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Abstract

This study aims at identifying potential zones of secondary uranium enrichment using hyperspectral remote sensing, c-ray spectrom-
etry, fluorimetry and geochemical techniques in the western Rajasthan and northern Gujarat, India. The investigated area has suitable
source rocks, conducive past-, and present-climate that can facilitate such enrichment. This enrichment process involves extensive weath-
ering of uranium bearing source rocks, leaching of uranyl compounds in groundwater, and their precipitation in chemical deltas along
with duricrusts like calcretes and gypcretes. Spatial distribution of groundwater calcretes (that are rich in Mg-calcite) and gypcretes (that
are rich in gypsum) along palaeochannels and chemical deltas were mapped using hyperspectral remote sensing data based on spectral
absorptions in 1.70 lm, 2.16 lm, 2.21 lm, 2.33 lm, 2.44 lm wavelength regions. Subsequently based on field radiometric survey, zones
of U anomalies were identified and samples of duricrusts and groundwater were collected for geochemical analyses. Anomalous
concentration of U (2345.7 Bq/kg) and Th (142.3 Bq/kg) are observed in both duricrusts and groundwater (U-1791 lg/l, Th-34 lg/l)
within the palaeo-delta and river confluence. The estimated carnotite Solubility Index also indicates the secondary enrichment of U
and the likelihood of occurrence of an unconventional deposit.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Compared to other sources of energy, uranium can pro-
duce large amounts of clean energy at very low cost and
hence, it is one of the most sought after minerals. To fill
the gap between demand and supply, there is a continuous
endeavor to find various sources of uranium deposits. So
far, economically viable deposits are exploited from con-
ventional deposits (e.g. sandstone type, iron-oxide breccias
type, and Proterozoic unconformity type) only. However
with the depleting resources, the unconventional deposits
(e.g. surficial type, phosphate type and black shale type)
will be the main focus for near future. The recent discovery
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of huge near-surface, unconventional uranium deposits
associated with palaeochannels and playas in Australia,
South Africa and USA has attracted the attention of geo-
scientists globally (Carlisle, 1978; Hambleton-Jones and
Toen, 1978; Mann and Deutscher, 1978; Arakel, 1988;
Hartleb, 1988; Hou et al., 2007; Mann and Horwitz,
2007; Bowell et al., 2008; Noble et al., 2011). Carnotite
(K(UO2)2(VO4)2.3H2O), the predominant uranium mineral
in these deposits is associated with calcite, gypsum, dolo-
mite and ferric oxide precipitated from the groundwater
(Carlisle, 1983; Arakel, 1988; Bowell et al., 2008; Hou
et al., 2007). For uranium to undergo enrichment in sec-
ondary environment, factors such as prevalence of source
rocks, warm humid palaeoclimate (to facilitate increased
weathering rate), sluggish groundwater flow regime, arid
to semi-arid recent climate (to promote evaporation),
ploration of secondary uranium: An investigation in the desertic tracts
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geochemical barriers, and suitable physical–chemical con-
ditions are necessary (Carlisle, 1983; Arakel, 1988; Bowell
et al., 2008). It is evident from the Yeelirrie and Lake
Maitland deposits that the calcretes (calcium carbonate
duricrust) and gypcretes (gypsum duricrust) associated
with palaeochannels are the most favorable hosts for sec-
ondary uranium (Mann and Deutscher, 1978; Carlisle,
1983; Arakel, 1988).

Duricrusts associated with palaeochannel and playa are
amenable to mapping using hyperspectral (Hyperion) and
multispectral (Landsat-8 (OLI), Landsat-7 ETM+,
Landsat-TM and ASTER) satellite data. Conventionally,
image processing techniques such as band ratio (Crosta
and Mc.Moore, 1989; Tangestani and Moore, 2000;
Ranjbar et al., 2004), supervised classification
(Martı́nez-Montoya et al., 2010), linear mixture modeling
(Bryant, 1996), data fusion with decorrelation stretching
(Kavak, 2005) and spectral analysis (Crowley, 1993;
Ramakrishnan et al., 2013; Bharti and Ramakrishnan,
2014) are extensively used to target such deposits based
on characteristic spectral features. Spectral absorption fea-
tures (particularly their position and shape) are unique to
mineral species and are caused by electronic and vibration
processes which reveal their chemistry (Burns, 1970; Hunt
and Salisbury, 1970; Goetz et al., 1985). Hyperspectral
remote sensing (HRS) is now a well-established and exten-
sively used technique for mineral potential estimation and
lithological discrimination (Ramakrishnan et al., 2013).
Since absorption wavelengths are the key for identification
and quantification of a mineral, an accurate wavelength
calibration is critical and most important in analyzing the
hyperspectral data. This warrants specialized data process-
ing and analysis techniques such as atmospheric correction,
dimensionality reduction, identification of pure endmem-
bers and spectral analyses (Hubbard and Crowley, 2005;
Kruse, 1996; Kusuma et al., 2012; Bharti and
Ramakrishnan, 2014).

