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This work illustrates the efficiency of field spectroscopy for rapid identification of minerals in ore body,
alteration zone and host rocks. The adopted procedure involves collection of field spectra, their pro-
cessing for noise, spectral matching and spectral un-mixing with selected library end-members. Average
weighted spectral similarity and effective peak matching techniques were used to draw end-members from
library. Constrained linear mixture modelling technique was used to convolve end-member spectra. Lin-
ear mixture model was optimized based on root mean square error between field- and modelled-spectra.
Estimated minerals and their abundances were subsequently compared with conventional procedures
such as petrography, X-ray diffraction and X-ray fluorescence for accuracy assessment. The mineral-
ized zone is found to contain azurite, galena, chalcopyrite, bornite, molybdenite, marcacite, gahnite,
hematite, goethite, anglesite and malachite. The alteration zone contains chlorite, kaolinite, actinolite
and mica. These mineral assemblages correlate well with the petrographic measurements (R2 = 0.89).
Subsequently, the bulk chemistry of field samples was compared with spectroscopically derived cumu-
lative weighted mineral chemistry and found to correlate well (R2 = 0.91–0.98) at excellent statistical
significance levels (90–99%). From this study, it is evident that field spectroscopy can be effectively used
for rapid mineral identification and abundance estimation.

1. Introduction

Reflectance and emission spectra are extensively
used to derive information on chemistry and atomic
structure of various inorganic and organic com-
pounds. Diagnostic absorption features in visible-
and near-infrared (350–1000 nm) regions of spectra
of minerals are mainly governed by electronic pro-
cesses such as crystal field, charge transfer, conduc-
tion bands and colour centres (Adams 1974, 1975;
Hunt 1977; Hunt and Ashley 1979; Clark et al.
1990a; Burns 1993). In longer wavelength regions
(2000–16,000 nm), vibration processes involving
stretching, rotation and bending of molecules are

responsible for producing absorption features cor-
responding to fundamental, overtone and combi-
nation modes (Farmer 1974; Hunt 1982; Gaffey
et al. 1993; Clark 1999). The position, shape, depth
and width of these absorption features are gov-
erned by chemical composition and atomic struc-
ture of materials under investigation (van der Meer
and De Jong 2006). In geological applications, such
absorption features at characteristic wavelengths
can be directly related to mineralogy (Hunt and
Salisbury 1970; Clark 1999). Further, magnitude
of spectral absorption at any specific wavelength
can be related to abundance of constituent min-
erals (Clark et al. 1990b; Hapke 1993; Ramsey
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and Christensen 1998) within the field of view
(FOV). In brief, reflectance/emission spectroscopy
allows identification of minerals and quantitative
estimation of their abundance. This ability of spec-
troscopy is being exploited by the remote sensing
community in exploring the Earth and planetary
surfaces for more than three decades (Goetz et al.
1985; Boardman and Huntington 1996; Mustard
et al. 1998; Crosta and Filho 2000; Vaughan et al.
2003; Crouvi et al. 2006; van der Meer et al.
2006; Nowicki and Christensen 2007; Rogers and
Christensen 2007; Galvo et al. 2008; Ramakrishnan
and Kusuma 2008; Kusuma et al. 2010; Besse
et al. 2011; Pour and Hashim 2011, 2012). With
the advent of very compact and sophisticated
spectrometers and spectroradiometers, field spec-
troscopy is evolving as a robust technique in min-
eral exploration and geological mapping (Kruse
1996; Vitorello and Galvao 1996; Thompson et al.
1999; Goetz et al. 2001; Herrmann et al. 2001;
Sun et al. 2001; Yang et al. 2005; Goetz et al.
2009). Field spectroscopy also plays a key role in
scaling-up of energy–matter interactions from field
scale of a few centimetres to satellite pixel scale
of a few metres (Gamon et al. 2006; Milton et al.
2009). However, understanding on various influ-
ence parameters such as source–sensor geometry,
grain size, instrument calibration, spectral acqui-
sition procedure, scheme of library spectral candidate

selection and the appropriateness of unmixing
procedure is vital for effective utilization of this
technique.

