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Reference spectra of terrestrial targets are usually collected using field spectro-
radiometers for mineral abundance mapping and target detection. These spectra
often have noise that masks characteristic absorption and reflection features and
affects the efficiency of material mapping. This work aims at obtaining an
empirical technique for reduction of high-frequency noise from field spectra. The
proposed noise correction technique uses a ‘normalized’ measure Rn, where
Rn ¼ (Ln 7 Fn)/Ln for each band (n) calculated from field and laboratory spectra
of test material, with Fn and Ln being the depth of the absorption feature in field
and laboratory spectra, respectively. On the basis of the assumption of the
constancy of this ratio in neighbouring bands, an empirical algorithm that
approximates the ratio Rn of a noisy band to the corrected ratio of an adjacent
band is used to obtain the noise-corrected field spectra. The classification
accuracy increases significantly when noise reduced field spectra are used as
reference spectra.

Keywords: reflectance spectra; noise; empirical correction; classification;
hyperspectral remote sensing

1. Introduction

A state-of-the-art imaging spectrometer collects reflectance data that are both
spatially and spectrally contiguous. This provides an efficient means of obtaining
information on terrestrial materials and their abundance. With the advent of
NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and EO-1-
Hyperion sensor systems, laboratory-like imaging spectra of a wide variety of
Earth’s surface materials such as rocks, soils, plants, snow, ice, water and artificial
materials are made possible. This allows comparison of field and laboratory spectra
with the pixel spectra of the satellite image and thereby helps in the direct
identification of materials including surface minerals and their abundance (Goetz
et al. 1985, Kruse et al. 1993, Rowan et al. 2004, Van der Meer 2004), atmospheric
constituent gases (Marion et al. 2004, Black and Guo 2008), vegetation species
discrimination (Tsai et al. 2007) and water quality (Brando and Dekker 2003).
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For target mapping, reference spectra of terrestrial target objects are generally
collected using field or laboratory spectro-radiometers. Similar to their satellite-
sensor counterparts, the field spectra are also vulnerable to degradation by
wavelength-specific and non-specific noise arising from several parameters such as
atmospheric water vapour, scattering, instrument performance and faulty data
acquisition (Schmidt and Skidmore 2004, Ramsey et al. 2005). Green and Conel
(1995) envisaged the deleterious effects of increase in water vapour and aerosol
content on ground leaving reflectance of low reflecting materials. From their work it
is evident that increase in atmospheric water vapour and aerosol content can reduce
the effective solar irradiance in 2000–2500 nm regions. Water absorption bandwidths
such as 900–980 nm; 1351–1434 nm and 1798–1961 nm are generally affected by
specific noise. Besides these regions, the 2350–2500 nm band width is commonly
affected by noise due to low solar irradiance.

Such noise affects the fundamental and overtone absorption features of minerals
rich in iron (900–1000; 1800–2000 nm), Al��OH (2200 nm), Mg��OH (2300–2400
nm) and carbonates (1900, 2350, 2500 nm), thereby reducing the efficiency of rock
and mineral mapping. Thus, pre-processing of the field-spectra of target objects is
ideal before they are used for mapping and abundance-estimation (Schaepman and
Dangel 2000, Liu et al. 2006).

One of the methods of minimizing noise in reference spectra is to collect the
spectral signatures of the target materials using instruments having higher signal-to-
noise ratio in moisture-free laboratory conditions with longer integration time.
However, such ultra-fine reference spectra seldom match the satellite-acquired pixel
spectra because of inherent heterogeneity associated with field conditions. This
necessitates reducing the atmospheric- and the instrument-related noise to generate a
reasonable field reference spectrum. Prevailing methods of noise management in
field-spectra include either removal of the noisy segment or noise reduction by
application of signal processing techniques such as Fourier transforms, Savitzky–
Golay local polynomials, Gaussian functions, wavelet decomposition and artificial
neural networks (Savitzky and Golay 1964, Schmidt and Skidmore 2004, Shafri and
Mather 2005). Though these techniques reduce noise effectively, they can also affect
the characteristic spectral features of materials such as central wavelength and
absorption strengths of different materials. This affects their identification and
abundance-estimation. In this communication, an empirical method is proposed
which has not only the potential of reducing the noises from the field spectra, but
also maintains the characteristic spectral features.