The host rocks in the present investigation, the calcretes,
have characteristic absorption bands between 2.50–2.55 lm
and 2.30–2.35 lm wavelength regions in addition to three
other weak absorptions between 2.12–2.16 lm, 1.97–
2 lm, and 1.85–1.87 lm (Hunt and Salisbury, 1970;
Gaffey et al., 1993; Clark, 1999; Christensen et al., 2000;
Gupta, 2003; Van-der-meer, 2004; Lagacherie et al., 2007;
Bharti and Ramakrishnan, 2014). The important absorp-
tion features for uranium are located in 0.84 lm,
0.86 lm, 1.11 lm, 1.35–1.54 lm, 1.62 lm, 1.73 lm and
2.26 lm wavelength regions (Bates, 1965; Lévesque et al.,
2001; Zhang, 2008). The gypcretes on the other hand have
spectral absorption features at 1.70 lm, 2.21 lm, and
2.44 lm regions. These characteristic absorption features
can be easily identified using image derived endmem-
bers/lab measured spectra and airborne/spaceborne HRS
data. Bharti and Ramakrishnan (2014) reported that the
uranium concentration in calcretes correlate well with the
high Mg-calcite content. In the investigated area, the high
Mg-calcites are commonly observed with palaeochannels
Please cite this article in press as: Bharti, R., et al. Spectral pathways for ex
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and playas having sluggish groundwater flow regime. As
both gypsum and high Mg-calcites have typical spectral
absorption positions, they are amenable to mapping using
hyperspectral data. Once these duricrusts are identified,
radiometric techniques such as gamma-ray spectrometry
is widely used to explore the occurrence of radioactive
materials (Gilmore, 2011). Gamma-ray energies can be
measured in two different modes: (i) total count measure-
ment (gamma-rays of all energies), and (ii) intensity and
energy of radiation (IAEA-TECDOC-1363, 2003;
Tsurikov, 2009). Total count measurement can give only
the gross level of gamma radiation used to monitor or
detect radiation anomalies whereas; c-ray spectrometers
can measure the c-rays of various energies and produce a
gamma energy spectrum. Based on the intensity
(cps-count per second) of gamma radiation at particular
energy levels in the spectrum, not only can the source
radioisotope be identified, but its concentration may also
be estimated (Gilmore, 2011; Butt and Mann, 1984;
Heath et al., 1984; Raghuwanshi, 1992).

Since groundwater is the main transporting agent of
uranyl compounds, it is also necessary to understand the
mobility of various species of cations and anions in
groundwater (Cameron et al., 2002; Tosheva et al., 2004;
Leybourne and Cameron, 2007; Hou et al., 2007;
Jobbágy et al., 2009). The significantly lower background
concentrations and easy sample preparation make ground-
water chemistry more informative than litho-geochemistry
(Leybourne and Cameron, 2007). Various radiometric (liq-
uid scintillation, alpha spectrometry, c-ray spectrometry)
and non-radiometric (spectrophotometry, fluorimetry,
ICP-AES, ICP-MS) analytical techniques are extensively
used for the analysis of uranium concentration in water
samples (Lorber et al., 1987; Väisänen et al., 2000;
Tosheva et al., 2004; Leybourne and Cameron, 2007;
Jobbágy et al., 2009).

In this paper, a novel methodology involving imaging
spectroscopy and conventional techniques are employed
to identify the potential zones of secondary uranium
enrichment in the western Rajasthan and northern
Gujarat, India. Using imaging spectroscopy, the chemical
delta and proxy (Mg-calcrete and gypcretes) minerals were
targeted. Once the proxies were mapped, insitu
Gamma-ray spectrometry and conventional geochemical
studies of soil and water were carried out to delineate the
potential zones.

2. Study area

The study area is bounded by latitudes 24–29� N and
longitudes 70–76� E covering the northern parts of
Gujarat and western parts of Rajasthan, India (Fig. 1).
The area has arid to semi-arid climate with average rainfall
ranging from 100 mm in the western deserts to 650 mm in
the SE (Agrawal et al., 1980; Gupta et al., 1997; GSI,
2011). The area is nearly flat, with imperceptible slopes,
except in some regions where residual hills of the Aravalli
ploration of secondary uranium: An investigation in the desertic tracts
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Fig. 1. Map depicting the distribution of source rocks (rich in U, V and K), palaeochannel network, chemical deltas and sites of duricrust and
groundwater sampling.
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are present. The study area mainly consists of rocks of the
Precambrian to the Quaternary periods (Table 1). From
the source rock perspectives, the albitite bearing Aravalli
Super Group, post Aravalli granitic, rhyolite intrusives,
and Delhi Supergroup are very important (Fig. 1). The
Fe–Mg rich Erinpura granite contains about 11 ppm of
U3O8 and 78 ppm of ThO2 (Maithani et al., 2015) whereas
the Jalore granite has an average concentration of 4.8 ppm
uranium (Kochhar, 2000). The uranium concentration in
Malani plutonic suit range between 8.2 and 18.4 ppm
whereas Malani rhyolite have 6.7 ppm (Aqeel and Ali,
2008). The concentration of uranium in Sendra-Ambaji
Granite and Gneiss is very high which ranges between 54
and 1696 ppm (Deb et al., 2001). The meta-sediments and
meta-basics of the Delhi Supergroup are excellent source
rocks for vanadium and related trace elements. Besides
these, albitite related uranium mineralization also occurs
within the study area (Kochhar, 1989).

