Research paper

Estimation of deformation temperatures, flow stresses and strain rates from an intra-continental shear zone: The Main Boundary Thrust, NW Himalaya (Uttarakhand, India)

Narayan Bosea, Soumyajit Mukherjeeb,∗

a Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
b Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India

ARTICLE INFO

Keywords:
Main boundary thrust
Thermometry
Piezometry
Strain rate
Flow stress
Laser Raman spectroscopy

ABSTRACT

This work generates thermal and tectonic data from the mylonitized rocks of the Main Boundary Thrust (MBT). South and north to this major thrust, the Siwalik range and the Lesser Himalaya, respectively have been receiving a renewed interest amongst the petroleum geoscientists. Understanding temperature, flow stress and strain rates related to a major thrust is crucial in thermal-mechanical modelling of the terrains adjacent to it. Strongly sheared Proterozoic Chandpur phyllites and abundant syntectonic quartz veins occur along the MBT zone (one of the major foreland verging thrusts in the Himalayan orogen) near the Sahenshahi temple at Dehradun, Uttarakhand state, India. Microstructure analyses show intense ductile top-to-S shear in terms of S-C fabric and XRD analyses indicate presence of clays e.g., illite and clinochlore. These clays not only bear the signatures of the intense fluid activity, but also enhance the fault movement by reducing the mechanical strength of the fault zone rocks. Thermometry based on qualitative quartz grain boundary mobility (~300–550 °C) and quantitative Laser Raman Spectroscopy for carbonaceous materials (340–370 °C) reveal the maximum estimates of the deformation temperature and metamorphic temperature, respectively. The higher temperature microstructures can be found in lower temperature domains under the presence of fluids. Hence the quartz thermometry estimates a broader temperature range than the Raman thermometry. Previous works report that, the phyllites present at the base of a thrust sheet, experiences deformation at < 500 °C. The thermometric estimates in this study indicate a higher temperature at the base than that at further north known from previous studies, possibly by shear heating. A flow stress of ~6–49 MPa has been calculated from recrystallised quartz grain piezometry. This broad range of flow stress value indicates temporally variable tectonic stress responsible in the evolution of the MBT. Using these magnitudes, ~10−15-10−16 s−1 of strain rate has been estimated. Such a range can also indicate seismic cycles in the tectonically active Himalaya.

1. Introduction

In 1960s the Oil and Natural Gas Commission (ONGC) attempted hydrocarbon exploration in the Himalaya, a collisional orogen, which is also described as a fold-thrust-belt. A limited success was achieved mainly in terms of gas discovery from the Siwalik range, especially from Himachal Pradesh (review in Mishra and Mukhopadhyay, 2012). Notwithstanding, ONGC (e.g., Rao, 1986) and other research bodies (e.g., Mukherjee and Chakrabarti, 1996) continued independent petroleum geological studies in other sectors of the Himalaya.

The Eocene limestones that crop out near the Main Boundary Thrust (MBT) and also from the Lesser Himalayan sequence (LHS) have given few oil and gas shows (Acharyya and Ray, 1982). Based on palaeontological studies, Ediacara in particular, Tewari (2012) predicts the presence of hydrocarbon source rock from the Neo-Proterozoic terrain of the LHS in the Garhwal sector. Interestingly, Neoproterozoic-Cambrian hydrocarbon reserves started receiving attention amongst the geoscientists worldwide, a few study areas exist in western India itself e.g., the Bikaner Nagaur basin (Bhat et al., 2012; Ojha, 2012). Within the Himalaya, the Proterozoic rocks of the Jammu region (NW Himalaya, India) is presently under study for hydrocarbon (Hakhoo et al., 2016). The line of comparison between the western Indian basin and the Lesser Himalayan region is the age of the rocks. The detail tectonic set up however differ. The reason of comparison is that it will be unwise to think that the very old rock in the Lesser Himalaya cannot be petrolierous.
As the easy to discover oil fields get depleted, the oil industry has been revising its plan to make a more intense study on the Himalaya. For example, ONGC has been targeting the Krol unit of rocks from the LHS that lies close to the MBT (Bhattacharya, Internet Reference). This is because previous workers have categorized the Krol and Tal units of the LHS as a potential reservoir of moderate quality (reviewed in table 1 of Mishra and Mukhopadhyay, 2012). Besides those two stratigraphic units of the LHS, the Blaini unit has also been considered to be important (Craig et al., 2018). While a detail sequence stratigraphic study have been undertaken by Jiang et al. (2002) in these areas, recent detail structural studies is missing, except Bose and Mukherjee (2019a) which was but on a different perspective.