In this study, we evaluated the efficacy of field
spectroscopy for rapid identification and semi-
quantitative estimation of mineral assemblages
representing ore body, alteration zones and host
rocks in and around Mamandur Polymetal Deposit,
India. This study is distinct from several of the
published works (op. cit.) on aspects such as:

• acquisition of in situ reflection and emission spec-
tra of large FOV (10–15 cm diameter) repre-
senting ore body, alteration zone and parent
rocks;

• adoption of an automated spectral matching pro-
cedure to select the library spectral candidates
and,

• validation of results estimated by spectroscopy
for accuracy using petrography and geochemical
analyses.

2. Study area

The Mamandur Polymetal Deposit (figure 1) is
bounded by northern latitudes 11◦52′ to 12◦01′

and eastern longitudes 78◦53′ to 78◦59′. This

Figure 1. Location map of the study area indicating sampling sites.
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Figure 2. Field photographs depicting (a) zone of dissemi-
nated copper and (b) zone of multi-metal veins.

area is situated in the northern part of Southern
Granulite Terrain comprising mostly migmatite
and charnockite with bands of other high-grade
metamorphic rocks such as banded–magnetite–
quartzite, garnet–biotite–gneiss, granite–gneiss
and garnet–biotite–sillimanite–gneiss. These
rocks are cut across by dykes of norite, dolerite,
granite pegmatite and quartz veins (Chattopadhyay
1999). The Pb, Cu and Zn mineralization in
this area is associated with a shear separating
migmatite complex in the east and amphibolite–
charnockite in the west. In this deposit, mineraliza-
tion occurs in two distinct zones. A disseminated
copper lode occurs in the southern part (figure
2a) and a multi-metal mineralization zone with
lead–zinc–copper and silver values occurs in the
northern part (figure 2b). Wall rock alteration is
manifested by alteration of biotite into chlorite,
sericite; feldspars into kaolinite and alteration of
pyroxene to tremolite and actinolite.

3. Methodology

The adopted methodology in this study involves
(1) generation of a representative field spec-
tral database for rock types, ore minerals and

Field spectra
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Rock types
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identification of
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XRD
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Figure 3. Flow chart depicting the adopted methodology.

hydrothermal alteration zones, (2) pre-processing
of field spectra for noises, (3) spectral matching
and un-mixing of field spectra for mineralogy and
abundance estimation, and (4) mineralogical and
geochemical analyses by conventional procedures
to evaluate accuracy of spectroscopy-based pro-
cedure. The adopted methodology is shown as a
flowchart (figure 3).

3.1 Field spectra acquisition

Reflectance and emission spectra were measured
in the field at about 40 locations (with Global
Positioning System (GPS) co-ordinates) represent-
ing rock types, alteration zones and ore bodies
(figures 1 and 2) on a regular grid pattern. In
order to achieve reproducibility, four consecutive
spectral measurements were made with accumula-
tion of 20 co adds at each location. While collect-
ing reflectance spectra over alteration zones and
ore body, very low FOV (10 cm diameter) was
set to enhance effects of ore minerals. For host
rock mapping, a larger footprint (15 cm diameter)
emission spectra was collected to avoid the effects
of big phenocrysts. The reflectance spectra (350–
2500 nm) were collected using ASD-Fieldspec3
portable field spectroradiometer with the Sun at
its zenith and the sensor at about 10 degrees from
zenith. Instrument calibration and spectral acqui-
sition were carried out following the procedures of
Salisbury (1998) using a spectralon panel.

The emissivity spectra (2000–16000 nm) were
collected using D&P 102F field Fourier Transform
Infra Red Spectrometer (FTIR). This highly so-
phisticated instrument measures noise-equivalent
temperature of 0.01◦C and surface emissivity with
an accuracy of 0.02. The thermo-electrically cali-
brated blackbody (operating between 5◦ and 60◦C)
and diffuse gold plate were used to estimate the



4 D Ramakrishnan et al.

black body and down-welling irradiance. Once cal-
ibrated, sample radiance, blackbody spectra and
down-welling radiances are estimated, the emissiv-
ity is calculated using equation (1).

Es(λ) =

[
Ls(λ) − Ldwr(λ)

]
[
B(λ,Ts) − Ldwr(λ)

] , (1)

where Es(λ) – surface emissivity of sample as a
function of wavelength; Ls(λ) – calibrated radi-
ance of sample; Ldwr(λ) – calibrated down-welling
radiance; B(λ,Ts) is a Planck function at sample
temperature.