From the palaeoclimate perspectives, the study area
experienced a warm, humid Neogene period that facilitated
extensive weathering and release of solutes (Ca, Mg, U, V
and K) from the parent rock (Gupta et al., 1997; Bakliwal
and Wadhawan, 2003; Sinha et al., 2004). Since the
Pleistocene period, the climate shifted towards semi arid
Please cite this article in press as: Bharti, R., et al. Spectral pathways for ex
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conditions resulting in the sluggish surface and groundwa-
ter flow systems. The ongoing arid conditions ever since the
Holocene period further accentuated the playa formation
and associated evaporite deposits (Sinha et al., 2004;
Ramakrishnan and Tiwari, 2006). From exploration per-
spectives, these fluvial and lacustrine deposits of the
Quaternary age are important. Thus, the study area has
all the essential conditioning factors to facilitate the enrich-
ment of uranium in secondary environment.

3. Methodology

The methodology adopted in this study (Fig. 2) can be
grouped under three broad categories namely (i) satellite
data processing and analyses, (ii) field survey and sampling,
and (iii) geochemical analyses. Since the target areas are
mainly calcretes (rich in Mg-calcites) and gypcrete (rich
in gypsum) associated with palaeochannels, emphasis is
given to map these duricrusts using satellite data. Though
multispectral satellite data can map the calcite and gypsum
rich areas, it cannot discern the differences between the cal-
cite and Mg-calcite due to a large spectral bandwidth. As
mapping of groundwater calcretes rich in Mg-calcite is an
essential aspect of this work, hyperspectral (Hyperion) data
ploration of secondary uranium: An investigation in the desertic tracts
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Table 1
Generalized stratigraphic sequence of the study area.

Table 2
FLAASH model parameters used to correct atmospheric effects in the
Hyperion data.

Parameters used for atmospheric correction
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was used to discriminate it from Mg- free calcretes. Once
groundwater calcretes and gypcretes were mapped, insitu
radiometric surveys were conducted to identify the anoma-
lous zones. Subsequently, duricrust and groundwater sam-
ples collected from these zones were analyzed for
radioactive and other elements.
Ground elevation 350 m
Atmospheric model Tropical
Water absorption feature 1135 nm
Aerosol retrieval 2-Band (K–T)
Aerosol model Rural
Wavelength recalibration Yes
MODTRAN multiscatter model DISORT
MODTRAN resolution 1 cm�1
3.1. Processing of Hyperion image

The Hyperion sensor on board the EO-1 satellite mea-
sures the energies between 0.35 to 2.57 lm wavelength
range in 242 contiguous spectral bands with 30 m spatial
resolution (Hubbard and Crowley, 2005). Out of 242
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bands, calibrated and noise-free 158 spectral bands were
corrected for atmospheric effects using Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH)
algorithm (Adler-Golden et al., 1999). The parameters cho-
sen for atmospheric correction are given in Table 2. O2

(762.60 nm) and CO2 (2052.45 nm) absorption wavelengths
were used to recalibrate the spectral shifts in both spec-
trometers. To simulate the atmospheric conditions and esti-
mate the effects of multiple scattering in the data, discrete
ordinate (DISORT) method was used. The DISORT algo-
rithm permits fine resolution spectral retrieval and also the
efficient and accurate estimate of atmospheric parameters
causing multiple scattering (Stamnes et al., 1988; Berk
et al., 2002; Perkins et al., 2005, 2012). For the better accu-
racy in SWIR wavelength region, 1 cm�1 Modtran
Resolution was used (Adler-Golden et al., 1999). The effi-
ciency of atmospheric correction was estimated by compar-
ing Hyperion and insitu reflectance spectra (San and Suzen,
2010). In this study, insitu spectra collected over a homoge-
nous, flat area like dried playas were correlated with corre-
sponding Hyperion pixel spectra (Fig. 3) and found to have
excellent correlation (R2 = 0.80 to 0.96). For reducing the
noise and data dimensionality, Minimum Noise Fraction
(MNF) (Green et al., 1988) algorithm was used. The noise
whitened MNF bands were inverse transformed for match-
ing with the field spectra. Finally, processed Hyperion
image was classified using lab-measured spectra of Mg rich
calcrete using Spectral Angle Mapper (SAM) technique
(Eq. (1); Kruse et al., 1993).
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Fig. 4. Field photo of calcrete profile with anomalous c-activity.

Fig. 3. Comparison of spectral plots illustrating the efficacy of atmospheric correction.
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where, nb is the number of bands, ti is the target spectrum
(image), and ri is the reference spectrum (library).

3.2. Field investigations

3.2.1. Insitu radiometric analyses

RS-230 BGO Super-SPEC (Radiations Solutions Inc.)
c-ray spectrometer was used for insitu radiometric survey.
This instrument is designed for field survey and optimized
to provide total count as well as assay values for K (%), U
(ppm) and Th (ppm) (Table 3). Before measurement, the
spectrometer was calibrated for background concentration.
After stabilization of spectrometer, total count mode was
used to discover the anomalous zones (>3 Sigma level of
the background) and subsequently, concentrations of U,
Th and K were measured in assay mode for 600 s
(Fig. 4). Since, the source-sensor geometry, detector type
and equilibrium of 238U decay series strongly influence
the measurement of radio nuclides; the assay values
estimated in the field were required to be correlated with
conventional geochemical analyses for accuracy.