2. Methodology

2.1. Spectral data generation

The methodology adopted involves collection of field and laboratory reflectance
measurements, processing of spectra and mapping of the target materials in the
hyperspectral image data cube. Bi-hemispherical-conical reflectance of target
materials such as laterites, bauxites and lateritic–bauxites were measured (in 350–
2500 nm wavelength range) using the ASD-Fieldspec3 portable field spectro-
radiometer. The spectra were collected from a nadir-looking optical setup. The
instrument was calibrated using spectralon diffused reflectance panel (Labsphere,
North Sutton, USA) and dark current.
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Reflectance of the samples collected from the corresponding field locations was
measured in the laboratory by keeping the same angular parameters. Processing of
the spectra for noise-reduction was carried out using Matlab routines written for the
above purpose and detailed in the next subsection.

Before matching the reference and the pixel spectra, the satellite data needed to
be corrected for atmospheric effects and spectral shift. The EO-1 Hyperion satellite
radiance data of the study area were pre-processed for atmospheric effects using the
FLAASH module (Matthew et al. 2000) built into the ENVI (Ver. 4.3) software and
converted to corresponding surface reflectance values. The data were collected over a
part of the Konkan area in the Savitri basin (N178450–188250 and E738000–738400)
that consists of lateritized terrain, underlain by Deccan basalt. Typical rock-types
include basalt, laterite, lateritic–bauxite and bauxite. The details of parameters used
for the atmospheric correction are given in Table 1.

The spectral angle mapping (SAM) technique (Boardman 1993, Kruse et al.
1993) was used as the mapping method to match the reference spectra with the pixel
spectra. The accuracy of mapping was estimated with the aid of field data collected
from 50 locations.

2.2. Noise removal and generation of reference spectra

The intensity of the spectra of samples under solar and laboratory illumination
acquired at 10 nm bandwidth are termed here as Fn and Ln respectively with n indi-
cating the wavelength/band number (n ¼ 1–2150). The irradiance curves of solar and
laboratory illuminations were recorded at 1 nm bandwidth and compared after
normalization for illumination using the spectralon panel. The two normalized spectra
differ with respect to intensities of illumination over all wavelengths, but the patterns
of the two spectra are more or less similar (Figure 1(A)). Figure 1(B), shows the plot
of the difference (Ln – Fn) ¼ Dn, against wavelength n. It is seen that the difference is
not constant across bands. On plotting Dn vs. Ln for chosen ranges of data (Figures
2(A)–(C)), it is observed that Dn is linearly correlated with Ln, the reflectance values of
the lab spectrum in all wavelength regions such as visible, near infra red (NIR) and
short-wave infra red (SWIR) having very high R2 values (0.81–0.99). This strongly
suggests that Dn is proportional to Ln (or Dn

Ln
¼ k). The overall linear relationship

between Dn and Ln may be due to the overall effect of instrument gain for higher
intensities of illumination. At water absorption bands and SWIR regions, the bipolar
noises present in the field spectra reduce the R2 values (0.6–0.8).

Table 1. Parameters used to correct the atmospheric effects in hyperion images of the
investigated area.

Atmospheric model Tropical
Aerosol model Rural
Water vapour absorption feature 1135 nm
Initial visibility 20 kms
Retrieved atmospheric water vapour 1.4 cms
Spectral shift 2–3 nm in visible and NIR regions

6 nm in SWIR region
Correction for adjacency effect Yes
Spectral polishing Yes
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This apparently linear relationship is drastically disturbed in some bands, and it
is inferred that this disturbance is due to noise. The value Dn/Ln (¼Rn) for each band
number is random due to inherent noise in each band and the value of Rn computed
for each band is an estimate of the constant k. When noise-levels are low, the values
of Rn and Rnþ1 in adjacent bands are nearly constant. On the other hand, when there
is a sudden change in the value of Rnþ1 relative to Rn in consecutive bands, it is
inferred that this change is due to noise. This noise may be attributed to random
effects (such as atmospheric or instrument effects). As it is desirable to correct the
field spectra for such noise, a suitable algorithm was devised for correction and is
described below.

The algorithm may proceed either from band number 1 to band number 2150 or
in reverse from band number 2150 to band 1. The first procedure is outlined below.
The ratio Rnþ1�Rn½ �

Rn
is computed and whenever the value of this ratio exceeds a

Figure 1. (A) Spectra of laterite collected using different illumination sources. (B) Dn vs.
wavelength (n) plot.
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threshold value, Rnþ1 is replaced in the equation Rnþ1 ¼ Lnþ1�Fnþ1
Lnþ1

by Rn (or R
0

n, its
corrected value). In general one may write R

0

n ¼ Rn if no correction occurs and then
the appropriate value of the field spectrum for band number nþ1 is calculated using
the relation

Fnþ1 ¼ Lnþ1 � ðLnþ1 � R
0

nÞ ð1Þ

While proceeding sequentially towards higher band numbers, it is assumed that
the value of Rn or its corrected value R

0

n (which may have been obtained in the

Figure 2. Dn vs. Ln plot depicting the linear relationship.
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preceding step), is a better estimate of k than Rnþ1. The converse would be true when
proceeding from a higher band number towards a lower band number.