3.2 Pre-processing of field spectra

The field spectra often contain wavelength spe-
cific and non-specific noises caused by atmospheric
water vapour, gases, scattering and sensitivity
of the instrument (Schmidt and Skidmore 2004;
Ramsey et al. 2005). Noise, both coherent and
non-coherent, can obscure characteristic spectral
absorption features of minerals and reduce effi-
cacy of spectral matching and convolution pro-
cess. Therefore, pre-processing of field-spectra is
necessary before they are used for mineral iden-
tification and abundance estimation (Schaepman
and Dangel 2000; Liu et al. 2006). In this study,
we observed that atmospheric constituents such as
H2O, CO2 and N2O reduce the upwelling signal
strength and introduce noise from 2300 to 6000 nm
wavelength regions. Since most of the alteration
minerals have their absorption features within this
window, noise removal is necessary before any
spectral convolution is carried out.

In this work, we used the ‘noise-to-signal index
threshold’ approach (Kusuma et al. 2010) to
remove the noise from field spectra. This technique
involves deriving a spectral index ‘Rn’ (equation 2)
using spectra measured in field [F(n)] and in labo-
ratory [L(n)] using the same instrument, FOV and
source–sensor geometry. When there is an abrupt
change in value of R(n) for any consecutive wave-
length (n), it can be inferred that this change is
due to noise.

R(n) =
(

L(n) − F(n)

L(n)

)
. (2)

The ratio [R(n+1)−R(n)]

Rn
is then computed and,

whenever value of this ratio exceeds a prescribed
threshold value, R(n+1) is replaced in the equa-
tion R(n+1) = Ln+1−Fn+1

Ln+1
by R(n) (or R′

n, its cor-
rected value) and appropriate value of field spec-
trum for band number (n + 1) is then calculated
using equation (3).

Fn+1 = Ln+1 − Ln+1 × Rn. (3)

For this study, minimum threshold values greater
than 0.13 through 0.15 were used for the ratio
[Rn+1−Rn]

Rn
to determine whether reflectance in

(n + 1)th band needs noise correction. This range
of threshold values was found to be efficient for
spectra with sampling rate less than 4 nm. At this
optimized threshold range, we observed that both
noise-reduction and preservation of field measured
spectral features could be simultaneously achieved.
Noise-corrected reference spectra (figure 4a, b)
were subsequently convolved to their mineralogi-
cal constituents (i.e., end-members) and their frac-
tional abundances by constrained Linear Mixture
Model (LMM).

Figure 4. (a) Layer stacked reflectance spectra of ore body
and alteration zones indicating absorption positions for vari-
ous characteristic minerals such as chalcopyrite (Cp), azurite
(Az), sphalerite (Sph), and hematite (Ht). (b) Emissivity
spectra of host rocks indicating the presence of quartz (Q),
albite (Ab), hornblende (Hb), hypersthene (Hy) and biotite
(Bio).
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3.3 End-member identification and mineral
abundance estimation

Field spectra are basically, weighted admixture
of several spectrum representing minerals within
FOV. Hence, successful interpretation of spectra
depends on the efficiency of identifying constituent
minerals (end-members) based on absorption fea-
tures and subsequent estimation of their fractional
abundances.

In this study, we followed a cascading spectral
matching approach to identify the potential end-
members from the spectral library. In the first
step, we have used Average Weighted Spectral
Similarity (AWSS) as a measure of spectral similar-
ity between each field spectrum and library spec-
tra of minerals (Jet Propulsion Laboratory (JPL)
and United States Geological Survey (USGS)). The
AWSS was derived by taking weighted average of
results estimated by spectral similarity algorithms
such as Spectral Angle Mapper (SAM, Kruse
et al. 1993), Spectral Feature Fitting (SFF, Clark
et al. 1990b) and Binary Encoding techniques (BE,
Mazer et al. 1988). An AWSS value, 1 indicates a
perfect match between field and library spectra and
value 0 indicates no match. In this study, we gave
equal weight (0.33) to all three spectral matching
algorithms and AWSS score of more than 0.80 was
considered to identify the potential mineral. Since
AWSS compares the entire feature vector, it is rea-
sonably faster to reject the uncorrelated spectra
from the library. Subsequently, the Effective Peak
Matching (EPM) technique (Lau et al. 2000) was
adopted to identify the potential end-member spec-
tra (from AWSS pre-sorted population) based on
the central wavelength, Full Width Half Maximum
(FWHM) and depth of absorption features. Since
EPM is an iterative process and computationally
intensive, it is appropriate to apply this procedure
on pre-sorted spectra.