3.2.2. Duricrust and water sampling

Calcrete and gypcrete samples were collected from the
anomalous areas (identified through c-ray spectrometer)
for further lab-based analyses. Since, a thick alluvial cover
Table 3
Specification of RS-230 BGO Super-SPEC gamma-ray spectrometer.

Model RS-230
Detector Bismuth–Germanium-Oxide (BGO)
Operational temperature �20 to 50 �C
Live assay value K in %; U and Th in ppm

Please cite this article in press as: Bharti, R., et al. Spectral pathways for ex
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can suppress the c-radiation, groundwater samples were
also collected to study the uranium mineralization and
mobility of radioactive elements (Cameron et al., 2002;
Hou et al., 2007; Noble et al., 2011). For uranium concen-
tration and bulk chemical composition, standard water
sampling technique (Tosheva et al., 2004; Waterwatch,
2005; Sundaram et al., 2009) was followed that includes
decontamination of sample containers with double distilled
water. For uranium analysis, pH of water samples were
maintained below 2 using nitric acid to prevent it from bio-
logical activities and precipitation (Tosheva et al., 2004;
Waterwatch, 2005; Jobbágy et al., 2009; Kumar et al.,
2011). To avoid the possibility of oxidation, acidified and
Detector type Scintillation detector
Detector size 6.3 cubic inches
Output data 1024 channel spectra (30–3000 keV)

ploration of secondary uranium: An investigation in the desertic tracts
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Fig. 6. Distribution of calcretes rich in Mg-calcites mapped using
Hyperion image and lab-measured spectra.
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non-acidified sample containers were sealed without any
air. During water sampling, insitu pH and Eh values were
also measured. Fig. 1 represents the sampling and insitu
radiometric survey locations.

3.3. Sample analyses

3.3.1. Radiometric analysis of calcrete and gypcretes

In the process of 238U decay, c-ray energies are emitted
which can be measured by c-ray spectrometers. In case of
secular equilibrium (half life of daughter element is much
less than the parent nuclide), measured energies can be
used for direct estimation of parent nuclide’s concentration
(IAEA-TECDOC-1363, 2003; Ebaid, 2010; Tsurikov,
2009; Gilmore, 2011). In this study, estimation of 238U
using High Purity Germanium (HPGe) detector in
controlled environment and standard sample preparation
procedure (ASTM, 2010a,b; Gilmore, 2011) were followed.
This involves (i) removal of moisture content from the
sample, (ii) pulverization (<200 microns grain size) to get
homogenous mixture, and (iii) encapsulation of the pro-
cessed samples in airtight plastic containers (predefined
geometry–7 cm � 8 cm) for about 10 half-lives of 222Rn
(i.e. about 30 days). Activity of the reference standard
(known), background (B) and samples (S) were measured
for about 60,000 s (T). Subsequently, the activity of ura-
nium and thorium in calcrete and gypcrete samples was
estimated using Eq. (2)(IAEA-TECDOC-1363, 2003;
Gilmore, 2011).

Activity ðBq=kgÞ ¼ N � 100� 100

T � c� g� W
ð2Þ

where, N is the net count (background subtracted), T is
the measurement time (s), c is the c-ray emission probabil-
ity (%), g is the relative efficiency (%) for a particular
gamma energy, and W is the weight of sample.
Fig. 5. Reflectance spectra of calcrete samples showing the shift in
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3.3.2. Estimation of uranium concentration in water sample

Groundwater samples collected from the field
were analyzed for uranium concentration with LED
fluorimeter (Quantalase). The spectral absorption due to
spectral absorption position due to Mg substitution in calcite.

ploration of secondary uranium: An investigation in the desertic tracts
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photoluminescence of uranyl ion at 410 nm wavelength was
used to estimate the concentration (Veselsky et al., 1988; So
and Dong, 2002; Tosheva et al., 2004). The sample prepa-
ration for this analysis involved drying of 100 ml of acidi-
fied water samples by boiling and then acidifying with
5 ml of nitric acid. Samples were again dried and subse-
quently diluted to the known volume by adding double dis-
tilled water into it. Since, LED fluorimeter has detection
limit between 0.1 to 20 lg/l, samples with higher concentra-
tion required additional dilution before the actual measure-
ments. In addition to U, groundwater samples were also
analyzed for the potassium, vanadium, thorium, phosphate
and calcium using Inductively Coupled Plasma - Atomic
Emission Spectroscopy (ICP-AES; HORIBA Jobin Yvon-
ULTIMA 2).
3.3.3. Estimation of Uranyl compound Solubility Index

