This might be the cause of their 
absence in large parts of the WDSZ. The nW to nE (minor 
~n–S to ~nnE–SSW) trends of the striated faults planes 
match those of the Y-planes of the brittle shears. Pitch of 
slickenlines on sub-vertical faults range widely from 0 to 
90°. Thus, those are strike-slip, oblique-slip, and dip-slip 
faults. notice that although Tjia (1964) questioned reliabil-
ity of slickenslides to determine brittle shear sense, subse-
quent workers used slickensides to decipher shear sense. 

Fig. 7  Polished slickensided fault planes (sub-vertical) represent 
a dextral oblique-slip movement on sub-vertical fault plane at a, b 
Kharghar hills (loc: 19°02′28.21″n, 73°03′05.21″E); c Turbhe (loc: 
19°4′55.43″n, 73° 1′53.31″E): d Varcha–Owle (loc: 18°59′28.02″n, 

73°2′28.29″E). The striae pitch 10–15° on the fault plane in these 
examples contrasts (a), which is ~50°. Bold black arrows: movement 
direction of the missing block. Refer Fig. 2 for locations
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Fig. 8  a On a sub-vertical section, a train of “asymmetric elevations” 
or knobby elevations (of Doblas 1998) indicate a dextral strike-slip 
fault, “g” indicates the gentle slope; and “s” its steep slope. note the 
plucking on the steep slopes resemble roche moutonnées; b Trans-
verse section of “asymmetric elevations” also indicate a dextral slip, 
“g” and “s” have same meaning as in a, (modified from Misra and 
Bhattacharya 2014); c another train of asymmetric elevations. note 

the branching morphology (near the pen). The general trends of 
the elevations are used to measure the slip vector. The slip vector is 
measured perpendicular to the crest of the elevation, marked by the 
white dotted line; d another example of an asymmetric elevation, 
but with a smoother surface; at aksa Beach (loc: 19°10′10.88″n, 
72°47′21.44″E), refer Fig. 2 for locations
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asymmetric elevations/knobby elevations (Dzulynski 
and Kotlarczyk 1965; Tjia 1967)/“steps” (Doblas 1998), 
a kind of rare slickensides, were documented as reliable 
shear sense indicators (type aE-3 in Fig. 1 of Doblas 1998; 
Misra and Bhattacharya 2014). Slopes of their steep faces 
indicate the shear sense of the missing block. Parts of their 
steep slopes plucked off (Dzulynski and Kotlarczyk 1965; 
Tjia 1967; Misra and Bhattacharya 2014; Fig. 8). Those 
are abundant on ~n to nE-trending sub-vertical faults 
at aksa Beach (Fig. 2: field location) and denote dextral 
shear. although geometrically similar, these should not 
be confused with mullions. Mullions develop at lithology 
interfaces with significant competence contrast (Davis 
et al. 2012; see also Misra and Bhattacharya 2014). Here, 
asymmetric elevations develop solely in rhyolites and their 
positive smoothness criterion (“good” degree of confi-
dence; Doblas 1998) reveals shear sense. Steps (Doblas 
1998) occur on polished fault planes as isolated structures 
(Fig. 9). Polished fault planes are smooth when rubbed 
gently along the slip of the missing block. These planes 
feel rough when rubbed oppositely. These are sometimes 
associated with asymmetric elevations. Steps are rarer than 
striated fault planes. 

near n–S (with some ~nW/nE), vertical dip-slip faults/
brittle shears were fairly common. Dessai and Bertrand 
(1995) and Valdiya (2011) also reported/referred n–S 
trending vertical dip-slip faults from this area. Sub-vertical 
faults neither extend nor compress the crust. andersonian 
dip-slip fault dip < 60° (anderson 1951), which is not the 
case here. Vertical dip-slip faults imply only vertical move-
ments of the crust (Maldonaldo and Stanley 1976; Waldron 
et al. 2007). Isostatic loading by sedimentation, volcanism, 
glaciation, etc., or unloading by erosion, deglaciation, etc., 
lead vertical movements (Jones 1980; Watts 2001). The 
classical isostatic concepts such as by airy and Pratt also 

considered vertical movements of blocks of crust by inter-
block vertical dip-slip faulting (see Keary et al. 2009 for 
review). We therefore postulate that this set of faults results 
from post-eruption isostatic adjustments. Other authors 
concluded the same for onshore (Kailasam 1975, 1979; 
Watts and Cox 1989; Dessai and Bertrand 1995; Wid-
dowson and Cox 1999; Campanile 2007; Campanile et al. 
2008; Valdiya 2011) and offshore (Calvès et al. 2008) for 
the western continental margin of India.

Extension fractures

Extension fractures (Fig. 10), indicating tension normal to 
their strikes, are common in the alibag–Murud traverse. 
Their ~E–W trends (Fig. 10b) are fairly dominant near 
Murud (Fig. 2 for location). In field, extension fractures 
were identified on sub-horizontal outcrops by their sub-par-
allel strikes (following Hodgson 1961; Shah et al. 2007), 
nearly equal spacing (Eig and Bergh 2011; Gudmundsson 
2011), and orthogonal abutting relation against another 
set of fractures/shear planes (Caputo 1995, 2010; Herman 
2009; Park et al. 2010; Guidi et al. 2013). Though cooling 
fractures can be distinguished from polygonal fractures on 
sub-horizontal outcrops (aydin and Degraff 1988; Schaefer 
and Kattenhorn 2004), the latter appear parallel and nearly 
equidistant on vertical sections (fig. 3 of lescinsky and 
Fink 2000) resembling extension fractures. Hence, we 
avoided vertical sections to identify them.

Other structures

a single, outcrop-scale pull-apart basin (Fig. 11) was found 
on a sub-horizontal outcrop at a rocky beach at nandgaon 
(refer Fig. 2 for location). The trend of the strike-slip seg-
ment, i.e., the “principal deformation zone” (PDZ; e.g., see 

Fig. 9  Slickenside-bearing fault planes (sub-vertical) with steps, 
a dextral strike-slip fault plane (near Kharpada bridge, loc: 
18°49′36.11″n, 73°05′36.57″E); b steps on a sinistral fault plane, at 

a quarry near Murbad (loc: 19°15′2.55″n, 73°12′23.87″E), white 
arrows sense of movement of missing block, refer Fig. 2 for locations
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Dooley and McClay 1997) is 120°n with possibly normal 
faults striking ~160°n inside the basin. The normal faults 
would indicate a local ~nE–SW extension. But due to 
the absence of clear slip indicators, we did not use those 
for paleostress analyses. The pull-apart basin confirms 
strike-slip tectonics in the area. Rare en-echelon fractures 
(Fossen 2010; Davis et al. 2012) (Fig. 10c) and horsetail 
splays (Fossen 2010; Davis et al. 2012) (Fig. 10d) with 
~EnE trend were noted near aksa and Murud (vide Fig. 2 
for locations) and fits well with the other observations. 

Horsetail splays on sub-horizontal outcrops also indicate 
a strike-slip deformation (Davis et al. 2012). En-echelon 
fractures indicate extension perpendicular to them. When 
present along with other strike-slip indicators, they deduce 
shear sense (Fossen 2010; Davis et al. 2012).

Other than the pull-apart basin, normal faults were 
generally absent. notice that Dessai and Bertrand (1995) 
reported a single fault (40° dip toward E) without any shear 
indicator. Dessai and Bertrand’s (1995) fault was not used 
for paleostress analyses in “Paleostress analyses” section. 