In this work, absorption positions in reflectance
spectra were used only to identify minerals contain-
ing transient elements (such as Cu, Zn, Ag and Fe)
and functional groups such as sulphides, sulphates,
hydroxides and carbonates. Since depth of absorp-
tions in reflectance spectra is influenced by other
parameters such as grain size and source–sensor
geometry (Bharti et al. 2012), we did not relate
abundances of ore minerals to abundances alone.
Further, quantitative estimation of ore minerals
with aerial abundance lower than 10% is prone
to errors (Feely and Christensen 1999). Hence, we
limited the utility of reflectance spectra for min-
eral identification only. In case of emission spectra,
a fully constrained linear mixing model (Mustard
and Sunshine 1999) was adopted to identify the
minerals and their abundances. Spectral unmix-
ing (the process of decomposing original spectra

into end-members and their abundances) results
in estimation of contribution of individual com-
ponent spectra a (a = 1, . . . , ||A||) to a target
field spectrum containing a set N of unknown ||N ||
spectral candidates, where A ⊂ N and ||A||, ||N ||
are the number of candidate spectra in A and in
N , respectively (Ramsey and Christensen 1998;
Feely and Christensen 1999; Debba et al. 2006).
Each of the component spectra a, which is derived
from spectral library, consists of L discrete wave-
lengths λl(l = 1, . . . , L). It is denoted by Re =
(Re(λ1), . . . , Re(λL)), where Re(λl) is the emis-
sion value at wavelength λl. An observed spectrum
U = (U(λ1), . . . , U(λL)) is assumed to be a linear
combination of ||N || end-members plus an addition
term to attribute the error component. It is diffi-
cult to model target spectra (U) for all probable
components. Instead, the most promising subset A
of N is often considered to estimate contribution of
each one of the end-members using the relationship
mentioned in equation 4.

U� (λl) =
||A||∑

a=1

peR
e(λl) + poR

N/A(λl), (4)

where 0 ≤ pe ≥ 1, po +
∑‖A‖

a=1 pe = 1 is the contri-
bution of each selected end-member of the spectral
library, and 0 ≤ pe ≥ 1 is the fractional contri-
bution of end-members. RN/A(λl) is an unknown
linear combination of end-members. The result-
ing values of pe represent proportions of partial
abundance of material of each of the spectral
candidates considered to linearly model the field
spectrum.

Once these initial estimates of end-members
were obtained, an iterative least square curve fit-
ting technique was adopted till we arrived at a
satisfactory fit between modelled- and field-spectra
(equation 5) using Matlab software.

RMSE =

√∑L

λ=1(U − U� )2

N − 1
, (5)

where U is measured field spectra, U� is modelled
spectra and L is the wavelength.

The appropriate combination of minerals and
its abundance contributing to least Root Mean
Square Error (RMSE) were considered to identify
rocks. It is also observed that pre-selection of end-
member spectra by AWSS and EPM helps in rapid
optimization of RMSE.

3.4 Petrography and geochemistry

Mineralogy of samples collected from field (loca-
tions of spectral collection), were estimated by
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conventional procedures such as petrography and
X-ray diffractometry (XRD). Aerial abundances of
minerals were estimated using photomicrographs,
ERDAS imagine and ARC/Info software follow-
ing the procedure of Marschallinger and Hofmann
(2010). Fractional aerial-abundance of each of the
constituent minerals within the photomicrograph
was computed by weighing the cumulative area

occupied by each mineral to the total area of the
photomicrograph. Unlike the modal abundances
(Ramsey and Christensen 1998), this procedure
allows precise aerial abundances of minerals irre-
spective of grain sizes. In addition to petrogra-
phy, semi-quantitative mineralogy of samples was
estimated using XRD (Rigaku D/MaxIC Cuα)
following the procedures of Goehner (1982).

a b

c d

e f

hg

Figure 5. Photomicrographs of ore body (a–d) and host rocks (e–h) indicating mineralogy and textures.
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Table 2. Statistical relationship between CWMC and BC for the investigated rocks.

