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Chapter 5
Biviscous horizontal simple shear zones of concentric arcs 
(Taylor–Couette flow) with incompressible Newtonian rheology

Soumyajit Mukherjee1 and Rakesh Biswas2

1 Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
2 Geodata Processing and Interpretation Centre, Oil and Natural Gas Corporation Limited, Dehradun, India

5.1  Introduction

Fluid caught between rotating cylinders has been 
intriguing physicists for over 300 years…

R.J. Donnelly (1991)

Ductile shear zones have so far been modeled mainly as 
zones of single lithology and with straight parallel and 
rigid boundaries (Ramsay 1980). Following this, thermal 
models of ductile shear zones were also provided (Fleitout 
and Froideavaux 1980). However, (i) natural shear zones 
can have curved boundaries in regional‐scale, and (ii) may 
consist of more than one lithology. For example, crustal 
cross‐sections of collisional orogens deduced from geo-
physical studies reveal shear zones with curved bounda-
ries (Beaumont et al. 2001 and references therein). On the 
other hand, pronounced ductile shear segregates specific 
mineral assemblages for polymineralic rocks into zones 
with their interfaces parallel to the shear zone boundaries 
(Druguet et al. 2009). Layered shear zones have been 
reported/studied in granulite facies rocks (Ji et al. 1997), 
in models with ice (Wilson et al. 2003), from collisional 
terrains (Mukherjee and Koyi 2010), and in granular 
materials (Börzsönyi et al. 2009), besides most common 
cases of micaceous minerals alternating with quartzofeld-
spathic minerals in mylonites (Lister and Snoke 1984). 
Those two natural cases (i) and (ii) have recently been 
modeled individually (Mukherjee and Biswas 2014; 
Mulchrone and Mukherjee, in press) to deduce velocity 
profiles and shear senses. This work considers the two 
cases together to deduce and interpret velocity profiles of 
biviscous curved ductile simple shear zones. We do not 
address here shear zone related folds (see Mukherjee et al. 
this volume, Chapter 12).

5.2  The model

We use the Taylor–Couette flow model (Taylor 1923) to 
explain the kinematics of biviscous curved shear zone, as 
follows. Consider a ductile shear zone with concentric 

circular boundaries of radii R1 and R2 (R1 > R2) with two 
immiscible incompressible Newtonian viscous fluids 
within: an outer layer of fluid A with a viscosity μa, and 
an inner fluid layer B with a viscosity μb (μa > μb). Their 
interface is a circle of radius Rb. The inner boundary 
rotates clockwise with an angular velocity ω and the 
outer boundary remains static. Such flow in fluid 
mechanics has been known as Taylor–Couette flow/
circular Couette shear, etc. for a long time (Donnelly, 
1991), both for rotation of two boundaries and one of 
the boundaries, and for single and two fluids (Schulz 
et  al. 2003). Even if one considers the two fluids (in 
geology, “ductile lithologies”) were mixed, upon circu-
lar shear they segregate with lighter fluid near the core 
and the denser fluid near the periphery (Baier 1999; 
Vedantam et al. 2006). Taylor–Couette flow has already 
been classified in fluid mechanics into three types: 
(i) homogeneous dispersion, (ii) banded dispersion, and 
(iii) segregated/stratified flow. We discuss here a kind of 
stratified flow.

The velocity distributions in both the layers obey the 
velocity equation:

	 v C r C rθ = ( ) + ( )1 22 1/ / 	 (1)

(from eqn 15.38 of Williams and Elder 1989)

	

Velocity equation for
fluid a a a a: / /v C r C rθ = ( ) + ( )1 22 1 � (2)

	 that for fluid B is b a b: / /v C r C rθ = ( ) + ( )1 22 1 	 (3)

Here vθ is azimuthal velocity; θ is meridional angle 
(Fig. 5.1a); C1

a, C2
a, C1

b, and C2
b are integration constants.

	 at ar R v= =1 0, θ 	 (4)

And at

	 r R v R= =2 2, θ ωb 	 (5)
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At the interface, r = Rb, the two additional conditions 
are as follows. (i) The two fluids stick together:

	 v vθ θ
a b= 	 (6)

(ii) The momentum transfer through the interface is 
continuous:

	 τ τθ θr
a

r
b

bat= =r R 	 (7)

Or,
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Using Equations 2 to 8 and after doing some algebra, 
the velocity equations for fluids A and B are:
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Notice that the velocity equations depend on the 
viscosity of both the fluids. Starting from line OI, velocity 