Fig. 10  a Extension fractures on sub-horizontal outcrops at Korlai–
Kashid rocky beach (loc: 18°29′58.52″n, 72°54′13.89″E), refer 
Fig. 2 for locations. b Pole plots of extension fractures from the 
Kashid–Murud field area shows a n–S orientation of the minimum 

compressive stress (σ3), marked by black arrows. lower hemisphere, 
equal area projection. c En-echelon fractures at aksa Beach (loc: 
19°10′10.88″n, 72°47′21.44″E). d Horsetail structure at Murud (loc: 
18°18′42.84″n, 72°57′32.80″E)
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no other authors reported normal faults from the western 
DlIP. Spheroidal weathering is dominant in Deccan trap 
rocks (Deshpande 1998; Bondre et al. 2006). Those, usu-
ally sub-circular and sub-elliptical curved fractures, were 
distinguished from sigmoidal P-planes, especially at aksa 
Beach. Fractures related to spheroidal weathering were 
ignored in tectonic interpretations. also, this study does 
not incorporate lava flow-induced local ductile shears (e.g., 
Misra 2014; Mukherjee 2013b) from Malshej ghat (loca-
tion in Fig. 2) and along the Mumbai–Pune Expressway 
(unpublished observations by the first two author).

Remote sensing analyses

Remote sensing analysis and ground-truthing confirm 
deformation in regional scale. The sigmoid nature of the 
P-planes and their angular relation with the Y-planes, men-
tioned in “Brittle shears and striated fault planes” section, 
also decipher brittle shear senses on the satellite images.

Data and methods

We used false color composites of (1) landsat ETM+ 
Images-432 (RGB) (Fig. 12); and (2) Geoeye or 

Quickbird Images-123 (RGB). These were availed from 
Google Earth/World Wind (supplied by naSa at URl: 
http://worldwind.arc.nasa.gov/java/). World Wind spe-
cially has an “anaglyph stereo” mode to study the land-
forms, topography in stereographic vision (in three dimen-
sions). This facilitates image interpretation. Both types of 
images were chosen to obtain clear and usable examples. 
Images with cloud and vegetation covers, etc., were dis-
carded. The Deccan trap remains densely vegetated during 
and after the monsoon. Therefore, images during Decem-
ber to april were preferred.

a standard lineament analysis was performed manually 
(visually picked) on the ETM + images, without any mini-
mum length function bias. a large number (> 2,000) of ~1–
20 km long lineaments were mapped (Fig. 12). These line-
aments were confirmed as geological features from Google 
Earth images by neglecting anthropological linear features 
such as roads and electric lines. The filtered out lineaments 
of geologic nature are grouped as follows.

1. Dykes: They most commonly appear elevated (corre-
lated with topographical and digital elevation maps) 
and sometimes protrude into water bodies (Fig. 13a). 
These have been confirmed as dykes by ground-truth-
ing (Fig. 13b) at few places and also from District 

Fig. 11  a mesoscale dextral pull-apart basin at nandgaon Beach (loc: 18°23′34.37″n, 72°55′14.47″E). The strike of the strike-slip fault is 
120°n. The (possible) normal faults have strike ~160°n and have ~60° and ~50° toward E dips. Refer Fig. 2 for locations

http://worldwind.arc.nasa.gov/java/
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Resource maps of Geological Survey of India (match-
ing Fig. 2 with Fig. 12).

2. Unclassified: all of these cannot be identified con-
fidently as dykes. But they can be subgrouped as fol-
lows.

a. linear depressions, often water bodies form inlets 
through these lineaments (Fig. 13c).

b. Densely vegetated linear features. These are 
much shorter than dykes. They are close-spaced, 
often in parallel clusters, and are almost equally 

spaced (Fig. 13e). Spacing varies from 500 m up 
to 2 km.

c. These lineaments deflect rivers/channels locally 
into straight segments (Fig. 13f).

all these groups could not be confirmed from ground 
truth. This is because either they are inaccessible in field 
or sometimes those could not be located on ground due to 
surface weathering or soil cover. In one instance, ground 
truth proved a linear depression as a dyke (Fig. 13d). 
Dykes are normally more resistant than the country rock 

Fig. 12  Mosaic of landsat 
ETM+ images of the study area 
merged into 432 false color 
composite (FCC) image. Bright 
red colors dense vegetation; 
greenish to greyish colors 
barren areas; blue, dark blue 
to black colors water bodies. 
lineaments marked on this 
image (blue lines). Rose plots of 
the different areas (correspond-
ing white rectangles) show the 
trends of the lineaments. Small 
black rectangles represent areas 
shown in Fig. 13 and numbered 
here in correspondence
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Fig. 13  lineaments mapped on the landsat ETM+ satellite data 
(Fig. 12) and field photographs. a D indicates dykes and (1) indicates 
the feature that the dykes form linear emergent ridges inside the water 
bodies. b One such dyke on sub-vertical outcrop. The dykes typically 
have three sets of rock cleavages more dominant  near their bounda-
ries. loc: 19°02′28.21″n, 73°03′05.21″E. c lineaments appear as 
depressions and associated with water bodies form linear inlets of 
water (1) and unassociated with water bodies (2). The white arrow 
shows a linear edge of a water body, which is a dam (checked on 

Google Maps!). The bright linear curved feature is the ~E–W trend-
ing Mumbai–Pune Expressway. d Field photograph of one such 
linear feature with depression. This is also a dyke, the boundaries 
of which bear three sets of rock cleavages. loc: 18°59′44.50″n, 
73°02′36.48″E. e linear water bodies form inlets into lineaments (1) 
lineaments characterized by denser vegetation (2). f lineaments char-
acterized by linear streams (1). See Fig. 12 for location of the satellite 
images
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and constitute elevated ridges. Intensely fractured and less 
resistant Deccan dykes were also reported (Peshwa and 
Kale 1988; Sabale and Meshram 2012). Thus, the unclassi-
fied lineaments, because of the above-mentioned character-
istics, are likely to be dykes. However, the second group of 
lineaments can also be fractures, shear zones (see “Results” 

section), or brittle faults (compare Fig. 2 with Fig. 12). 
Previous authors used high-resolution images of Google 
Earth to distinguish lineaments from faults with displaced 
markers (e.g., fig. 6 in Viola et al. 2012). However, mark-
ers are too rare to recognize visible displacement on satel-
lite images of the Deccan volcanics. The problem persisted 

Fig. 14  High-resolution satellite image data taken from Google 
Earth. a The abutting relationship of the nW–SE lineament (dyke 
from ground-truth data) with the ~n–S lineament is clear and a pos-
sible slip is marked by half-arrows. b a conspicuous P- and Y-planes 
representation by lineaments. Both P- and Y-planes are most possi-
bly dykes since these lineaments show linear positive elevation and 
are not depressions like other lineaments. The azimuth of the Y-plane 
matches with the Y-plane strike from outcrops. c an intricate network 
of lineaments represent Y–P (brittle shear), R (Riedel) planes indi-
cate a shear zone. a few lineaments are marked by dotted lines. The 
possible sense of movement is represented by white half-arrows. ’D’ 

indicates dykes possibly emplaced after shear since they crosscut all 
the other lineaments. The stream at south shows straight segments 
along the lineaments. d Part of the Jawhar–Malshej shear zone (this 
work, “Results” section) shows the lineaments (shear fractures or 
brittle shears) and the interpretation in e; settlements in white circles, 
K Khardi, P Patol, S Shirol; e black half-arrows mark the direction of 
movement, D are possibly dykes at a later intrusive phase because the 
cut across all other structures. The Y-planes trend ~120°n. For loca-
tion of the image, see Fig. 2a–c and e has the possible range of the 
minimum horizontal stress orientation referred
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Fig. 14  continued
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during field studies as well. Since the flows of Deccan traps 
are sub-horizontal (review by Valdiya 2010), slip of makers 
may remain undetected from satellite images. nevertheless, 
we recognized the displacement of one lineament across 
the other as a fault (Fig. 14a).