Regional anticlines within the Siwalik range, the southernmost unit of the Himalaya, exist adjacent to the MBT, e.g., the Santaugar anticline (a fault propagation fold: Thakur et al., 2007a, b) in the Garhwal Himalaya, where a reconnaissance survey can be undertaken. Since structural geology within fold thrust belts fundamentally controls the spatial occurrence of the hydrocarbon reserves (Cooper, 2007), this work aims to deduce fundamental thermal and tectonic parameters from the MBT region that will be useful in future thermal-mechanical modelling of the adjoining terrains.

Quantification of deformation temperature (Cavalcante et al., 2018; Mazza et al., 2018), flow stress (Christie and Ord, 1980; Gueydan et al., 2005) and strain rate (Handy, 1994; Sassier et al., 2009) are prerequisite to understand the deformation mechanisms of rocks. This would enable interpretation of tectonics of the terrain under study. Factors such as fluid-pressure, grain-size and composition greatly influence the development of shear zones (e.g., Schmid, 1982; Arch et al., 1988; Wojtal and Mitra, 1988) and their impacts should be understood properly in studying shear zones (e.g., Law, 1990; Newman and Mitra, 1994; Bhattacharyya and Mitra, 2011, 2014; Bose et al., 2018). At one side, research groups (e.g., Kali et al., 2016; Long et al., 2011; Yakymchuk and Godin, 2012; Law et al., 2013) have deduced the temperature a shear zone can attain. On the other hand, other research communities have modelled the shear-related heating (e.g., Nabelek et al., 2001; Whittington et al., 2009; Mulchrone and Mukherjee, 2016; Mukherjee, 2017a). With the help of such thermometric studies, at some point geoscientists might predict shear zone temperatures (e.g., Wolfowicz, 2012) from models. They would be able to check how far they match with the estimated value from the natural deformations. Closer the match, better will be the understanding of the shear zone kinematics. Factors like temperature, flow stress and strain rate provide the details of the deformation process. These factors also control the switch between the elastic and plastic deformational regimes, which link with the seismic-aseismic cycles (e.g., Handy, 1989; Kruhl et al., 2007; Rogowitz et al., 2014). Earthquake frequencies are very closely related to strain rates (Shen et al., 2007).

Following this trend, this work uses a few widely used techniques (e.g., Goscinka, 2014; Farrell, 2017) to estimate the deformation temperature, flow stress and strain rate.

2. Geology and tectonics

Around 11 Ma years back (Meigs et al., 1995), the MBT zone placed the hangingwall block of the Proterozoic Lesser Himalayan Sequence (LHS) at N/NE over the footwall of the Cenozoic Sub-Himalayan Siwalik Supergroup at S/SW (review in Yin, 2006) (Fig. 1a–c). Some authors consider the MBT as a basement thrust (Raina, 1978). The MBT usually dips 30–50° but at few places is sub-vertical (Thakur et al., 2007a, b). The LHS, situated between the MBT and the Main Central Thrust (MCT), is subdivided into two tectono-stratigraphic units – the northern Paleoproterozoic Inner LHS, and the southern Neoproterozoic-Cambrian Outer LHS (lithotectonic units of the Garhwal Lesser Himalaya in Repository Table 1). These are separated by a ~ NE-SW trending Tons thrust in the Garhwal Himalaya (Célèrier et al., 2009a, b and references therein). The LHS in the Garhwal Himalaya (Bose and Mukherjee, 2019a) and elsewhere (Bose and Mukherjee, 2019b) underwent top-to-N/NE back-thrusting of unconstrained timing. By GPS study in the Kumaun Lesser Himalaya, Ponraj et al. (2010) deduce 15 mm yr⁻¹ present day convergence rate. The active nature of MBT is also reflected through various other signatures, such as landslides (Panikkar and Subramanayan, 1996; Joshi et al., 2011), seismicity (Pathak et al., 2015) and radon emissions (0.04 ± 0.01 to 0.58 ± 0.04 pCi/ml) near Dehradun, Uttarakhand (Ramola et al., 1988). Since Ramola et al. (1988) find radon emission from the MBT fault zone itself, they do not favour any reason for this emission other than the MBT activity. However, in other parts of the Garhwal Himalaya, the MBT is presently inactive (Jayangondaperumal et al., 2018).