Results of hydrogeochemical analyses have been suc-
cessfully used for the investigation of secondary enrich-
ment of uranium (Bowell et al., 2008; Noble et al., 2011).
Based on the dissolution of carnotite (Eq. (3)), Mann and
Deutscher (1978) have proposed the Solubility Index (SI),
which was further modified by Middleton (1984), (Eq.
(4)) to evaluate the equilibrium status between the ground-
water and carnotite precipitation for practical applications.
The SI model requires input for uranium and vanadium in
Fig. 7. Field locations of representat
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lg/l, and potassium and bi-carbonate in mg/l. If the SI
value is zero, system will be in equilibrium whereas, posi-
tive value indicates oversaturation and negative value indi-
cates the dissolution of carnotite. Based on field
observations, Middleton (1984) and Noble et al. (2011)
suggested that the SI values ranging between �3 and 0
are strongly indicative of potential zones of carnotite
occurrence. Thus, for regional scale exploration, the SI is
very effective in delineating the anomalous zones
(Middleton, 1984).

1

2
K2ðUO2Þ2:V 2O8:3H 2Oþ 2Hþ ! Kþ þ UOþ2

2 þ H 2VO�4

ð3Þ

SI ¼ log
½U �½V �½K�

1:13� 104½HCO3�2
ð4Þ
3.3.4. Reflectance spectral measurement and preprocessing

Fieldspec�3 (ASD Inc.), a portable field spectrora-
diometer has been used to measure the reflectance spectra
between 0.3 and 2.5 lm range. Since the spectra are influ-
enced by source-sensor geometry, field of view, roughness
and anisotropy of the sample, a standard procedure
addressing above parameters was followed for calibration
and spectral acquisition (Salisbury, 1998; Bharti et al.,
ive samples selected for analyses.
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2012). To stabilize internal noises and detectors,
Fieldspec�3, was kept running for 2 h and subsequently
calibrated for internal instrument noises (Dark Current)
and down welling radiances (Lambertian Surface: White
Reference). Due to molecular vibration, water has overtone
absorption features at 1.4 lm and 1.9 lm (Clark, 1999). In
this study, the spectral noises caused by water vapor
absorptions were corrected from the measured spectra
using the procedures of Kusuma et al. (2010) and resam-
pled them to Hyperion bandwidth (Bharti and
Ramakrishnan, 2014). Field samples were also analyzed
for the mineralogy (semi-quantitative) and major oxide
chemistry using XRD (PANAlytical- X’Pert PRO) and
XRF (PANAlytical- PW2404) respectively.

4. Results

4.1. Spectroscopy and distribution of duricrusts

Calcite (28–64%), quartz (9–55%), feldspar (12–30%)
and pyroxene (12–41%) with minor amounts of clay
minerals are found to be the predominant mineralogy of
calcretes. The major oxide chemistry of these calcretes
include CaO (46.7–84.5%), SiO2 (8.4–41.1%), Fe2O3

(0.3–2.9%), MgO (0.1–3.4%) and Al2O3 (1.2–6.6%). In the
measured spectra of calcrete samples, 2.30–2.35 lm
absorption bands are prominent (Fig. 5). Depending upon
the carbonate content in the sample and level of signal to
background noise (SNR), other weak absorption features
may not be apparent. From the reflectance spectra of
calcretes it is observed that increase in Mg content results
in shifting of 2.35 lm absorption feature towards shorter
wavelength region (i.e. 2.30 lm), (Clark, 1999). Fig. 6 rep-
resents the spatial distribution of Mg rich calcretes (3.4%),
mapped from Hyperion image and lab measured spectra
using SAM technique. Based on confusion matrix, the
estimated classification accuracy is 72.15%.

4.2. Mineralogy, geochemistry, and radioactivity

Based on the distribution of Mg calcretes deciphered
from Hyperion image, 160 locations along palaeochannels
and playas were visited to measure the radioactivity. From
these locations, 42 groundwater and 18 duricrust represen-
tative samples were collected for detailed analyses (Fig. 7).
It is evident from the XRD results that the calcretes con-
tain mostly calcite (40–60%), quartz (30–45%) and feld-
spars (10–15%) with minor proportions of pyroxene,
amphibole, mica and clay minerals. The average values of
major oxides found in calcretes are CaO (33%), SiO2

(43%), Al2O3 (14%), Fe2O3 (4%), MgO (4%), K2O (2%)
and Na2O3 (0.5%). In case of gypcretes, gypsum is the pre-
dominant mineral (25–40%) with good proportions of
dolomite (28–33%), quartz (10–15%) and albite (23–36%).
The major oxide chemistry of gypcrete includes CaO
(18%), SiO2 (58%), Al2O3 (10%), Fe2O3 (4%), MgO (8%),
K2O (2%) and Na2O3 (1%).
Please cite this article in press as: Bharti, R., et al. Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts
of Rajasthan and Gujarat, India. Adv. Space Res. (2015), http://dx.doi.org/10.1016/j.asr.2015.07.015
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Table 4 represents the concentration of radionuclides
(U, Th and K) measured with BGO (in field) and HPGe
(in laboratory condition) with their major oxide chemistry.
The values of uranium, thorium and potassium measured
in the field (BGO) ranges from 11.1–98.7 Bq/kg,
3.6–142.3 Bq/kg and 0.5–18.0% respectively. Whereas, the
values measured in lab for the same sequence with
HPGe ranges from 9.8–53.1 Bq/kg, 16.3–91.1 Bq/kg, and
45–760 Bq/kg respectively. Compared to lab measurements,
insitu values are relatively high. Misra et al. (2011) and
Ramesh Kumar et al. (2011) have reported significantly
higher uranium concentration in calcrete samples ranging
from 166.7 Bq/kg to 2345.7 Bq/kg from deep borehole sam-
ples in this area. Measured concentrations of U, Th and K
Table 5
Fluorimetry and geochemical analyses results of water samples.