Previous authors did study Deccan trap lineaments (e.g., 
Peshwa et al. 1987; Dessai and Bertrand 1995; Bhattacha-
rji et al. 1996; Widdowson 1997; Kundu and Matam 2000; 
Chandrasekhar et al. 2011) but on much lower resolutions. 
and, they could interpret only sparse lineaments of great 
lengths of tens of km. On the other hand, we infer ~50 m 
to 20 km long n–S lineaments, plausible dykes, from our 
study area.

This study analyses lineaments on higher resolution 
(30 m for ETM+ and 1 − 0.62 m for Google Earth) to 

interpret close-spaced and much smaller lineaments. addi-
tionally, this study attempts for the first time to identify 
brittle shears (P-, Y-, R-, R′-, T-planes) on high-resolution 
satellite images from the Deccan traps (Fig. 14b, c). Previ-
ous authors did not target these.

Geological Survey of India’s maps, viz., the District 
Resource Maps (2001), delineated few large-scale faults. 
The Thane district map shows a series of nW-trending 
faults between the localities Jawhar and Malshej. These 
were confirmed as km-scale high-angle faults show-
ing both dextral and sinistral shears with 10–30 m slip 
(Peshwa and Kale 1997). a close look at these faults on 
the Google Earth images revealed P-, Y-, and R-planes. 
The Y-planes trend ~nW–SE, which matches well with 
those documented from field (“Brittle shears and striated 

Fig. 15  Dykes at Murud show 
their association with the brit-
tle shears on sub-horizontal 
outcrops a the dyke intruded 
between the Y-and P-planes 
and is parallel to the Y-plane, b 
left the dyke parallels the shear 
zone (the Y-plane); line drawing 
on right showing the relation 
of the dykes (D) with the main 
structures (Y, P, R). These form 
the Group II dykes of Hooper 
et al. (2010), which are coeval 
to or postdate. Refer Fig. 2 for 
locations
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fault planes” section). This therefore appears to be a 
> 40 km long sinistral shear zone (Fig. 14d–e) through 
Salher Formation (the oldest Formation of the Deccan). 
We name this as the “Jawhar–Malshej shear zone.” This 
~nW–SE sinistral shear zone implied a ~n–S exten-
sion. Besides, most of the brittle shears we get from field 
trend ~nE–SW and are dextral. Those also imply a ~n–S 
extension.

Results

azimuths of lineaments mapped on the satellite images 
were divided into nine sets representing separate areas. 
These sets were then plotted into frequency–azimuth rose 
diagrams (Fig. 12). note that lineaments are not uniformly 
~n–S trending.

almost all these lineaments we used represent dykes. 
notice the absence of the Jawhar–Malshej shear zone in 
the lineaments of Fig. 12. Smaller lineaments (e.g., the 
P-planes) cannot be picked up at this resolution. These 
dykes do not follow the general ~n–S trend throughout the 
coastal DlIP around Mumbai as found by previous authors 
(Beane et al. 1986; Sheth 2000; Vanderkluysen et al. 2011 
etc.). additionally, there are many ~E–W lineaments 
(Fig. 12), which are dykes (compare Fig. 2).

The dykes in the study area (Fig. 2) trend ~n–S north 
of Kalyan and change abruptly to a dominantly nE–SW 
trend at south. Swing of dykes was not described previously. 
Comparably, lineament mapped in this study (Fig. 12) is 
dominantly ~n–S north of 19°n latitude within the older 
Kalsubai Subgroup. South of 19°n, these lineaments reduce 
at the cost of nE–SW and some nW–SE lineaments. n–S 
lineaments vanish in Salher, Borivali, and Karla Forma-
tions (rose plots in Fig. 12). a few E-trending lineaments 
are also present throughout the area (e.g., D in Fig. 14c, e). 
Those appear to be last-stage (post-64 Ma?) dyke intrusion 
because they seem to cut across all other dykes. There are 
almost no dykes/lineaments S to ~18°n (Figs. 2, 12). Inter-
estingly, the trend of lineaments (mostly dykes) match with 
those of the shear zones/striated faults (compare dykes and 
faults in Fig. 2; detailed in “Regional geology” section).

Remote sensing revealed slip (Fig. 14a), P–Y planes 
(Fig. 14b–e), Riedel shears (R and R′) (Fig. 14c), and brit-
tle shear zones (Fig. 14d). note that P–Y planes (for brittle 
shears) cannot distinguish from C–S planes (as in ductile 
shears) on satellite images since both the S- (and the P-) 
planes sigmoidally merge with the C- (and the Y-) planes. 
Since only brittle shears persist in the field (see “Structural 
geology” section) from same areas as shown in satellite 
images, we confirm those on the images to be P–Y planes.

Fig. 16  a a sub-vertical brittle shear zone (sub-vertical outcrop) 
shows a mesoscale P- and a Y-plane at the Varcha–Owle quar-
ries, near Panvel. loc: 18°59′23.22″n, 73°03′03.94″E. b The same 
Y-plane, polished and slickensided; the pitch of the slickensides is 

90° on the Y-plane, showing the relationship of the brittle shears and 
the striated fault planes. Black arrow marks the sense of movement of 
the missing block. Refer Fig. 2 for locations
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Interpretations and implications

Based on the above observations coupled with field evi-
dences in “Dykes” section, we interpret that the dykes of 
~n–S trend in the n and ~nE–SW and ~nW–SE in the 
S emplaced along shear fractures. These fractures existed 
when magma intruded. Such an interpretation was also pro-
posed by Peshwa and Kale (1997), who suggested that flex-
uring of the crust during rifting and loading of sediments 
in the offshore areas opened n–S trending fractures, where 
the dykes intruded later. The best and direct evidence of 
this is found in Fig. 14b. Here, one lineament meets tangen-
tially the other. The former is a dyke. The latter ~40°n line-
ament is also elevated, elongated, and linear. This geom-
etry is best explained as dykes intruding preexisting P–Y 
planes. In field, the dykes strongly follow the shear zones 
(Fig. 15a, b; see also Hooper et al. 2010). They also either 
occur between a Y-plane and a P-plane of a single brittle 
shear zone (Fig. 15a, b) or intrude preexisting fault planes 
(also see fig. 5 of Dessai and Bertrand 1995).

Emplacement of dykes along preexisting shear zones 
contradicts their general emplacement modes. Dykes 
emplace perpendicular to the direction of minimum com-
pressive stress (σ3) and parallel to the maximum com-
pressive stress (σ1) (Gudmundsson 1984, 2011). This 
resembles mode-I fracturing (Fossen 2010). Dykes 
emplace where the tensile strength of the rock is least 

(Gudmundsson 1984). Preexisting shears/tensile frac-
tures are planes along which the tensile strength almost 
vanishes. Thus, dykes usually follow existing fractures 
in country rocks. However, dyke intrusions always have 
dilation components since they forcefully push the coun-
try rock almost perpendicular to themselves. Mentioned 
in “Dykes” section, the dykes in the study area can be 
classified into three groups. One group of dykes predates 
the deformation and the other two are either coeval or 
are post-deformational (also Hooper et al. 2010). Dykes, 
thus, need to be studied carefully before assigning tectonic 
extension in response to their emplacements. Dykes iden-
tified in satellite images crosscut each other at numerous 
places. However, these images could not deduce the rela-
tive timing of intrusion. Geometry and emplacement of 
tabular magmatic bodies are controlled by complicated 
internal (magmatic) and external (tectonic) stresses (Hut-
ton 1992; Glazner et al. 1999; Correa-Gomes et al. 2001). 
Watkeys’s (2002) figure 11 represents the intrusion of 
dykes along preexisting Y-, P-, R-, R′-, and T-planes with a 
dominant emplacement through Y-planes at Karoo volcan-
ics, South africa. That dykes intrude preexisting or active 
shear zones were also observed elsewhere, e.g., Washing-
ton (Cater 1982); the Middle Jurassic Concón Mafic Dyke 
swarm at Chile (Creixell et al. 2006); Paleogene dykes on 
livingstone Island, antarctica (Kraus et al. 2010); Sierra 
de San Miguelito, central Mexico (Xu et al. 2012).