Sample

Mafic Dolerite Granite Migmatite Charnockite Amphibolite

Statistical parameters granulite (S3) (E5) gneiss (G22) (A1) (A2) (B22)

Regression coefficient (R2) 0.98 0.98 0.91 0.92 0.97 0.85

Total degree of freedom (df) 6 6 6 6 6 6

F -distribution (estimated) 212 230.7 12.5 60.5 184.9 28.4

F -critical (Fc) 13.8 13.8 9.8 13.8 13.8 13.8

Significance (S) 99% 99% 98% 99% 99% 99%

Major oxides (for all rocks)

SiO2 Al2O3 Fe2O3 CaO MgO Na2O

Regression coefficient (R2) 0.89 0.87 0.83 0.81 0.99 0.70

Total degree of freedom (df) 4 4 4 4 4 4

F -distribution (estimated) 25.8 8.8 17.8 9.1 19.4 7.2

F -critical (Fc) 21.2 7.7 14.0 7.0 13.6 5.9

Significance (S) 90% 95% 98% 96% 98% 93%

a

b c d

e f g

Figure 6. (a–g) Scatter plots indicating the relationship between spectroscopically derived and laboratory measured
mineralogy (a) and major oxide geochemistry (b–g) for rocks of the investigated area.
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X-ray fluorescence (XRF, PW 2404) technique
was used to estimate the bulk (major oxides)
geochemistry, and the instrument was calibrated
using the USGS standards Sco-1, SGR-1 and
Sdo-1 (Govindaraju 1994). The weight percent-
age of estimated major oxides was used to iden-
tify lithology in conjunction with petrography
results. In this study, we have also attempted to
relate Bulk Chemistry (BC) of rocks to Cumula-
tive Weighted Mineral Chemistry (CWMC). The
CWMC was estimated by adding weighted frac-
tions of pure mineral chemistry available with
JPL spectral library. The weight fractions of each
constituent mineral correspond to mineral abun-
dances of rocks estimated by spectral convolution
technique described earlier.

4. Results

4.1 Mineralogy and geochemistry of ore bodies,
alteration zones and host rocks

From ore petrography studies (figure 5a–d), it
is clear that pyrite (Py), chalcopyrite (Chpy),
galena (Gl), sphalerite (Sph) are the main sul-
phide minerals in this prospect. In addition to
these, small amounts of scheelite, malachite, marc-
asite, azurite, gold, bornite, pyrrhotite and molyb-
denite are also present in some samples. Though

the above minerals are found in varying amounts,
two dominant mineral associations can be dis-
tinctly observed. This includes a zone of sphalerite–
galena–chalcopyrite in northern parts (samples S4,
S6, S9) and a zone of chalcopyrite, pyrite (sam-
ples A5, A83) in southern parts of mineralization.
The chalcopyrite and sphalerite are found in many
forms and shapes. It is usually found as medium-
to coarse-grained crystals with inter-granular and
cataclastic texture with pyrite and pyrrhotite
(figure 5b). Occasionally, exsolution lamellae and
blebs of chalcopyrite can also be seen in spha-
lerite (figure 5c, d). Based on geochemistry, this
prospect is predominantly rich in Zn (2.2–14%)
with subordinate amount of Cu (0.16–1.0%) and
Pb (0.17–1.86%). The alteration of host rock is
mainly manifested by development of thin biotite,
chlorite zones, alteration of feldspar into kaolin-
ite and pyroxenes into actinoloite and tremolite
(A5, Z2). At many places (A11, A41 and A7), the
effects of secondary enrichment is evidenced by the
prevalence of gossans.

In case of country rocks, it is clear that mafic
granulites (figure 5e) contain about 55–60% of
Fe–Mg minerals (such as hypersthene [Hp], horn-
blende [Hb], biotite [Bt], and cordierite [Cd]), 35–
40% of albite [plg] and quartz [Qz]. The charnock-
ite (figure 5f) contains quartz (25–30%), albite
(8–10%), orthoclase [ortho] (5–8%), hyperesthene
(15–20%) and cordierite (25–30%). The dolerite

Figure 7. ACF ternary plots for host rocks made using BC (filled symbols) and CWMC (open symbols).
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dykes (figure 5g) were found to contain hypers-
thene (15–20%) in addition to other essential min-
erals such as labradorite, olivine [Olv] and augite
[Aug]. The migmatite and granite gneiss (figure 5h)
have predominance of quartz (30–40%) and potash
feldspar (15–25%) with subordinate amounts of
albite, hornblende and garnet (table 1). It is also
evident from table 1 that BC and CWMC match
well for most of the major oxides (SiO2, Al2O3,
Fe2O3, CaO, Na2O and MgO). To statistically
evaluate the relationship between these two pro-
cedures, regression coefficients, f -distribution and
statistical significance were derived for each of the
major oxides (table 2, figure 6). In most of the
cases, the correlation between BC and CWMC was
very good (R2 = 0.80–0.99) at 90–98% significance
levels.