To start with, the value of R1, the ratio in the first band of the spectrum, is
checked to verify whether it is within acceptable limit. This is done by comparing it
with the local mean computed over a few bands, typically 3 to 10 in case of high-
frequency noises. The local mean is used as an estimate of the value of R0 as
instrumental drift and other errors may result in the drift of the mean value of Rn

over the entire bandwidth being studied. In this study, an average of three bands is
found to be optimum to obtain an average value designated as R0 ¼ 1

3

P3
i¼1 Ri. The

value of R0 is used to compute jR1�R0

R0
j to check whether R1 is acceptable on the basis

of a threshold value (T) selected for the purpose. A value of the ratio that is higher
than the chosen threshold is considered as arising due to high-frequency noise. This
leads to correction of R1 by approximating it with R0 and computation of a
corrected value of Fn as given in Equation (1). The corrected ratio is given the
notation R

0

1. If no correction is required, R
0

1 is taken as equal to R1. The algorithm
proceeds successively to the next channel and compares the ratio Rnþ1 with R

0

n and
computes the relative change given by the ratio Rnþ1 � R

0

n

� �
=R

0

n. This ratio is herein
termed the ‘noise-signal index’ as it is a measure of the relative noise-to-signal ratio
of adjacent bands. The critical assumption here is that Dn/Ln ¼ k, which is a
measure of the noise-to-signal ratio, is nearly constant for adjacent bands.

An attempt was made to understand the effect of threshold values on
efficiency of noise-correction. For this purpose, the noise-signal index threshold
was progressively increased (DT ¼ 0.04) from 0.01 to 0.55 for spectra
corresponding to laterite, lateritic–bauxite and bauxite (Figures 3 (A)–(E)).
Figure 3(A) is the noise ridden field spectra with characteristic bipolar noises in
��OH (1.4 mm), H��OH (1.9 mm), FeO��OH (2.41 mm), Mg��OH (2.44 mm) and
CO3 (2.35, 2.5 mm) absorption regions. Figure 3(B) corresponds to the spectra of
same materials collected in controlled, laboratory conditions with the least noise
in all wavelength regions. When noise-to-signal indexing were carried out using
these spectra, at lower thresholds (Figure 3(C)), the noise are significantly
reduced. But, the spectral pattern has some similarity with the laboratory spectra,
which is undesirable. At threshold values more than 0.2, noise starts to appear
and increases with higher values of threshold (Figure 3(E)). After carefully
analysing the spectra, the threshold range 0.11–0.13 is considered optimum for
noise-reduction. At this threshold range, both the objectives, i.e. noise-reduction
and preserving the field spectral pattern are achieved (Figure 3(D)).

3. Results

3.1. Noise-corrected reference spectra and image analysis

The noise-corrected field-spectra, herein designated as reference-spectra of laterite,
lateritic–bauxite and bauxite were generated by the above technique with a noise-
signal index threshold of 0.13. The root mean square error between the field- and the
reference-spectra, a measure of goodness of fit, varies between 0.01 and 0.2. This
clearly indicates least disturbance to spectral characters of reference-spectra while
restoring the spectral features in the noise-affected field spectra.

These reference-spectra were compared subsequently with the satellite pixel
spectra for mapping the materials of interest. For this purpose, SAM was used.
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The SAM technique directly compares the image spectra to reference spectra
given by

a ¼ Cos�1
Pnb

i¼1 tiri�Pnb
i¼1 t

2
i Þ

1=2ð
Pnb

i¼1 r
2
i Þ

1=2

 !
ð2Þ

where, i is the band number, nb is the total number of bands, ti is the amplitude of
pixel spectrum and ri is the amplitude of reference spectrum.