Sample details Fluorimetry

Id Location name U (lg/l)

W1 Sardarshahar 12.2 ± 0.9
W2 Lunkaransar 4.1 ± 0.6
W3 Aajdoli 112.8 ± 2.9
W4 Haryasar 21.9 ± 3.1
W5 Mankeria 18.8 ± 1.2
W6 Churu 42.7 ± 2.2
W7 Dandalwas 7.8 ± 0.7
W8 Deriya 45.9 ± 2.9
W9 Indawar 0.8 ± 0.3
W10 Bagar 7.2 ± 1.6
W11 Dadawadi Temple 0.2 ± 0.1
W12 Hadda Village 2.0 ± 0.5
W13 Ladnun to Didwana 16.7 ± 1.8
W14 Ber Village 11.5 ± 0.7
W14 Ber Village 11.0 ± 1.9
W15 Jhardiya 7.2 ± 0.8
W16 Kishanpura 12.2 ± 1.3
W17 Jalore 81.9 ± 20.3
W18 Doongri 1.5 ± 0.3
W19 Bhukan-1 20.0 ± 4.9
W19 Bhukan-2 38.3 ± 3.9
W20 Somaser 20.7 ± 1.8
W21 Parihara 13.8 ± 1.6
W22 Chandan 18.8 ± 1.7
W23 Bengti Kalan and Kundal 2.1 ± 0.4
W24 Near Gomat 12.4 ± 1.0
W25 Rajpura 10.8 ± 0.6
W26 Gelawas 503.0 ± 61.4
W27 Sev ki Galan 445.0 ± 41.1
W28 Mokalsar 3.9 ± 0.5
W29 Munthala Kaba-1 216.8 ± 35.6
W29 Munthala Kaba-2 401.6 ± 52.8
W30 Aampura 50.1 ± 15.9
W31 Tharad 1508.2 ± 126.9
W32 Matasukh 1791.7 ± 159.6
W33 Kotarwada 920 ± 56.2
W34 Sikhar 0.5 ± 0.1
W35 Sopra Village 5.5 ± 0.5
GW1 Khatu Khurd 10.2 ± 0.9
GW2 Thob Gypsum Mine 71.9 ± 5.8
CW1 Malawas 6.8 ± 0.7
CW2 Dujar Village 21.9 ± 1.9

W-Water, CW-calcrete and water, and GW-gypcrete and water sample locatio

Please cite this article in press as: Bharti, R., et al. Spectral pathways for ex
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correlate well among themselves (R2 = 0.80 to 0.84).
However, among the measured major oxides, uranium
has good positive correlation only with MgO (R2 = 0.71).
The uranium concentration in water samples is observed
to vary between 0.2 and 1791.7 lg/l (Table 5). From the
spatial distribution of anomalous concentrations (20.0–
1791.7 lg/l) it is evident that such zones are typically
located very close to the confluence of palaeochannels
and chemical deltas located near Bhukhan, Sev Ki Kalan,
Aampura, Tharad, Kotharwada and Matasukh (Fig. 8;
Table 6).

From the Solubility Index perspectives, concentration of
Ca, K, and V range from 12.5 to 203.0 mg/l, 1.2 to
99.3 mg/l, and 0.14 to 62.18 mg/l respectively. Similarly,
ICP-AES (in (mg/l))

Ca K P Th V

– – – – –
– – – – –
76.96 5.52 0 0.01 0.03
– – – – –
– – – – –
– – – – –
53.03 3.06 0.20 0.00 0.06
177.58 8.98 0.28 0.00 0.02
177.51 1.65 0.00 0.00 0.01
41.80 1.46 0.17 0.00 0.01
– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
94.99 1.44 0.00 0.00 2.81
46.03 1.83 0.03 0.00 0.01
– – – – –
177.12 99.32 0.34 0.01 0.00
– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
22.00 2.24 0.10 0.00 0.02
167.76 20.94 2.53 0.00 28.17
17.60 4.35 0.00 0.00 62.18
26.14 2.05 0.00 0.00 0.00
76.72 2.17 0.00 1.12 8.28
172.81 3.22 0.00 0.00 8.16
62.97 5.43 0.00 0.00 2.37
91.46 5.13 0.00 0.16 16.98
203.30 7.30 0.00 34.30 0.00
12.53 1.24 0.34 0.02 0.03
28.91 1.54 0.69 0.01 0.01
51.25 2.29 0.38 0.00 0.00
19.22 9.34 2.27 0.01 0.14
146.27 9.17 0.00 0.01 0.00
31.39 6.44 0.55 0.01 0.00
– – – – –

ns.

ploration of secondary uranium: An investigation in the desertic tracts
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Fig. 8. Eh–pH plots of representative groundwater samples showing (a) the valence states of the uranium in groundwater samples and (b) species and
valence state of vanadium.