This study was conducted in the litho-units of the MBT hangingwall rocks, i.e., the Chandpur Formation of the Outer LHS in the Garhwal Himalaya. The Chandpur Formation mainly comprises of shales, phyllites, siltstones and sandstones. The mineral assemblage (e.g., epidote micas, such as chloritized recrystallised biotite) suggests a greenschist facies metamorphism (Islam et al., 2011). Following the U-Pb dating method, an age of 8239.5 Ma was deduced from the magmatic zircons of the Lesser Himalayan Chor Granitoids (Singh et al., 2002). The black Chandpur phyllites expose along the MBT zone near Dehradun where the Mussourie hills start. Here, the MBT trends NW-SE. Based on the Raman Spectroscopy of Carbonaceous Material (RCSM), Célèrier et al. (2009a,b) calculate < 330 °C temperature for the various low-grade meta-sedimentary rocks from the Kumaun and the Garhwal Lesser Himalaya. Mineralization of Pb, Zn, U, gypsum and barite have been reported north to the MBT, within the LHS (review in Ghose, 2006).

3. Methods

3.1. Sampling

Fieldwork was carried out around the Sahenshahi Ashram (N 30° 24’ 19.4˝E 78° 05’ 42.9˝) Dehradun, close to the MBT. Here the MBT zone has thrust the black pelitic rocks of Chandpur Formation over the Siwalik conglomerates (Fig. 2a). Intensely top-to-S sheared black Chandpur phyllites along with abundant quartz veins crop out along the MBT zone that trend N-S (Fig. 2b–d). Two phyllite and two quartz-vein samples were collected from this spot. Quartz vein samples were collected from a single vein.

Naturally deformed samples were collected for these purposes from the low-grade outer Lesser Himalayan Sequence, exposed along the Main Boundary Thrust (MBT) zone near Dehradun, Uttarakhand, India, western Himalaya. The data generated for the MBT in this work would act in better understanding of thermal and dynamic behaviour of the natural shear zone: the MBT.

3.2. Microstructures & clay mineralogy/XRD analysis

Thin-sections of the phyllite and the quartz vein were prepared that orient perpendicular to the N-dipping main foliation and parallel to the dip direction of those foliation planes. For clay-separated XRD analyses, the samples were powdered (< 75 μm) at first. This was followed by the usual processing through decantation and centrifuge to extract clays. The air-dried samples were studied in the PANalytical Empyrean (PANalytical B.V., Almelo, The Netherlands) set up at the Department of Earth Sciences, IIT Bombay. Final results were obtained through the HighScore Plus software v. 4.6a (Degen et al., 2014) and the Inorganic Crystal Structure Database. The fundamentals of the XRD analyses can be found elsewhere (e.g., Moore and Reynolds 1989; Poppe et al., 2001).

3.3. Quartz deformation thermometry

Thin-sections made from samples of Chandpur phyllites as well as
quartz veins were studied for micro-structural and thermometric analyses. Experimental studies (Rutter, 1974; Tullis and Yund, 1985; Stipp et al., 2002; review in Passchier and Trouw, 2005) show that quartz develops characteristic microstructures. These microstructures are governed dominantly by increasing temperature. Repository Table 2 summarises such observations of previous workers. Other factors such as pressure, strain rate, presence of water also play roles. For example, the higher temperature microstructures can be present in the lower temperature condition, if either the strain rate is low or the water content is high (Griggs, 1967; Law, 2014; Stünitz et al., 2017).