Table 2  Orientations of stress 
tensors derived by visualization 
of the Gauss function (VGF) 
method and azimuth of the 
maximum horizontal extension 
(SHmin); azi: azimuth, Pl: 
plunge, Ф, R: shape parameter 
of the stress ellipsoid (see 
“Results of inversion” section 
for details), n = number of 
faults/brittle shears considered; 
Q: quality of the tensor (see 
“Results of inversion” section). 
See Fig. 17 for a map with 
maximum horizontal extensions

Formation location SHmin σ1 σ2 σ3 Ratio Φ R n Q

azi. Pl. azi. Pl. azi. Pl.

Borivali aksa 346 072 02 255 88 160 00 1.01:0.17:0.07 0.1 0.1 62 1

Kanheri 355 075 00 169 86 345 04 0.89:0.48:0.06 0.5 1.0 10 1

Diveghat Harihareshwar 338 244 02 136 85 335 05 1.04:0.17:0.07 0.1 0.1 26 1

Elephanta 338 074 00 169 86 343 04 0.99:0.35:0.07 0.3 0.4 9 1

Korlai–Kashid 346 081 00 173 87 351 03 0.99:0.25:0.07 0.2 0.3 27 1

Elephanta nandgaon 359 085 00 177 85 355 05 0.92:0.41:0.07 0.4 0.7 25 1

Janjira 183 280 01 175 86 011 04 0.94:0.33:0.07 0.3 0.4 35 1

Murud 346 092 00 186 85 003 05 1.01:0.17:0.07 0.1 0.1 28 1

Mhasala 183 084 00 175 86 354 04 0.94:0.33:0.07 0.3 0.4 41 1

nagothane 357 273 06 100 84 005 01 0.71:0.71:0.05 1 CO 25 1

Karla Morbe 207 103 00 193 84 014 06 0.94:0.5:0.07 0.5 1.0 12 1

Turbhe 253 354 06 180 84 83 01 0.87:0.55:0.06 0.6 1.5 5 3

Kharghar Hills 285 001 05 125 81 270 08 0.9:0.48:0.06 0.5 1.0 24 2

Varcha–Owle 290 013 03 126 83 282 06 0.88:0.55:0.06 0.6 1.5 18 3

U. Ratangarh nhava Phata 322 053 01 237 89 140 00 1.1:0.18:0.08 0.1 0.1 47 1

Chirner1 337 056 29 192 62 314 22 1.11:0.08:0.08 0 0 25 1

Chirner2 332 255 40 024 37 139 30 1.06:0.27:0.08 0.2 0.3 12 1

Kharpada 358 248 04 118 83 339 05 0.81:0.59:0.06 0.7 2.3 10 1

Murbad 297 007 26 216 61 102 12 0.97:0.43:0.07 0.4 0.7 3 3

l. Ratangarh Bhatan 288 037 02 143 81 305 08 0.76:0.69:0.05 0.9 9.0 6 2
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The Jawhar–Malshej shear zone is confirmed to be 
a fault from Peshwa and Kale’s (1997) work. They 
found dextral and sinistral displacement (~10–25 m) of 
n–S-trending dykes along the fault zone and also vertical 
slip of basalt flows near the Khardi settlement (location in 
Fig. 14d). The ~nW–SE trend of Jawhar–Malshej shear 
zone appears to be a northernmost continuation of the nW–
SE Kurduwadi lineament, which is in turn a manifestation 
of the Precambrian Wadi shear zone (Peshwa and Kale 
1997). So, the dextral Wadi shear zone was active before 
the DlIP emplacement, reactivated as the sinistral Jawhar–
Malshej shear zone during India–Seychelles rifting and 
activated again possibly since Pliocene (Dole et al. 2000; 
Babar et al. 2012).

lineaments that were identified with confidence are 
either shear fractures (e.g., Fig. 14c, d) or dykes intruded 
into shear fractures (Fig. 14b). Both of them yielded 
paleostress orientations (Fig. 14). This is a key to under-
stand the regional paleostress field. The minimum hori-
zontal stress axis (σ3) was marked on the satellite images 
(Fig. 14). appendix 1 describes the procedure. The exercise 
reveals ~nW to ~nE trending σ3. These trends are ubiq-
uitous where a large number of interpretable lineaments 
exist, e.g., Fig. 14d–e. The deduced orientations also match 
with those derived from the field-based paleostress study 
(“Paleostress analyses” section). Remote sensing analy-
ses from the northern areas (viz., Dahanu and Jawhar: see 
Fig. 2 for locations) were also obtained (Figs. 2, 14d–e). 
Remote sensing study was used to confirm the regional 
nature of the deformation. This was done by matching the 
trends of the shear zone with those obtained from the field. 
approximate stress orientations were interpreted from the 
lineaments mapped (Fig. 14).

Paleostress analyses

Data and methods

We examined > 60 outcrops where ~30 outcrops at 19 loca-
tions provided quality data used here. Paleostress analyses 
and related inversion require the following data sets: (1) 
“azimuth” and “dip” (or attitude) of the fault planes, i.e., 
Y-plane for brittle shears and M-plane for Riedel shears; 
(2) “lineation” (or the attitude of the slip vector, e.g., pitch 
of the striae of slickensides on faults; (3) “type:” slip sense 
normal, reverse, dextral sinistral; and (4) “reliability:” 
confidence of the measured data, viz., uncertain, possible, 
probable, and confident (e.g., Žalohar and Vrabec 2007; 
Sippel 2009; Žalohar 2009; Sippel et al. 2010; Zachariáš 
and Hübst 2012). Terminologies mentioned inside “double 
inverted commas” are as per Žalohar (2009). For slicken-
side-bearing fault planes, attitude of fault planes and pitch 

of lineations on fault planes were measured following con-
ventional shear sense indication techniques of Hancock 
(1985), Petit (1987), and Doblas (1998). Those are the 
“positive” and “negative” smoothness criteria, orientation 
of elongated grooves of the fault planes, angular relation-
ships between fractures and fault planes, etc. as mentioned 
in “Brittle shears and striated fault planes,” steps and asym-
metric elevations are a kind of slickensides (Doblas 1998). 
a line perpendicular to the crest/hinge line of asymmetric 
elevations was taken as the slip vector. This line therefore 
resembles striations/slickensides for steps and asymmetric 
elevations (Fig. 8c). The vector has a direction along which 
a gently moving hand feels smooth on the fault plane.

The slip vector is usually perpendicular to the line of 
intersection between the Y- and the P-planes and lies on 

Fig. 17  Positions of the maximum horizontal extensions (SHmin) 
on map overlapped on the Formations map. For details on the ten-
sors and SHmin azimuths, see Table 2 and Fig. 18. The blank arrows 
indicate a quality factor of 3. The large arrow near nE indicates the 
extension direction obtained from remote sensing analysis for the 
Jawhar–Malshej shear zone (see “Remote sensing analyses” section 
and Fig. 14e). Compare with Fig. 2 for locations. Red arrows azi-
muths for older Formations (of the Kalsubai Subgroup); black arrows 
azimuths for younger Formations. The numbers alongside the arrows 
are location specific Ф values for the stress tensor
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the Y-plane (Supplementary Fig. S1). This relation was 
tested on a number of (semi-) ductile shear zones (C- 
and S-planes) and was found to closely match the actual 
striae present on the surface (Srivastava et al. 1995). Other 
workers (Marquer et al. 1996; Ciancaleoni and Marquer 
2006; Menegon and Pennacchioni 2010) also confirmed 
this. We noticed field evidences for this relation at the 
Varcha–Owle quarries (Fig. 16a, b) where slickensides 
have ~90° pitch on the Y-plane, that is, the intersection 
between the Y- and the P-planes parallels the strike of the 
Y-plane. We measured the attitude of both Y- and P-planes 
and derived the attitude of their line of intersection (l1). 
Then, we obtained the attitude of the line l2 that lies on 
the Y-plane and is perpendicular to l1 (Supplementary 
Fig. S1). We infer slip sense from the l2 lines and the 
curved P-planes. The actual slip may differ from that cal-
culated by the above method (Srivastava et al. 1995), but 
not significantly. For example, a brittle shear with verti-
cal line of intersection (l1) between P- and Y-planes can 
never be dip-slip. Similarly, asymmetric elevations with 
vertical crests would not represent a dip-slip fault. also, 
for vertical faults, the calculated “maximum horizontal 
extension”/“minimum horizontal compression” (SHmin) 
shows small deviation. We trialed a dextral vertical fault 
plane with 45° strike and varying pitch, keeping all other 
parameters (azimuth: 135°, dip: 88°, shear sense: dextral, 
reliability: confident) constant. The resolved SHmin for 
the said fault plane for pitch 2°, 5°, 10°, 15°, and 20° are 
322°, 329°, 335°, 330°, and 330°, respectively. It shows 
that for sub-vertical fault planes, as a special case, we can 
use this slip vector calculation effectively. Moreover, using 
a large population of faults/brittle shears at one location, 
such as our case (Table 2), the errors can be minimized 
statistically. 