To understand the utility of CWMC in litholog-
ical classification, we have plotted the results in
Alumina-Calcium-Ferromagnesium (ACF) trian-
gular diagram (Philpotts and Ague 2009). Depend-
ing on the field where molar proportions of A
([Al2O3 + Fe2O3] − [Na2O + K2O]), C ([CaO]
− 3.33[P2O5]) and F ([FeO + MgO]) lie, rocks
were grouped into one of the classes such as
pelitic, quartzo-feldspathic, basic and calcareous.
It is clear from the ACF plots (figure 7) that the
basic granulites (circles), dolerite (triangles) and
amphibolite (pentagons) lie appropriately within
the field of basic rocks. Similarly, granite gneiss
(squares), migmatite (ellipses) and charnockite
(stars) lie within quartzo-feldspathic group of
rocks. The plots for charnockite lie in the over-
lap region between quartzo-feldspathic rocks and

Table 3. Alteration zone mineralogy by reflectance spectroscopy.

Spectral similarity score

Sample no. Absorption features (nm) Minerals SAM SFF BE AWSS

A3 (Gossan) 411, 495, 662, 948, 2202, Goethite 0.94 0.97 0.91 0.95

2290, 2443

A5 (Alteration zone) 544, 682, 937, 1661, 2310 Goethite 0.89 0.84 0.96 0.89

Chlorite 0.85 0.90 0.88 0.87

Marcasite 0.80 0.90 0.89 0.85

Azurite 0.75 0.89 0.87 0.84

A7 (Gossan) 524, 672, 967, 2207, Goethite 0.86 0.92 0.97 0.91

2285, 2408 Scheelite 0.88 0.96 0.79 0.87

Lepidocrucite 0.85 0.93 0.98 0.91

A11 (Gossan) 493, 649, 904, 2205 Hematite 0.82 0.89 0.85 0.84

Kaolinite 0.88 0.83 0.88 0.85

A41 (Gossan) 524, 675, 892 Hematite 0.92 0.96 0.97 0.94

A83 (Ore zone) 395, 520, 590, 684, 1016, Marcasite 0.88 0.95 0.99 0.93

2202, 2260, 2231 Anglesite 0.91 0.96 0.94 0.92

Chlacopyrite 0.88 0.95 0.95 0.92

Molybdenite 0.89 0.94 0.93 0.91

Bornite 0.90 0.86 0.95 0.92

F22 (Ore zone) 421, 485, 583, 599, 617, Pyrrhotite 0.94 0.96 0.91 0.93

675, 761, 862, 987, 1218, Chlorite 0.85 0.96 0.99 0.92

2207, 2320, 2399 Marcasite 0.84 0.96 0.96 0.91

Pyrite 0.84 0.96 0.96 0.91

F24 (Ore zone) 431, 485, 610, 666, 725, Bornite 0.84 0.96 0.89 0.89

801, 892, 996, 1169, 1346, Dolomite 0.85 0.97 0.82 0.87

2207, 2285, 2310 Molybdenite 0.81 0.95 0.84 0.86

Pyrrhotite 0.84 0.96 0.73 0.84

Z-1 (Ore zone) 529, 691, 942, 1666, 1789, Actinolite 0.89 0.86 0.90 0.88

2315, 2420 Azurite 0.86 0.89 0.91 0.88

Atacamite 0.86 0.89 0.91 0.88

Chlorite 0.88 0.91 0.80 0.81

Z-2 (Ore+alteration zone) 391, 529, 691, 942, 1789, Actinolite 0.93 0.95 0.80 0.88

2315, 2420 Goethite 0.87 0.92 0.88 0.88

Azurite 0.84 0.92 0.91 0.88

Chlorite 0.92 0.93 0.80 0.87

Atacamite 0.83 0.92 0.90 0.87
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basic rocks. Higher percentage of (>40%) Fe–Mg
minerals such as hypersthene and cordierite sug-
gest that these could be intermediate charnock-
ites. It is also apparent from figure 7 that
geochemical classification of rocks made using
BC (dark symbols) and CWMC (open symbols)
commensurate significantly.

