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Shear heating by reverse faulting on a sharp straight fault plane is modelled. Increase in temperature
(Ti) of faulted hangingwall and footwall blocks by frictional/shear heating for planar rough reverse faults
is proportional to the coefficient of friction (μ), density and thickness of the hangingwall block (ρ). Ti

increases as movement progresses with time. Thermal conductivity (Ki) and thermal diffusivity (k′
i) of

faulted blocks govern Ti but they do not bear simple relation. Ti is significant only near the fault plane.
If the lithology is dry and faulting brings adjacent hangingwall and footwall blocks of the same lithology
in contact, those blocks undergo the same rate of increase in shear heating per unit area per unit time.

1. Introduction

Heat produced due to conversion of mechanical
work in brittle deformation regime by sliding one
rock unit over the other along fault planes is
called ‘frictional heating’/‘shear heating’. Study
of shear heating is important in earthquake-
(Fulton and Harris 2012) and landslide-studies
(Goren and Aharonov 2007), contact metamor-
phism (Graham and England 1976), and thermal
structures of fault zones (Lamb 2006). Such stud-
ies are also important to understand the genesis
of pseudotachylites (Vernon and Clarke 2008) that
may be present along faults (Rice and Cocco 2005),
fault kinematics (e.g., Sibson 2002), thermal soft-
ening during deformation (Blanpied et al. 1998),
etc. (also see Segall and Rice 2006). Shear heat-
ing can be significant since a fast moving fault
(≥1 cm yr−1; Scholz 1990) can elevate the temper-
ature to > 250◦C within tens of seconds (Kitamura
et al. 2012), but that is restricted to the vicinity
of the fault plane (Wibberley et al. 2008). Despite
several researches on shear heating by faulting
under a number of boundary conditions, a model

based on the minimum and the most critical
parameters seems to be lacking.
Even though doubted (Cardwell et al. 1978),

shear heating along faults have been proved from
various evidences (reviewed in Nemčock et al. 2005).
The manifestation of shear heating is ubiquitous
when faults with fast slip rates cut across cold
and tectonically stable crustal parts devoid of pore
fluids (Sibson 2002), and temperatures have been
documented to reach as high as ∼1080◦C (Hamada
et al. 2009). In some cases, however, evidences of
high shear heating were obscured, possibly by the
flow of groundwater (Artemieva 2011). The effect
of shear heat is decipherable in terms of ther-
mal anomaly or elevation of temperature (such as
the thermal aureoles described by Annen et al.
2006) and/or when shear stress exceeds 15–20 MPa
(Chester et al. 1993). Thrust fault related shear
heating has been proven to be significant at the
beginning of deformation (Graham and England
1976). Slip rate and rock strength are the two
important parameters for shear heat (Graham and
England 1976). The assumption of previous work-
ers that (almost) all work done by faulting converts
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to heat energy (e.g., Lockner and Okubo 1983) is
followed here. The presented deductions are in fact
much simpler than many available advanced mod-
els on shear heat (such as Kitajima et al. 2010).
However, the following constraints are not con-
sidered in this work: shear heating due to splay
faulting and fracturing (Devès et al. 2014), locali-
sation of shear heat along a fault due to difference
in asperity, thermal softening of the fault, varia-
tion of slip rate along the fault, development of
gouge and/or breccia aiding modification of the
frictional coefficient, the role of pore fluids and sec-
ondary mineralisation along the fault plane, effect
of geothermal gradient (Passelegue et al. 2014),
logarithmic relation between frictional coefficient
and rate of slip (Noda 2008), dilation of fault zone
(Garagash and Rudnicki 2003b), temporal fall in
frictional coefficient as faulting happens (Rice and
Cocco 2005), change in asperity of the fault surface
(Beeler et al. 2008), etc.
During brittle shearing, some of the parameters,

however, remain unchanged such as the frictional
coefficient for rocks (μ) at high confining pres-
sure (Davis and Reynolds 2012), though cases of
changing μ exist (Middleton and Wilcock 1994).
Planar inclined brittle reverse shear planes devoid
of gouge, breccia and damage zones do exist in
nature (e.g., figure 6a of Mukherjee 2013a; also
see Mukherjee 2007, 2010a, b, 2013b, 2014, 2015;
Mukherjee and Koyi 2010a, b; etc.). The deduc-
tions apply there. This work presents a simple
deduction of temperature rise by frictional heating
on a translational reverse fault with planar fault
plane. Such fault planes do exist in nature (e.g.,
figure 5.1 of Mukherjee 2014).