profiles developed in the two fluids are shown in 
Fig. 5.1b. Flow paths of both the fluids are segments of 
circles that are concentric with the circular boundaries of 
the shear zone. Angular shear at some particular moment 
can be measured at any point on the profile by drawing a 
tangent at that point and finding the angle between that 
tangent and the line OI (Fig. 5.1b). The point of highest 
curvature on the velocity profile is shown as ‘V’ in 
Fig. 1b, which is also the point of highest speed induced 
by ductile shear of the curved inner boundary. Reverse 
ductile shear senses develop simultaneously across point 
‘V’. In detail: from the outer boundary of the circular 
shear zone up to point ‘V’, a shear sense same as that 
produced by the rotating inner boundary is produced. 
From ‘V’ up to the inner boundary, an opposite ductile 
shear sense develops. The point of intersection between 
the velocity profile and the line OI, point ‘I’, is called the 
“neutral point”. It is the unique static point inside the 
shear zone. A circle concentric with the shear zone 
boundaries and passing through the neutral point is 
called the “neutral curve” (Mukherjee and Biswas 2014). 
Material points on the neutral curve remain stationary 
during ductile shear. In the present case, the neutral 
curve coincides with the static outer boundary of the 
shear zone. Note that the term “neutral curve” has been 
used here in a different context than that used by Fossen 
and Rykkelid (1992), Peng and Zhu (2010), and 
Ovchinnikova (2012). Had there been rotation of the 
outer curved boundary of the shear zone in a direction 

Fig. 5.1.  (a) Angular velocity ω acts on the two concentric circular boundaries of a curved horizontal shear zone. A marker AB turns A/B/. 
The meridional angle (θ) and the azimuthal velocity (vθ) are shown. Source: Mukherjee & Biswas, 2014. Reproduced with permission from 
Springer Science + Business Media. (b) Velocity profiles for Taylor–Couette flow with two Newtonian fluids “A” and “B” within two 
concentric circular boundaries. The red circle marks the interface between the two fluids. The inner boundary rotates clockwise. The outer 
boundary is static. Here R1 = 100 cm., R2 = 50 cm, ω = 2° hr–1, μa = 109 Poise and μb = 108 Poise.
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opposite to that of the inner boundary (that is, anticlock-
wise), the neutral point would have plotted inside the 
shear zone. Note that we can at best decipher relative 
shear movements in shear zones, and not the absolute 
movements of its boundaries. Therefore, locating neutral 
point in real shear zones seems not possible even though 
it is discussed here. Taylor–Couette flow apparatus has 
been in use in structural geological analogue models 
to  simulate high‐strain ductile shear (e.g. Bons and 
Jessell 1999).

Shear strain (tanα) at any point ‘T’ on the profile 
(Fig. 5.1b) can be obtained from the angle α between the 
tangent at ‘T’ on the profile and the line AI. Figure 5.2 
shows how shear strain varies inside the model shear 
zone measured for eight points with initial positions ‘1’ 
to ‘8’ shown in Fig. 5.1b. Shear strain is minimum at ‘V’ 
and increases away from it in both directions. Higher 
shear strain attains within Fluid B‐ at few locations than 
in Fluid A layer: compare the plots in Fig. 5.2 for points 
‘7’ and ‘8’ with points ‘1’, ‘2’, ‘4’, ‘5’, and ‘6’.

Five circular markers of equal radius before deforma-
tion (Fig.  5.3), considered in both the fluid layers on 
ductile shear, become irregular shaped, indicating their 
non‐homogeneous deformation. Figure  5.4 shows the 
temporal evolution of aspect ratios of these markers at 
four instances. In general, aspect ratios increase tempo-
rally. It can also decrease since points ‘y’ and ‘z’ (inset in 
Fig.  5.3), that were increasing distance between them 
during deformation, can also start decreasing. This can 
be understood from the green dots showing evolution of 
marker ‘d’ in Fig. 5.4. The inset in Fig. 5.4 defines the 
aspect ratio tentatively from irregular objects. Marker ‘c’ 

was positioned deliberately partly in one fluid layer and 
partly in the other. Fluid ‘B’ undergoes more shear than 
that of fluid ‘A’, as can be visually appreciated more from 
marker ‘c’. The reasons are, first: only the (inner) bound-
ary of the curved zone shears. Second, fluid B is less vis-
cous than fluid A. This is also corroborated from shear 
strains within these layers (Fig. 5.2). Biviscous Taylor–
Couette flows may develop instability at the contact 
between the two fluid layers (Gelfgat et al. 2004). This 
manifest as warping of the interface. The present study 
did not consider development of such an instability. 
Andereck et al. (1986) pointed out that Taylor–Couette 
flow kinematics depends on aspect ratio and radius ratio 
of the region where the fluid is kept, and on the Reynold’s 
number of the fluid. Taylor–Couette flow has been stud-
ied in fluid mechanics for a single rotating cylinder and 
for rotation of both cylinders (White 2005). Layered 
Taylor–Couette flow of non‐Newtonian fluids for eccen-
tric/non‐axisymmetric cylinder are already available in 
fluid mechanics, such as Escudier et al. (2002). We are 
working to adopt them in ductile shear zone studies in 
structural geology.
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Fig.  5.2.  Magnitudes of shear strain variation in biviscous shear 
zone, detailed in the caption of Fig. 5.1, at one particular instant. 
Locations of points “1” to “8” on the marker before shear are shown 
in Fig. 5.1b.
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cular shear zone. Caption of Fig. 5.1 presents detail of the shear 
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Fig. 5.4.  Temporal variation of aspect ratios of three markers, “a”, 
“b”, and “d”.
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