Table 6
Representing the concentration of essential components of carnotite and Solubility Index (SI) for the secondary uranium mineralization.

Id Location name U (lg/l) K (mg/l) P (mg/l) V (lg/l) HCO3 (mg/l) SI

W30 Aampura 50.1 5.43 0.0 2370.0 405.0 �3.46
W3 Aajdoli 112.8 5.52 0.0 30.0 560.0 �5.28
W17 Jalore 81.9 1.44 0.0 2810.0 590.0 �4.07
W29 Munthala Kaba-1 216.8 2.17 0.0 8280.0 780.0 �3.25
W31 Tharad 1508.2 5.13 0.0 16980.0 1225.0 �2.11
W27 Sev Ki Galan 445 4.35 0.0 62180.0 1950.0 �2.55
W18 Doongri 1.5 1.83 0.03 10.0 285.0 �7.52
W25 Rajpura 10.8 2.24 0.1 20.0 355.0 �6.47
W10 Bagar 7.2 1.46 0.17 10.0 285.0 �6.94
W7 Dandalwas 7.8 3.06 0.2 60.0 265.0 �5.74
W8 Deriya 45.9 8.98 0.28 20.0 575.0 �5.66
W33 Kotarwada 920 1.24 0.34 30.0 630.0 �5.12
W26 Gelawas 503 20.94 2.53 28170.0 590.0 �1.12
W29 Munthala Kaba-2 401.6 3.22 0.0 8160.0 145.0 �1.35
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concentration of anions such as HCO3, SO4 and P range
from 405.0 to 1950.0 mg/l, 0 to 2.53 mg/l, and 16.5 to
266.3 mg/l respectively. In groundwater, concentration of
Th is observed to be less than 0.2 mg/l (Table 5). The
measured Eh and pH values during sampling vary between
55–209 mV and 6.6–9.16 respectively. Uranium in ground-
water samples shows strong correlation with HCO3

(R2 = 0.80). However, the relationship between Eh and U
in groundwater is highly correlated only when the U
concentrations are relatively higher (U > 20 lg/l).

5. Discussion and conclusions

Massive deposits of secondary uranium have been
reported from duricrusts of Australia, Namibia and
Chile. Availability of source rocks (rich in Ca, Mg, U, V
and K), palaeochannel networks, present and palaeocli-
matic conditions with suitable Eh and pH conditions play
very important role in such mineralization in calcretes
and gypcretes (Butt et al., 1977; Carlisle, 1983; Arakel,
1988; Cameron et al., 2002; Bowell et al., 2009). In the
Please cite this article in press as: Bharti, R., et al. Spectral pathways for ex
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investigated area, source rocks of U, V and K such as
Albitite Zone, Erinpura-, Malani-, and Jalore-granite
(Fig. 1) are abundant (Kochhar, 1989; GSI, 1999). In addi-
tion to this, palaeoclimate favored intense weathering
(Sinha et al., 2004; Ramakrishnan and Tiwari, 2006) of
the above mentioned source rocks and availability of
well-knitted palaeochannel systems (Bajpai, 2004; Jain
et al., 2004) to carry the U, V and K, supported the sec-
ondary uranium enrichments (Fig. 7). The study area
thereby satisfies all necessary conditions for secondary ura-
nium enrichment in duricrusts associated with chemical
deltas and palaeochannels. Thus mapping the distribution
of calcrete and gypcrete along the palaeochannels is an
important component of exploring such deposits.

Though U has characteristic spectral absorption fea-
tures in the visible region, it is often difficult to identify
its presence based on this due to low concentration (usually
in ppm). For this purpose, the Mg-calcretes, which are pre-
cipitated from groundwater, were used as a proxy to
explore secondary uranium enrichments. In this study,
the prominent Mg-calcite absorption features (Fig. 5)
ploration of secondary uranium: An investigation in the desertic tracts
rg/10.1016/j.asr.2015.07.015
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between 2.30 lm and 2.35 lm wavelength region was used
to map the groundwater calcrete using Hyperion data. As
the Mg content increases in the calcrete, 2.35 lm absorp-
tion feature shifts to 2.30 lm wavelength region (Hunt
and Salisbury, 1970; Clark, 1999; Christensen et al., 2000;
Van-der-meer, 2004; Bharti and Ramakrishnan, 2014).
Based on this fact, representative lab-measured spectra of
Mg-calcrete, processed Hyperion data and SAM technique
were used to map the spatial distribution (Fig. 6) with
72.15% overall accuracy.