2. The model

Consider a block pushed up-dip along an inclined
infinitely long plane of dip ‘θ’ ( �=0, 90◦) with a
constant velocity (v : relative velocity at which
blocks move along fault plane with respect to each
other) (figure 1). In this case of a dip-slip reverse
fault, the hangingwall and the footwall blocks are
assumed to be semi-infinite solids with friction
induced constant flux of heat per unit time per unit
area Q̇ at the interface. As standard assumptions,
the following considerations were made: (i) the
work done by reverse fault movement is entirely
converted to heat energy following the thermo-
dynamic principle (Scholz 1990); and (ii) heat is
transferred only perpendicular to the fault plane
(Mase and Smith 1985). This assumption holds true
when the hangingwall block slips and crosses the
ramp and reaches the footwall flat. In this position,
the isotherms are horizontal and heat transfers

Figure 1. Footwall block of a dip-slip brittle reverse fault of
dip ‘θ’. When shear happens, the forces acting in different
directions are resolved. μ: coefficient of friction; m: mass
of the hangingwall block; g: acceleration due to gravity; N :
normal force; v: shear velocity.

vertically. Like Graham and England (1976), faulting
along a single plane is considered.
The stress due to frictional force developed at

the interface between the two blocks (figure 1) is
given as follows, as per Amonton’s Law:

f = μN = μρgh Cos θ. (1)

Here, N : normal stress; μ: coefficient of friction;
ρ: density of the hangingwall block; g: accelera-
tion due to gravity; and h: depth of the fault plane
from the surface of Earth (thickness of the upper
block). It can vary within the brittle regime of
0–15 km (Passchier and Trouw 2005). At a depth
of more than 15 km, ductile deformation usually
takes place, where equation (1) does not apply.
To deduce shear heat/viscous dissipation in a duc-
tile regime, see Mukherjee and Mulchrone (2013),
Mulchrone and Mukherjee (2015, 2016), etc.

Rate of work done by frictional

faulting per unit area: μρgvh Cos θ

where v is the relative velocity at which blocks
move along fault plane with respect to each other.
Considering the standard assumption that the

work done is completely converted into internal
energy/heat, the rate of increase in internal energy
per unit area in the system is given by the following
equation:

Δ◦Ėsystem = μρgvh Cos θ. (2)

By the first law of thermodynamics, the rate of
heat generated per unit area will be equal.

Q̇ = μρgvh Cos θ. (3)
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The equation of linear heat flow is

q̇ = −K
∂T

∂x
,

(equation 4 of Jaupart and Mareschal 2011).

Here,K : thermal conductivity and T : temperature.
The X-axis is perpendicular to the fault plane.
The equation of transient heat flow for a homo-

geneous solid whose conductivity does not depend
on temperature can be written as the following:

k′∂
2T

∂x2
=

∂T

∂t
. (4)

Heat flux also satisfies the same differential
equation as T .

∂q̇

∂t
= k′ ∂

2q̇

∂x2
at t > 0 and x> 0. (5)

Here, k′: thermal diffusivity and q̇ = Q̇ (constant)
at x =0 and t>0.
Solving equation (5),

q̇ = Q̇ erfc
x

2
√
k′t

,

(equation 6 of Jaupart and Mareschal 2011).

Here, t: duration of movement along fault plane,
where error function, erf x = 2√

π

∫ x

0
e−ξ2dξ.

ierfc x =

∫ ∞

x

erfc ξdξ.

ierfc x =
1√
π
e−x2 − x erfcx.

By integrating equation (4), for block A and taking
boundary conditions as T = 0 at t = 0 and heat
flux is equal to Q̇ at x = 0.
Temperature rise by shearheating in hangingwall

block,

T1 =
Q̇1

K1

∫ ∞

x

erfc
x

2
√

k′
1t
dx (6)

= 2
Q̇1

K1

√
k′
1t ierfc

x
2
√
k′
1t

(7)

= 2
Q̇1

K1

{√
k′
1t

π
e
− x2

4k′
1t − x

2
erfc

x

2
√
k′
1t

}

. (8)

Similarly for the footwall block,

T2 = 2
Q̇2

K2

√
k′
2t ierfc

x
2
√
k′
2t

(9)

= 2
Q̇2

K2

{√
k′
2t

π
e
− x2

4k′
2t − x

2
erfc

x

2
√

k′
2t

}

. (10)

Here k′
1: thermal diffusivity of hangingwall block

and k′
2: that of footwall block.

Let the distribution of heat generation per unit
area in the two blocks due to faulting be Q̇1 and
Q̇2. To deduct the heat distribution fractions Q̇1

and Q̇2, the boundary condition that tempera-
ture along the fault will be same for both the
equations (8) and (10) is applied.
Putting x = 0 in both the equations and

equating:

Q̇1

√
k′
1

K1

=
Q̇2

√
k′
2

K2

;

and

Q̇1 + Q̇2 = Q̇.

By solving the above equations,

Q̇1 =
Q̇K

1
√

k′
2

K
2
√

k′
1

+K1

√
k′
2

and

Q̇2 =
Q̇K

2
√

k′
1

K
2
√

k′
1

+K1

√
k′
2

.