For the strike-slip faults, the P-planes are sub-vertical 
(Fig. 3) and at low angles (10–30°) to the Y-planes (also 
sub-vertical). For the dip-slip brittle shears, their dips range 
50–80°. Thus, the lines of intersection between the P- and 
the Y-planes either dip steeply or are sub-vertical (~75–
90°) in the former case. In the second case, the lines are 
sub-horizontal (~0–15°).

Results of inversion

Slip vectors or “lineation(s)” directly measured from slick-
enside lineations or calculated from intersection lines, 
as mentioned in “Data and methods” section, are used to 
resolve the paleostress tensors following the “Wallace–Bott 
hypothesis” (Wallace 1951; Bott 1959). The hypothesis 
states that the maximum resolved shear stress (τmax) along 
a fault plane parallels the observed slip directions/slip vec-
tors. The main assumptions are (1) the remote stress ten-
sor is identical spatially and also homogenous; (2) the slip 

on the fault plane should represent the maximum resolved 
shear stress (τmax); (3) slip has to occur on faults of varied 
attitudes in the area but ought not to interfere. Put another 
way, the respective slips of all the faults are to be mutually 
independent (nemčok and lisle 1995; Twiss and Unruh 
1998; Kaven et al. 2011; lacombe 2012). The first two 

Fig. 18  Fault map at Deccan trap level (after Verma et al. 2001; naik 
et al. 2006) around Bombay (Mumbai) High (BH) area shows strike-
slip architecture overlapped on 125 km high-pass gravity anomaly 
data: Blue/purple for lowest and white/pink for highest gravity anom-
aly values (Satellite Free air gravity anomaly data from Sandwell and 
Smith 2009). The dips of the faults were reinterpreted from geologi-
cal cross-sections from Basu et al. (1980), Roychoudhury and Desh-
pande (1982), Gopala Rao (1990), Verma et al. (2001), and naik et al. 
(2006). Surat depression (SD) forms possibly a part of the transten-
sional segment. The elongated Mahim Graben (MG) that continues 
till Ratnagiri offshore area possibly forms the Principal Deformation 
Zone (the area numbered 1). n of Surat depression, the area num-
bered 2 also indicates a possible horsetail structure
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assumptions hold for natural cases within a limited time. 
For the third, cluster analyses sort out “phases”/“clusters” 
in a heterogeneous/polyphase fault-slip data (e.g., nemčok 
and lisle 1995).

at least four such data sets of variable orientation 
in a particular location estimate a “reduced stress ten-
sor” (Carey and Brunier 1974; angelier 1979, 1984, 
1994). These are (1–3) the orientation of the three mutu-
ally orthogonal stress axes σ1, σ2, σ3 (σ1 ≥ σ2 ≥ σ3) (4) 
the stress ratio: Ф = (σ2 − σ3)/(σ1 − σ3), where 0 < Ф < 1 
(angelier 1989; angelier et al. 1990). The stress ellipsoid is 
oblate for Ф > 0.5 and prolate for < 0.5. a different param-
eter “R” (= Ф/1 − Ф) is also used (armijo and Cisternas 
1978; angelier 1989; lisle 1989) that ranges 0 to ∞. Célé-
rier et al. (2012) and lacombe (2012) recently reviewed 
paleostress estimates from fault-slip data.

We used the computer program T-TECTO (version 
3.0; author: J. Žalohar) that uses the Gaussian algorithm 
(Žalohar and Vrabec 2007) to calculate the orientations 
of the stress axes. The T-TECTO program was employed 
because it provides visualization of strains and stresses 
by both geometric and statistical inversion techniques. 
Its clustering program sorts out deformation phases (e.g., 
Smith et al. 2012). The program also flexibly incorporates 
fault planes with dubious striae and tension fractures (e.g., 
luther et al. 2009). The program uses right dihedra method 
(RDM of angelier and Mechler 1977; angelier 1989) 
to calculate the strain tensor. It then applies the Gaussian 
function to invert and resolve the reduced stress tensor. 
We used these methods to invert our field data. We used 
the Gaussian parameters of s = 30°, Δ = 60°, q1 = 60°, 
and q2 = 20° (vide appendix 2 for detail), depending on 
the rock type (usually basalt) and standards mentioned in 
Žalohar and Vrabec (2007) and Žalohar (2009). The Q fac-
tor in Table 2 represents quality for the paleostress inver-
sion, viz., 1 = Very Good, 2 = Good, and 3 = Fair. The 
quality criterion depends on the field evidences, e.g., num-
ber of striated faults and confidence in the shear sense of 
the fault planes. Table 2 lists stress inversion results of the 
19 locations (locations in Fig. 2). Supplementary Table 1 
presents geographic coordinates of data collected.

The data were sorted according to location to corrobo-
rate with the ages of the Formations (stratigraphy in Table 1 
and Fig. 2). We then performed unsupervized cluster analy-
ses (like Etchecopar et al. 1981; nemčok and lisle 1995; 
Yamaji 2000; Yamaji et al. 2006; Žalohar and Vrabec 2007; 
reviews by Célérier et al. 2012) to automatically separate 
fault clusters using the Gaussian function in T-TECTO 
(Žalohar and Vrabec 2007). We accepted inversions only 
when the misfit angle “α” (see appendix 2 for details) was 
< 30° (nemčok and lisle 1995). Most of the misfits ranged 
10–15°.

Vertical dip-slip faults and ~n–S brittle shear zones 
plotted as different clusters (see the plotted “problematic 
faults:” PF in Supplementary Fig. S2). We thus consid-
ered them as deformations different from the rest of the 
faults/shear zones. The ~n–S trends of these vertical, dip-
slip faults match with those in figs. 3 and 6 of Dessai and 
Bertrand (1995). Paleostress tensor calculations on this 
fault cluster yielded a σ3 roughly perpendicular to the fault 
plane. This is an unrealistic solution because there can be 
almost no extension on these sub-vertical faults. Though 
we resolved stress tensors for these faults as well, we 
avoided them in tectonic interpretation. Faults belonging to 
a single cluster come from aksa, Turbhe, Kharpada, nand-
gaon, Elephanta, Janjira, nagothane, Morbe, and Bhatan 
(Fig. 2 for locations). Two clusters of faults are deciphered 
at Kanheri, Kharghar, Varcha, nhava, Korlai–Kashid, 
Murud, Mhasala, Harihareshwar, and Murbad (locations in 

Fig. 19  Total magnetic intensity map with magnetic seafloor spread-
ing anomalies interpreted by previous authors (mentioned at leg-
end). The numbers in bold black are magnetic chrons interpreted by 
Todal and Edholm (1998) and those in bold purple by other authors 
(27 = C27n, 26 = C26n, etc.). Red arrows plate movement direc-
tions. Collier et al. (2008) presented data of previous authors in 
their map. This diagram is plot of Collier et al’s (2008) data on that 
map. See “Discussions and conclusions” section for details



1670 Int J Earth Sci (Geol Rundsch) (2014) 103:1645–1680

1 3

Fig. 2). Only at a single location Chirner, shown in Fig. 2, 
three clusters of faults were interpreted (Supplementary 
Fig. S2). no correlation exists between the ages of these 
Formations and the number of clusters. The separated out 
cluster of problematic faults also consist of sub-horizontal 
striae. These are faults that misfit the solution (Supplemen-
tary Fig. S2).