Uranium concentration measured through HPGe (labo-
ratory) in duricrusts, indicates that the Sambhra Playa,
Indawar, Khirod, Ranasar Beekan, Paylan Kalan, Thob,
Lachhiri, Charan Ka Bas and Didwana have high uranium
and thorium concentrations (Table 4). A few more loca-
tions such as Jodhpur to Dangiyawas, Kaparda,
Ratangarh and Khatu Khurd were also observed to show
anomalous concentration through insitu radiometric sur-
vey. Due to active dune activity and thick cover of allu-
vium, c-radiation is often suppressed and many places
remained unexplored. In such cases, groundwater analysis
is considered the best alternative to find the anomalies
(Noble et al., 2011). The groundwater samples collected
(Table 5) from locations such as Dujar, Bhukhan, Churu,
Deriya, Aampura, Thob, Jalore, Haryasar, Aajdoli,
Fig. 9. Map indicating the potential enric

Please cite this article in press as: Bharti, R., et al. Spectral pathways for ex
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Munthala Kaba, Sev Ki Kalan, Gelawas, Kotarwada,
Tharad and Matasukh (Fig. 7) show very high concentra-
tion of uranium (21.9–1791.7 lg/l). These values are higher
than the concentrations (1–700 lg/l, with 14 lg/l mean
value) found in the Northern Yilgarn deposit (Noble
et al., 2011). In particular, such anomalous zones are found
either close to the junctions of palaeochannels or within the
chemical deltas (Fig. 7).

One of the important components necessary during the
secondary enrichment of uranium as carnotite in calcretes
and gypcretes is the availability of vanadium in groundwa-
ter. Concentrations of V found in the groundwater samples
collected from Aampura, Jalore, Munthala Kaba, Tharad,
Gelawas, and Sev Ki Kalan indicate a reasonably high
range from 0.14 to 62.18 mg/l (Table 6). The next essential
component of carnotite is potassium which is found in the
samples of Dandalwas, Munthala Kaba, Sev ki Kalan,
Tharad, Aampura, Aajdoli, Malawas, Matasukh, Deriya,
Thob, Khatu Khurd, Gelawas, Bhukhan ranging from
(3.1–99.3 mg/l). Compared to these results, vanadium con-
centration found in groundwater samples of Northern
Yilgarn deposit is much less (<251 lg/l) whereas the
reported mean concentration of potassium (32 mg/l) is rel-
atively more (Noble et al., 2011). Calcium is abundant in
all samples whereas phosphate is found in limited samples.
hment zones for secondary uranium.

ploration of secondary uranium: An investigation in the desertic tracts
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In addition to the availability of above mentioned essen-
tial elements in groundwater, the Eh and pH is also very
important in the uranyl compound speciation and precipi-
tation (Carlisle, 1983; Arakel, 1988; Bowell et al., 2008;
Hou et al., 2007; Noble et al., 2011). The mobility of ura-
nium is strongly influenced by oxidation state and available
ligands such as carbonate, phosphate and hydroxyl com-
plexes (Bastrakov et al., 2010). In case of highly alkaline
fluids, solubility of uranium depends on pH as well as oxi-
dation states (Carlisle, 1983; Arakel, 1988; Bowell et al.,
2008; Hou et al., 2007; Bastrakov et al., 2010; Noble
et al., 2011). The measured Eh and pH values for the col-
lected samples are used to identify the dominant chemical
species of uranium and vanadium. It is evident from the
Fig. 8(a) and (b) that UO2(CO3)2

–, UO2(CO3)3
–, HVO4

2–

and H2VO4
– are the dominating species in groundwater

samples of the investigated area. Uranium and vanadium
are expected to be present in the form of dissolved U+6

and V+5 respectively (Fig. 8(a) and (b)) which are required
for the carnotite precipitation. It is evident from the results
of geochemical analyses that except locations such as
Aampura, Thob, Gelawas, Jalore, Aajdoli, Munthala
Kaba, Sev Ki Kalan, Tharad and Matasukh, all other loca-
tions have phosphates which could be a reason for the
mobility of uranium in groundwater (Table 5). On the basis
of SI, Aampura, Jalore, Gelawas, Munthala Kaba, Sev Ki
Kalan and Tharad have been identified as the potential
zones of uranium enrichment (Table 6; Fig. 9). In addition
to this, presence of phosphate in the samples and its role in
the mobility of uranium in groundwater is also considered
while identifying the potential zones of enrichment. The
potential sources of U, V and K are mainly the
meta-volcanic rocks of albitites, Erinpura granites,
metasediments and a host of igneous intrusives belonging
to Delhi Supergroup of rocks.

To sum-up, this work mainly showcases the potential of
adopted methodology involving HRS, c-ray spectrometry,
fluorimetry and hydrogeochemistry techniques in explo-
ration of secondary uranium enrichment in the palaeo river
valleys and associated sediments. Following are the major
conclusions emerging from this study:

� Hyperion data and lab-measured spectra together can
map the minor variation in chemical composition effi-
ciently. This is very vital in delineating the calcretes
bearing high Mg-calcites that are proven to contain
anomalous U, Th and K concentrations.
� Based on the groundwater chemistry and SI, the conflu-

ence of palaeochannels and the deltas have been identi-
fied as potential zones of carnotite enrichment and
hence, the prospective targets for further exploration.
� Based on this investigation and the preliminary results

published by Misra et al. (2011), it is evident that the
investigated area has very high potential for secondary
enrichment of fissile material and field exploration like
drilling, c-ray logging and assaying is necessary to assess
the economic viability of such deposits.
Please cite this article in press as: Bharti, R., et al. Spectral pathways for ex
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