By putting values of Q̇1 and Q̇2 in equations (7)
and (9), respectively, one gets,

T1 =
2 Q̇K

1
√

k′
1k

′
2t

K
2
√

k′
1

+K1

√
k′
2

ierfc
x

2
√
k′
1t
, (11)

T2 =
2 Q̇K

2
√

k′
1k

′
2t

K
2
√

k′
1

+K1

√
k′
2

ierfc
x

2
√
k′
2t
. (12)

Putting Q̇ from equation (3),

T1 = 2μρgvh Cos θK1k
′0.5
1 k′0.5

2 t0.5

×
(
K2k

′0.5
1 +K1k

′0.5
2

)−1

× ierfc
{
0.5× k′−0.5

1 t′−0.5
}
, (13)

T2 = 2μρgvh Cos θK2k
′0.5
1 k′0.5

2 t0.5

×
(
K2k

′0.5
1 +K1k

′0.5
2

)−1

× ierfc
{
0.5× k′−0.5

2 t−0.5
}
. (14)

Here, K1 and K2 are the thermal conductivities of
the faulted hangingwall and footwall blocks.



 1 Page 4 of 5 J. Earth Syst. Sci.  (2017) 126:1 

3. Discussions and conclusions

Shear heating by brittle faults is relevant in
different branches of geosciences. The temperature
rise by shear heating for brittle dip-slip reverse fault
is done here by considering a minimum number
of physical parameters, viz., coefficient of friction
(μ), density (ρ) and thickness (h) of hangingwall
block, acceleration due to gravity (g), slip rate or
slip velocity or shear velocity (v), thermal conduc-
tivities (Ki) and -diffusivities (k

′

i) of the two blocks,
perpendicular distance from fault plane (x) and
duration of slip (t). Faulting along a single sharp
plane is considered here and not within a zone.
Equations (13 and 14) show that the rise in temper-
ature by shear heat (Ti) is proportional to the coef-
ficient of friction (μ), the density (ρ) and thickness
(h) of the hangingwall block. The first proportion-
ality relation matches previous studies, e.g., Barr
and Dahlen (1989). As rocks have various densities,
shear heating would depend on the rock types. As
the dip (θ) of the fault plane increases, Ti decreases.
In other words, a low dipping thrust will have a
high Ti. No such simple relation exists between Ti

and thermal conductivity (Ki), nor with thermal
diffusivity (k′

i). This is unlike viscous dissipation
by ductile simple shear, where temperature rise is
inversely proportional to the thermal conductivity
(Mukherjee and Mulchrone 2013). Since the ierfc
of an expression involving a parameter ‘m’, i.e.,
ierfc{m} decreases drastically with increasing ‘m’,
Ti keeps diminishing away from the fault plane
and becomes insignificant after some distance. This
matches with what has been stated by others, such
as Wibberley et al. (2008).

An algebraic equation for temperature rise (Ti)
by shear heat in brittle fault zones was presented
by Hamada et al. (2009) as follows:

Ti = τ v tw−1C−1
P ρ−1. (15)

Here τ : shear stress; v: slip velocity; t: time; w:
width of fault zone; CP : specific heat at constant
pressure; and ρ: density. Notice that unlike deduc-
tion for a sharp fault plane, Ti in a fault zone is
simply proportional to the duration of slip. Ti was
linked with the width of brittle shear/fault zones
(Cardwell et al. 1978; Hamada et al. 2009; Fulton
and Harris 2012). However, a brittle shear on a
planar rough surface and not within a zone was
considered. Therefore, the conclusions of Cardwell
et al. (1978), Hamada et al. (2009) and Fulton
and Harris (2012) cannot be cross-checked. Under
a different physical condition, Lachenbruch (1986)
pointed out that for a narrow shear zone, Ti ∞ t0.5

(also see Sibson 2002). However, this also does not
match with the case, since the ‘t’ term exists in
equations (13 and 14) both inside and outside the
‘ierfc function’.

For a planar fault with faulted blocks of the same
lithologies adjacent to one another (i.e., k′

1 = k′
2 =

k′; K1 = K2 = K in equations (13 and 14)),

T1 = T2 = μρgh Cos θ v k′0.5t0.5

× ierfc (0.5× k′−0.5t−0.5). (16)

Here, the rate of increase in heat per unit area of
the two blocks becomes equal and is half the total
amount (i.e., equal to 0.5Q̇), which is as expected.
Several such algebraic expressions, such as of rate
of heat produced per unit area (Sibson 2002;
Turcotte and Schubert 2006), are available. The
deduction (equation 13 and 14) and that by pre-
vious workers (e.g., equation 16) indicate that Ti

will keep increasing as long as brittle shear contin-
ues. However, this does not happen in nature, since
pore fluid modulates the temperature of the rocks
(see Garagash and Rudnicki 2003a).
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