Since the SAM algorithm uses only the vector direction, it is insensitive to
illumination/intensity-related differences. In the present case, the spectral angles of
0.30, 0.20 and 0.10 radians were used as thresholds for bauxite, lateritic–bauxite and

Figure 3. Spectra of laterite, lateritic–bauxite and bauxite collected at (A) field and (B)
laboratory conditions. (C) and (D) Noise-corrected spectra of laterite, lateritic–bauxite at
minimum (0.01) and optimum (0.13) noise-signal index thresholds respectively. (E) Noise-
corrected spectra of laterite, lateritic–bauxite and bauxite at maximum (0.21) noise-signal
index threshold.
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Figure 3. (Continued).
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laterite, respectively. These optimum values were arrived at after attempting several
combinations of spectral angles ranging between 0.1 and 0.4 for all three classes. It
was observed that these optimized spectral angles for each class alone gave the best
possible classification accuracy. It is evident from the classification results of SAM
(Figure 4) that the classification done by using the noisy spectra could not
discriminate between the laterite and lateritic–bauxites, whereas the same could be
achieved with noise-corrected reference-spectra. The change detection statistics
(Table 2) indicate that when classification was done by using noise-corrected
reference-spectra, subtle differences among the three classes such as bauxite,
lateritic–bauxite and laterite became more apparent. It is perceptible that the bau-
xite class, mapped by using noisy spectra, includes 6.5% of lateritic–bauxite and
22.1% of other classes (unclassified). Similarly, the lateritic–bauxite class is found to
incorporate 13.7% of laterite, 0.8% of bauxite and 0.3% of other classes. The user’s
and the producer’s classification accuracies were also estimated following the
procedure of Congalton (1991) by comparing the classification result with ground-
truth information obtained at 50 locations for both methods of classification

Figure 4. (A) Hyperion imagery cube, (B) SAM-classified output using noisy spectra, and
(C) noise-corrected spectra.
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(Table 3). The overall accuracy of classification significantly improved for all three
classes, when noise-corrected spectra were used.

4. Discussion and conclusion

In this study, it is observed that the field spectra are usually found to contain noises
in SWIR region. However, when measurements are made in the laboratory
conditions using a tungsten halogen source lamp (lmax ¼ 1200 nm), the spectra
are noiseless. These indicate to the relevance of atmospheric water vapour and dust
particles in decreasing the effective solar irradiance in 2000–2500 nm regions. With
lower irradiance and associated reflectance, it is often difficult to resolve the
incoming signals from noises. Noise in the wavelength regions of interest often
hampers spectral absorption features. It is evident from the classification results
(Tables 2 and 3) that the use of noise-ridden field spectra reduce the efficiency of
spectral discrimination among laterite, lateritic–bauxite and bauxite and hence, the
accuracy of classification. This occurs because of the following reasons.

(1) Presence of noise at critical wavelengths, in this case at 940–950, 1349–1475
and 2225–2500 nm, affects the spectral pattern and hence the efficiency of
discrimination among the classes.

(2) Spectral-matching algorithms like SAM are a measure of the cumulative
match between the pixel- and the reference-spectra at all wavelengths. Hence,
the presence of noise at any given wavelength obviously leads to deterioration
of the overall match-score.

Table 2. Change detection statistics (in percentage) between SAM classified images using
noisy spectra (n) and noise-corrected spectra (nc).

Unclassified (n) Bauxite (n) Lateritic–bauxite (n) Laterite (n)

Unclassified (nc) 99.6 22.1 0.3 0.0
Bauxite (nc) 0.4 71.4 0.8 0.0
Lateritic–bauxite (nc) 0.0 6.5 85.2 0.0
Laterite (nc) 0.0 0.0 13.7 100
Class total 100 100 100 100

Table 3. Accuracy assessment of the image classification based on correlation with
observations made in the field at many locations.

Class Accuracy

SAM classified
map (noisy
spectra)

SAM classified
map (noise-free

spectra)

Overall 47% 66.67%
k 0.15 0.52

Laterite Producers accuracy 0 86%
Users accuracy 0 55%

Lateritic–bauxite Producers accuracy 39% 44%
Users accuracy 47% 80%

Bauxite Producers accuracy 68% 75%
Users accuracy 52% 100%
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When the relative and the absolute accuracy of classification between noise-free
and noisy-spectra is compared, the latter produces inferior results for all three
classes. The work thus demonstrates the significance of noise-correction in field
spectra in improving classification accuracy. The proposed noise-signal threshold
index could be advantageous over Fourier transforms, Savitzky–Golay local
polynomials, and Gaussian functions, in terms of its efficiency in portraying the
original spectral pattern. This property of the proposed method is attributed mainly
to selective reconstruction of spectral features in noisy regions, with the aid of
laboratory spectra, and maintaining the original field spectral characters in noise-
free regions. Other methods not only affect the entire spectra but also affect the
absorption/reflection features and shift characteristic wavelength positions.
Although the necessity of noise-free laboratory spectra is a limitation to this study,
the efficiency of spectral restoration in noisy regions and associated improvements in
classification accuracy certainly outweigh this constraint. This study clearly indicates
that as long as the noise-free laboratory-spectra and the noisy field-spectra are
similar, the proposed technique can be effectively used even in situations where
within-class spectral variability exists.
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