We calculated P–T axes (P = compressive; T = Tensile) 
for each fault and stress axes through geometrical RDM 
and statistical visualization of the Gauss function (VGF) 
method (Supplementary Fig. S2). Thus, we compared the 
geometrical and statistical inversions for same fault popu-
lations. These solutions are mutually comparable, with 
occasional mismatch at the locations Turbhe, Varcha–Owle, 
Chirner, Morbe, Bhatan, and Murbad (Supplementary 
Fig. S2; see Fig. 2 for locations). This misfit is due either 
to data scarcity or large spread in the data points on the 
stereo plot. a large spread is possible because of variable 
pitches of slip vectors on the fault planes. The σ2 axes are 
sub-vertical, indicating a strike-slip deformation. The P–T 
axes provided the contribution to the strain for each of the 
faults. Further, we computed the SHmin for all the locations 
(Fig. 17). Since these are strike-slip faults, the SHmin orien-
tations gave the extension direction, and we use those for 
the geodynamic interpretation.

The paleostress tensors (Table 2 and Supplementary 
Fig. S2) thus obtained for shear zones show a wide varia-
tion in SHmin and in the trend of σ3. The σ3 varies mainly 
from ~nnW–SSE (at Chirner, Harihareshwar, nhava 
Phata, Murbad, Bhatan, and Kharghar) to nE–SW (at 
Morbe), and one ~E–W trend (at Turbhe) (Fig. 17). a 
few ~n–S trends were found especially at Kanheri, nand-
gaon, Janjira, Mhasala, and nagothane. We grouped the 
stress tensors as follows. a group belongs to the older 
Formations (Ratangarh Subgroup) and another to the 
younger stratigraphic units (Karla, Elephanta, Diveghat, 
and Borivali Subgroups) (Fig. 17). These two groups are 
not homogeneous in terms of SHmin orientations within 
and resemble in tensors across the clusters (see Table 2; 
Fig. 17). Rather, the tensors trend nnE to nnW along 
the coast and show nW or nE orientations away from the 
shore. The ~E–W set at Bhatan, Varcha–Owle, and Turbhe 
might be by insufficiency/large spread of the data points. 
That the shear is indeed a strike-slip one was inferred con-
fidently from visual analysis of deformation structures in 
the field. The most important outcome of this exercise is 
that the trend of the extension direction, i.e., the σ3 axis, is 
~n–S or ~nnW–SSE in general, and not E–W. Thirteen 
out of 20 tensors trend ~150°n. The orientations are con-
sistent for a ~n–S extent for > 150 km and ~70 km along 
E–W as traced in the field (“Structural geology” section) 
and beyond by remote sensing (“Remote sensing analyses” 
section).

Discussions and conclusions

as mentioned in “Introduction” and “Tectonics” sections, 
the ages of the Deccan basalts prove that most (> 80 %: 
Chenet et al. 2007) of the volume of the magmatic prod-
ucts emplaced in the initial stages of volcanism (i.e., by 
~65.5 Ma) before the India–Seychelles rifting (~63.4 Ma: 
Collier et al. 2008). also, the dyke relations prove that the 
breakup started only after bulk volcanism (Hooper et al. 
2010). and the deformation in the rocks should represent 
the India–Seychelles rifting. The far-field stresses, respon-
sible for the rifting, activated presumably much before the 
DlIP erupted (Courtillot et al. 1999), possibly as early 
as ~80 Ma (Todal and Edholm 1998). However, suffi-
cient thinning was not achieved when the bulk volcanics 
emplaced (Saunders et al. 2007).

The study area was dextrally strike-slip faulted along 
sub-vertical planes, and we designate this as the “Western 
Deccan strike-slip zone.” Some isostatic-related vertical 
dip-slip faults are also present. low dipping (< 60°) normal 
faults occur at orthogonally rifted margins with the strike 
of the normal faults perpendicular to the direction of maxi-
mum extension (σ3) (e.g., Destro et al. 2003). Such normal 
faults do not usually occur here. an outcrop-scale pull-
apart basin was also found in the field (Fig. 11). Repeatedly 
found were Y–P planes of brittle shears, asymmetric eleva-
tions with vertical crests, vertical fault planes with sub-hor-
izontal slickensides, etc. Riedel shears (R and R′) connote 
strike-slip faulting. Sinistral reverse shear sense was found 
locally. Such limited reversals were noted from many shear 
zones in the world (e.g., Simpson and Schmid 1983; Mala-
vieille 1987; Davis and lister 1988; Spencer 1984; Reyn-
olds and lister 1990; Koyi et al. 2013 for review). Concise 
studies on reversal are lacking, and we cannot comment 
the tectonics of sinistral shear. The WDSZ persists for 
> 150 km along n–S (from aksa to Harihareshwar) and 
~70 km along E–W (locations in Fig. 2).

For andersonian normal faults and strike-slip faults, 
σ3 equals SHmin. For andersonian thrust faults, σ2 is the 
SHmin. The SHmin is the horizontal component of σ3. The 
resolved minimum compressive stress (σ3) for these faults/
brittle shears trends widely from ~nW–SE to ~nE–SW 
(Table 2; Figs. 18, 19). The older Formations of Kalsubai 
Subgroup show SHmin orientations of ~nW–SE to ~n–S 
(Fig. 17) along with nW to nE faults/brittle shears (Sup-
plementary Fig. S2). However, faults/brittle shears reorient 
S to younger lonavala and Wai Subgroups into a domi-
nant ~nE–SW and minor ~nW–SE with ~nnW–SSE σ3. 
We also had one ~nE-oriented σ3 at Morbe (Fig. 17). This 
orientation of the faults/brittle shears is also found in the 
youngest Formations in the n part of the study area (Sal-
sette Subgroup rhyolites at aksa Beach). Here, σ3 resolves 
~n–S (Fig. 17). The dykes and lineaments show the same 
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swing in trend from a dominant ~n–S in the n to a ~nE–
SW (some n–S) in the S (Figs. 2, 12). Thus, two possibili-
ties arise viz. (1) indeed the stress reoriented with time and 
(2) the stress orientation varied in space. Since we did not 
observe the ~n–S paleostress trends in the older rocks and 
also the related faults/brittle shears, the strain might have 
localized toward W. Thus, stress reoriented possibly both 
in space and time. The faults/brittle shears in younger For-
mations due S trend ~nE. Since dykes intrude faults/brittle 
shear planes, they swing across the 19°n latitude. 