4.2 Spectroscopy of ore bodies, alteration zones
and host rocks

Reflectance spectra of transition elements such as
Cu, Zn and Fe usually exhibit spectral absorp-
tions related to crystal field and charge trans-
fer effects in visible and near infra-red regions.
Information about the radical group is usually
obtained from absorption features related to vibra-
tion processes in longer wavelength regions. Since
field reflectance spectra used in this study ranged
from 0.3 to 2.5 μm (figure 4a), we could col-
lect spectral information related to electronic pro-
cess and some of the components of vibration
processes from this window. In this study, we
interpreted the minerals contributing to field spec-
tra based on AWSS score between field- and
library-spectra of various minerals (table 3).
Library minerals with high AWSS score (>0.80)
were considered as potential constituent minerals.
It is obvious from table 3 that spectra of unweath-
ered ore body exhibits absorption features corre-
sponding to mineral assemblages such as sphalerite
(0.46, 0.49, 0.65, 2.32 μm), galena (0.58, 0.78 μm),
chalcopyrite (0.43, 0.87 μm), bornite (0.56 μm),
pyrite (0.44, 0.63, 1.09, 1.97 μm) and pyrrhotite
(0.49, 1.01, 1.95 μm). The weathered parts of ore
body have mineral assemblages of azurite (0.75,
2.27, 2.35 μm), hematite (0.53, 0.64, 0.87 μm)
goethite (0.42, 0.48, 0.65, 0.94, 2.21, 2.42 μm)
scheelite (0.49, 0.95, 2.20, 2.30, 2.43, 2.47 μm),
anglesite (2.21, 2.42 μm) and malachite (0.77,
1.19, 2.26, 2.40 μm). Wall rock alteration within
shear zone is evidenced by occurrence of absorp-
tion spectra corresponding to alteration minerals
such as actinolite (0.71, 1.03, 2.30, 2.38 μm), kaoli-
nite (2.16, 2.20 μm), chlorite (0.71, 0.88, 1.10,
2.32 μm) and albite (2.6, 3.55, 8.56, 9.56 μm) with
high AWSS scores. Silicification is manifested by
the presence of quartz veins with characteristic
absorption features at 8.46 and 8.98 μm.

Since silicate minerals exhibit absorption fea-
tures in longer wavelength regions, mineralogy of
rocks (table 1) were primarily evaluated using
FTIR spectra (figure 4b). We attempted to model
field spectra representing various rocks as a
fully constrained linear mixtures of mineral end-
members using Jet Propulsion Laboratory (JPL)

Figure 8. Plots depicting the match between field spectra
(blue) and linearly modelled spectra (red) by using library
end-members.

spectral library. These modelled spectra were con-
volved using different proportions of pure minerals
to estimate their relative abundances. The good-
ness of fit between two spectra was evaluated based
on least RMSE values (figure 8). It is clear from
mineralogy (table 1) that rocks of the study area
can be grouped into three major classes namely
mafic rocks (dolerite, mafic granulite and amphi-
bolite), intermediate rocks (charnockite) and acid
rocks (migmatite and granite gneiss). Mafic rocks
are an assemblage of plagioclase (18–36%), pyrox-
enes (6–31%), amphiboles (24–86%), and subordi-
nate amounts of olivine (4–5%). The charnockite
comprises near-equal proportions of felsic (quartz
and alkali feldspars) and mafic minerals (hyper-
sthene, cordierite, biotite and garnet). The acid
rocks are dominated by quartz (30–40%) and alkali
feldspars (25–45%) with subordinate percentage of
other minerals such as hornblende and biotite. It is
also interesting to note that mineralogy and frac-
tional abundance estimated by spectroscopy tech-
nique commensurate well with petrography-based
estimates. However, mineralogy estimated by XRD
has poor correlation with both petrography- and
spectroscopy-based estimates.

5. Discussion

In Mamandur, the polymetal deposit has Zn, Pb
and Cu ores with an average grade of 5%, 1% and
0.6%, respectively (GSI 1994). Part of the Zn is in
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the form of gahnite (zinc spinel), which is usually
considered as a pathfinder for metamorphosed mas-
sive sulphide deposits (Spry 1987). Conventional
procedures to study such ore mineralization involve
detailed field mapping, sampling and extensive
chemical and mineralogical analyses. In this study,
we evaluated the efficacy of field spectroscopy in
delineating various sub-zones within the deposit
such as ore body, alteration zones and unaltered
country rock. The results of spectroscopic-based
approach were cross-checked with the results of
conventional procedures for accuracy.

The procedures adopted in this study include
collection of large FOV field spectra, their pre-
processing for noise, identification of pure spec-
tral library end-members, and linear unmixing of
field spectra for mineral abundances. The ear-
lier attempts to invert the mineralogy and their
abundances from emission spectra (Ramsey and
Christensen 1998; Feely and Christensen 1999;
Debba et al. 2006) are based on laboratory mea-
surements and hence, have limited utility in real-
time mapping applications. In this study, we used
the field reflectance and emission spectra with
larger FOV so as to incorporate the effects of
other influencing parameters such as source–sensor
geometry, grain size variations and mineral alter-
ations. Hence, this work has practical relevance and
can also be considered as a link between laboratory
and satellite-based measurements.

Presence of noise in target spectra can inter-
fere with spectral matching. Hence, the field spec-
tra were corrected for noise and subsequently,
a cascading spectral matching procedure (using
AWSS and EPM) was adopted. This approach
is found to be advantageous in achieving opti-
mized solution within least possible computa-
tion time (Singh et al. 2012). Inversion of field
spectra using LMM (an over-determined system)
with several constraints (such as least possible
RMSE, sum to unity and non-negativity) is com-
putationally intensive. Under such circumstances,
it is faster to perform LMM with pre-selected
end-members than involving all spectra in the
library. Field spectra representing mineralized-,
altered-zones, and host rocks were analysed by
this technique and the constituent mineralogy
deciphered. From the reflectance spectra, it is
deciphered that the mineralized zone contains
azurite, bornite, gahnite, chalcopyrite, anglesite,
malachite and marcasite. Similarly, alteration zone
comprise minerals such as chlorite, muscovite,
actinolite and kaolinite. In case of host rocks,
thermal emission spectra were used to identify
various silicate mineral fractions in the host rocks
(table 1).

To validate the results estimated by spec-
troscopy, destructive analyses such as petrography,

XRD and XRF were carried out. Most of the ore
minerals (sphalerite, galena, chalcopyrite, bornite
and pyrite) identified by spectroscopic technique
commensurate with the ore petrographic results
(figure 5a–d). For silicate minerals, we have pro-
cessed the photomicrographs to identify the min-
erals and compute their aerial abundances. This
technique is advantageous to conventional modal
analysis-based estimates as it can resolve very fine
grains and is insensitive to grain size variations. It
is evident from table 1 that the mineralogy esti-
mated by petrography and spectroscopy are com-
parable. Scatter plots between the petrography-
and spectroscopy-based abundance estimates
(figure 6a) show high degree of correlation for all
the analysed rocks. This high degree of correlation
can be mainly attributed to precise estimation
of aerial abundances by digital image processing
technique. However, XRD results do not commen-
surate well with both methods, which could be
attributed to heterogeneity in grain size, shape
and orientation-related effects of mineral powder
(Bish and Chipera 1988).

Once minerals and their abundances were esti-
mated by LMM, we estimated major oxide geo-
chemistry from the mineral chemistry (CWMC)
and compared it with the results (BC) estimated
using XRF. It is evident from table 1 and fig-
ure 6(b–g) that results estimated by both BC and
CWMC techniques correlate well (R2 = 0.71–0.98)
and are statistically significant at very high lev-
els (98–99%). For each of the major oxides also,
the BC and CWMC commensurate well (R2 =
0.7–0.99) and the relationships are statistically sig-
nificant (90–98%). ACF plots generated using BC
and CWMC for all investigated rocks indicate that
CWMC is as useful as BC in classification of
rocks.

6. Conclusion

With the aid of field spectroscopy Pb, Cu and
Zn mineralization and associated alteration zones
can be identified and mapped. Mineral varia-
tions within ore body, country rock and alter-
ation zone can also be recognized in considerable
detail because of their distinctive spectral charac-
ters. In this study, the results estimated by field
spectroscopy commensurate well with the results
generated by conventional procedures. Processing
the field spectra for noise is necessary for efficient
identification of ore, alteration and other silicate
minerals. When reference spectra of rocks are con-
volved to estimates of mineral abundances, it is
possible to identify lithology directly. In this study,
LMM produced reasonably good mineral abun-
dance estimates and hence can be considered as a
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proxy for conventional techniques. The major oxide
chemistry estimated by field spectroscopy matches
well with results estimated by XRF and can be
directly used to discriminate the rock types in the
field.
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