The paleostresses (~nE–nnWoriented SHmin) we 
derived are as expected for strike-slip faults (Hippolyte and 
Mann 2011 for Caribbean/S america strike-slip segment; 
Delvaux et al. 2012 for the Rukwa rift, africa). Faults may 
form along more than one trend (angelier 1979, 1984 and 
1989). The paleostress inversion programs statistically find 
one single solution for all those faults considering them 
cogenetic. If there are separate phases of deformation, they 
must be clustered prior to inversion either from field crite-
ria (liesa and lisle 2004) or statistically by some program 
(nemčok and lisle 1995). So, large population of faults of 
varying trends of one deformation event is inverted to find 
the orientations of the stress vectors. The parameter R can 
define constrictional (∞ > R > 1) and flattening (1 > R > 0) 
deformations. In this study area, Ф ranges 0–1 with a weak 

spatial pattern (Table 2; Fig. 17). The stress ratio (Ф) toward 
the coastal areas is lesser (≤ 0.5) than those (> 0.5) land-
wards. a few low magnitudes of Ф were also found at land-
ward side. Further studies are required to analyze Ф more 
effectively. For an anisotropic rock with fractures/joints, 
faulting occurs along planes that enjoyed the greatest shear 
stress. attitudes of planes of preexisting anisotropies can be 
determined by those faults that plot between the Coulomb 
failure criterion and the zero-cohesion line in the Mohr dia-
gram (Ranalli and Yin 1990; Morley et al. 2004). Reacti-
vated faults in our terrain may be present, but we did not 
find any good example of superposed slickensides (similar 
to nickelsen 2009). However, at Kharghar (see Fig. 2 for 
location), we found a fault plane with sub-horizontal and 
sub-vertical striae (photographs with authors), but those did 
not superpose. Thus whether the isostatic faults predated or 
were coeval to strike-slip faults is difficult to ascertain. We 
do recognize a swing of the dykes and faults/shears, and so 
also the stress tensor from either n to S and E to W and/or 
through time. If the stress vector re-oriented temporally, the 
already developed structures would also do so. This needs 
further study. The trends of the vertical faults found in this 
study match the West Coast fault and the Koyna fault zone. 
The vertical dip-slip faults may be the surface expressions 
of the West Coast fault, along which the West Coast passive 
margin subsided (Chandrasekharam 1985; Biswas 1987; 
Dessai and Bertrand 1995; Sheth 1998). On the other hand, 
the vertical strike-slip faults reported in this study may be a 
northward continuation of the Koyna fault zone.

Following Morley et al. (2004), paleostress analyses 
of strike-slip deformations are not clear-cut since (1) the 
stress field may rotate temporally; (2) local features such 
as basement blocks and fault tips may relocate stress axes; 
(3) variation in the ratio of the intermediate principal stress 
axis with respect to the other two principal stress axes; and 
(4) change in failure criterion during deformation. Stress 
tensor calculations presume rocks to be isotropic. But most 
commonly rocks are anisotropic: they may contain layers 
and/or fractures. Only cohesive strength is to be overcome 
for faulting/shearing in case of pre-fractured rocks. The 
frictional resistance to sliding between the blocks is to be 
crossed for the new deformation (Davis et al. 2012). So, the 
pre-existing fractures/faults are easiest to reactivate than 
the intact isotropic rocks. Preexisting anisotropies and their 
reactivations may influence fault trends and therefore the 
paleostress tensors (Bellahsen and Daniel 2005).

Recent studies (Misra et al. 2013) reveal that the earliest 
opening vectors at magnetic chron C31–C30 (68–66 Ma) 
for the western Indian passive margin were ~nnW–SSE. 
Those vectors reorganized to ~nE–SW after chron C28 
(63.4 Ma). These opening vectors do not conform com-
pletely with the stress tensors obtained from this study. 
This could be by reactivation of preexisting structures. The 

Fig. 20  Plate tectonic reconstruction map, a schematic diagram, 
shows the position of India–Seychelles bank and Madagascar at 
65–70 Ma (after Seton et al. 2012). CC: extent of continental crust 
around Seychelles (after Plummer et al. 1998); SE: present-day indic-
ative shelf edge; M Mumbai
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vertical dip-slip (possibly isostatic) faults formed probably 
just after volcanism inherited the nnW–SSE western Dhar-
war trend (Fig. 1). notice that the basement rock of the 
Deccan lavas is the Dharwar Supergroup (Ray et al. 2008; 
Rao et al. 2013; Roy et al. 2013). The Dharwar craton fab-
rics stabilized at ~3,300–2,500 Ma (Chadwick et al. 2003) 
much before the Deccan lava emplaced at ~68–60 Ma 
(Chenet et al. 2007; Ray et al. 2014). Faults/shears tend 
to parallel preexisting anisotropies in general, such as the 
foliation trends in basement (Misra and Mukherjee 2013’s 
reviews). Subsequently, those vertical dip-slip faults with 
broad nW or nE trends reactivated as strike-slip faults and 
some new faults formed. We do not observe reactivation 
on faults in terms of stretching lineations of different atti-
tudes. The lineations developed on the vertical fault planes 
by later strike-slip movement might had obliterated linea-
tions of previous brittle dip-slip. This renders difficulty to 
separate the reactivated faults from those slipped only once. 
Further studies on tectonic inheritance through analogue 
modeling (in lines of Dooley and McClay 1997; Bellah-
sen et al. 2006; autin et al. 2010; see Misra and Mukherjee 
2013 for reviews) and their effects in the region would rein-
terpret the tectonics.

We encountered no fault-related gouge, cataclasites, 
pseudotachylites, etc. Therefore, dating this regional strike-
slip shear will not be easy. The dyke–shear relations can 
give merely a relative age estimate. The ~n–S to nE–SW 
trending Group II (~65 Ma) and Group III (~64 Ma) dykes 
of Hooper et al. (2010) are either strongly oriented along 
the shear zones or crosscut the preexisting shear zones 
(Fig. 15). This proves that the deformation (thus Indian–
Seychelles rifting) started before these 64- to 65-Ma-old 
dykes emplaced. This may be as early as 80 Ma and contin-
ued till the onset of India–Seychelles breakup at ~63.4 Ma. 
But the precise duration of rifting is not easy to estimate 
since pre-rift and syn-rift rocks are difficult to obtain for 
dating.

The resolved paleostress tensors provide an insight of 
the tectonics of the India–Seychelles breakup and that it 
was not an orthogonal rift under E–W extension. Rather, 
it was a sheared margin where voluminous volcanics 
emplaced prior to breakup. Interestingly, Subrahmanyam 
and Chand (2006) also indicated oblique rifting from 
southernmost tip of India up to ~Mumbai (their Fig. 4) 
from their geophysical data. GPS measurements estimated 
present-day stresses (Reddy et al. 2000; Jade 2004). These 
studies revealed a nE–SW-trending stress: extensional near 
the coast and elsewhere compressional (Reddy et al. 2000). 
The compressional stress has been explained by the India–
Eurasia collision and the coastal extensional stress possibly 
by unequal isostatic uplift between crustal blocks (Reddy 
et al. 2000). The sub-vertical dip-slip faults we encountered 
may be still active or rejuvenated due to loading/unloading 

and contribute to the present-day stress field measured in 
these GPS studies. Strike-slip faults and brittle shears we 
found do not contribute to that. Their nnW-, nE-, and 
E-trending extension directions (fig. 4 of Reddy et al. 
2000) do not match with ours at specific locations. Pseu-
dotachilites and/or granular injections are indicators seis-
mic nature of faults (Stünitz et al. 2010; Rowe et al. 2012) 
and thus their absence in the faults we encountered in the 
field indicates that those were aseismic. Hence, the present-
day SHmin from GPS measurements would not match those 
derived from the faults in this study. also, following Kale 
and Shejwalkar (2008), there is little or no present-day tec-
tonism as understood from geomorphic evidences.

Evidences for strike-slip faulting were supported by 
offshore data as well. For example, fault maps by Verma 
et al. (2001) and naik et al. (2006) indicated strike-slip 
faulting. The rectangle numbered “2” in Fig. 18 shows 
a horsetail structure in arabian Sea in the Mumbai shelf 
area. Horsetail structures typify strike-slip settings (Fos-
sen 2010; Davis et al. 2012). Here, the main fault trends 
nE–SW and the splay faults of the tail trend nnW–SSE to 
n–S (Fig. 18). The faults bounding Bombay High (Fig. 18) 
also resemble strike fault architecture. The usual fault pat-
terns in orthogonal rifted basins, e.g., arcuate low dipping 
normal faults with relay ramps and transfer zones, are 
not observed here. Rather, the fault patterns match those 
of transtensional pull-apart basins (Dooley and McClay 
1997). The Mumbai shelf region comprises of confined 
basins with sediments of lacustrine facies (Gopala Rao 
1990), which indicates transtensional pull-apart basins. 
Features of transpressions could be local, but is subject to 
further studies (see Fossen and Tikoff 1998 for detail analy-
ses). Seismic reflection profiles (Verma et al. 2001; naik 
et al. 2006) and seismogeologic cross-sections (Basu et al. 
1980; Roychoudhury and Deshpande 1982; Gopala Rao 
1990) neither show low-angle normal fault nor listric fault-
ing in this region (also see Tewari 2008). Rather, all faults 
are sub-vertical (dip > 80°) with varying trends. Vertical 
faults are neither normal nor reverse, but can be strike-/dip-
slip. Strike-slip faulting is likely since the fault map shows 
the pattern of a pull-apart basin (Fig. 18). Dip-slip faults, 
if present, are related to vertical adjustments (Campanile 
et al. 2008; Calvès et al. 2008). But since oblique-slip shear 
senses cannot be studied from 2D data, the offshore areas 
require detailed studies on 3D seismic data to quantify the 
deformation and resolve paleostress tensors (as in van Gent 
et al. 2010).

The magnetic anomalies in the northern arabian Sea 
adjoining the present study area can be divided into two 
zones: (1) where there are seafloor spreading anomalies 
clearly imaged and (2) where there are localized sub-
circular magnetic high and lows (fig. 2 of Calvès et al. 
2011; Fig. 19 in this paper). Figure 19 represents the 



1673Int J Earth Sci (Geol Rundsch) (2014) 103:1645–1680 

1 3

magnetic anomalies interpreted by various authors (Bhat-
tacharya et al. 1994; Chaubey et al. 1998; Dyment 1998; 
Miles et al. 1998; Todal and Edholm 1998; Collier et al. 
2008). The anomalies mapped S and W of laxmi Ridge 
(location in Figs. 1, 20) by them are unanimous. These 
anomalies imply that the Indian–Seychelles plate move-
ment was ~nE–SW (for ~nW–SE-trending magnetic 
chrons C30n to C27n). Then, the plate movement got 
~n–S reoriented as understood from ~E–W magnetic 
anomaly stripes from chrons C26n to C24n and younger 
(Fig. 19). But those in the laxmi Basin differs in Bhat-
tacharya et al.’s (1994) and Todal and Edholm’s (1998) 
interpretation. The former represents an E–W extension, 
whereas the latter a nE–SW one. Our field evidences 
indicate oblique rifting, and we favor the magnetic anom-
aly interpretation by Todal and Edholm (1998). Recently, 
Misra et al. (2013) also demonstrated from a number 
of geophysical analyses that the extension was indeed 
oblique. They interpreted a ~nnW-trending plate move-
ment vectors for chrons C31–C30 for the earliest seafloor 
spreading anomalies. This matches the paleostress ten-
sors this study deciphered. Misra et al. (2013) also inter-
preted a second phase of ~nE-trending plate movement 
vectors during chrons C30–C27 (Fig. 19). This matches 
with those of Todal and Edholm (1998). Thus, a poly-
phase deformation is also indicated. Figure 20 shows 
the position of India–Seychelles bank and Madagascar 
at 70–65 Ma, i.e., just before breakup. Going with the 
deciphered plate movement vectors, the separation must 
be oblique. The obliquity could be ~40–50° as indicated 
by trends of the magnetic anomalies in the laxmi Basin 
(Fig. 19). Taken together, availability of only strike-slip 
deformation on sub-vertical faults/shear zones sub-par-
allel to the continental margin, the absence of low-angle 
normal faults, and SHmin orientations at low angles to the 
margin negate orthogonal rifting.

We have not tried to explain the complex tectonics 
of the entire west coast, which will be difficult from this 
study. nor did we deal with the Madagascar–India separa-
tion, which might require separate study along the entire 
Indian west coast. We studied and confined ourselves to the 
Mumbai region to explain the Seyshelles–India tectonics, 
since Seychelles justaposed this area before breakup (Gan-
erød et al. 2011). The Bombay High has been considered 
as a separate continental block (Bastia et al. 2010; Reeves 
2013a, b). It would, in that case, become a “continental 
ribbon” (see Péron-Pinvidic and Manatschal 2010). But 
to prove as a ribbon, good seismic imaging beneath the 
basalts in the Mumbai shelf is needed. Since such data are 
unavailable, we avoid  to comment.

We analyzed in detail the deformation pattern in the 
western Deccan basalts and accumulated a large data set 

for paleostress analyses. We consider that the present data 
can be enriched by ground-penetrating radar (GPR) sur-
veys on the sediment-covered regions in the study area to 
detect the blind faults/shear zones and will result in a bet-
ter understanding. This urges detailed study of the defor-
mation along the entire western continental margin of India 
encompassing the states Gujarat, rest of Maharashtra, Goa, 
Karnataka, and Kerala. The n part of the W coast passive 
margin of India is a magma-rich/magmatic passive margin, 
which rifted obliquely. Studies on this margin with the per-
spective of deformation and seafloor spreading in the north-
ern arabian Sea will establish the relationship between 
magma emplacement and rifting.

Key takeaways

1. Magmatism at lIPs usually does not occur after sig-
nificant thinning of the crust (also see Ray et al. 2014). 
Bulk volcanism predated breakup. Post-volcanic defor-
mation is evident.

2. This study goes from outcrop to regional scale through 
remote sensing studies into plate scale by means 
of Mumbai shelf fault maps and seafloor spreading 
anomalies to comment E–W extension to be unlikely. 
It is rather a ~nE–SW to ~nnW–SSE extension that 
separated India from Seychelles. It also matches with 
the deciphered plate movement vectors, though a poly-
phase deformation is also possible. Reactivation of ver-
tical faults and/or reorganization of far-field stresses 
could be the possible results. Geodynamics of the 
DlIP is to be attempted.
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Appendix 1

The Coulomb–navier’s fracture theory states that for an 
isotropic rock, the fault geometry is controlled by (1) mag-
nitudes and orientations of the principal stresses, and (2) 
internal friction of the rock, as per:

where α: angle between the fracture and the maximum 
principal compressive stress axis; ϕ: angle of internal fric-
tion of the rock. Thus, σ1 makes 30° angle with the fault 
for a rock with ϕ = 30° and σ3 60° for the same rock. For 
isotropic rocks, ϕ ranges 25–35°. We used this simple frac-
ture criterion to indicate the possible σ3 axis on the satellite 
images. as commonly documented in field, vertical Y- and 
P-planes and horizontal slip were considered.

Appendix 2

See Žalohar and Vrabec (2007) for details.

I. s: Dispersion parameter for the distribution of the 
angular misfits between the predicted and the actual 
direction of movement along the faults.

II. Δ: Threshold for the value of the compatibility meas-
ure for a fault-slip datum to be compatible with a given 
stress/strain.

III. q1: approximate angle of internal friction for an intact 
rock. It is the slope of the tangent of the largest Mohr 
circle on the Mohr diagram.

IV. q2: For a preexisting fault, it is the angle of residual 
friction for sliding. The parameters q1 and q2 constrain 
the possible values of the ratio between the normal and 
shear stress on the faults so that mechanically accept-
able solutions of the inverse problem are calculated.

V. Misfit angle: angle between the predicted and the 
actual direction of slip on a fault plane. Determined 
by misfit functions. These functions differ with users. 
Žalohar and Vrabec (2007) used a Gaussian distribu-
tion function to estimate the misfit angle. Célérier et al. 
(2012) detailed misfit criteria and functions of previous 
authors.
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