3.4. Thermometric study using laser Raman Spectroscopy for carbonaceous materials (LRSCM)

See Appendix-1 for a glimpse of fundamental principles of LRSCM. Beyssac et al. (2002) applies the LRSCM technique on a variety of rocks (black shale, mica schist, marble, anthracite, granulite) collected from Schistes Lustre’s unit, W. Alps and from the Sanbagawa metamorphic belt, Japan. They come up with the following empirical equation to estimate the peak metamorphic temperature, which has been widely followed by the subsequent workers (e.g., Nagy and Toth, 2012):

\[ T^\circ C = -445 \times R_2 + 641 \]  

Here, \( R_2 = \frac{D_1}{G + D_1 + D_2} \) peak area under the curve ratio (Repository Fig. 1). With an error limit of ± 50 °C, eqn. (1) estimates the deformation temperature within the range 330–650 °C. The equation does not depend on the metamorphic grade of the rock nor the source of the carbonaceous materials. Eqn (1) was modified in few cases by researchers but even then nearly the same results were obtained (Nagy and Toth, 2012).

Rahl et al.’s (2005) LRSCM studies on low-grade (< 300 °C) metasedimentary rock samples collected from Crete (Greece), South Island (New Zealand) and Olympics Mountains (USA) lead to formulate another empirical equation using the R1 and the R2 ratios. The R1 ratio is given by \( \frac{D_1}{G} \) peak height (intensity) ratio (Repository Fig. 1). The formula is:

\[ T^\circ C = 737.3 + 320.9 \times R_1 - 1067 \times R_2 - 80.638 \times R_1^2 \]  

(2)

This formula has been tested successfully by those authors, for 100–700 °C with an error of ± 50 °C.

Fig. 1. a. Simplified geo-tectonic divisions of the Himalaya (reproduced from Fig. 1 of Mukherjee et al., 2015). Study location plotted. b. Geological map of the Garhwal Inner Lesser Himalaya (redrawn after Fig. 1 of Jayangondaperumal and Dubey, 2001), superposed on the Google Earth satellite imagery. S: study location, Sahensahi Ashram (N 30° 24.19.49', E 78° 05.42.93'). Data for the earthquake epicentres is presented in the following table. Data source: United States Geological Survey website (https://earthquake.usgs.gov/earthquakes/search/), accessed on 27-May-2019.

c. Geological cross-section through the Garhwal Sub-Himalaya. Reproduced from Fig. 2 of Dutta et al. (2019), originally drawn by Thakur and Pandey (2004).

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Date</th>
<th>Latitude (N)</th>
<th>Longitude (E)</th>
<th>Depth (km)</th>
<th>Magnitude (Mw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02-Jan.1997</td>
<td>30.536</td>
<td>77.844</td>
<td>33</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>03-May-2010</td>
<td>30.27</td>
<td>78.314</td>
<td>13.5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>03-May-1984</td>
<td>30.5</td>
<td>78.404</td>
<td>33</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Fig. 2. (a) MBT zone characterized by extremely deformed black pelites on hanging wall block. Conglomerates crop out at the footwall block. (b-d) Nature of black pelitic rock along with quartz veins exposed at MBT zone. Studied samples were collected from these exposures. (d) The angle between Y- and P-planes is 41°.
Eqs. (1) and (2) have been widely applied on a variety of rock types and tectonic situations (e.g., Kouketsu et al., 2014; Hu et al., 2015). Petrographic thin-sections are feasible since they allow the in-situ measurements of the Laser Raman spectra, the relationship between carbonaceous material (CM) and mineral matrix can be observed. Due to its anisotropic structure (i.e., deformation varies with crystallographic orientation), orientation of the CM affects the generated spectra. The use of thin sections also aids in the removal of the laser-generated heat by the mineral matrix (Beyssac et al., 2002). According to Beyssac et al. (2003), the CM being opaque, the laser can penetrate ~10–100 nm of the CM. This thin zone of CM can get affected during sample preparation procedure. To overcome this, a minimum polishing was done on the thin-sections and a CM grain lying beneath a transparent grain (e.g., quartz) was preferred during the LRSCM. Again the structural-order of the CM structure, hence the obtained results, depends on the precursor and metamorphic conditions (Quirico et al., 2009). This bias does not influence the results of this study as samples were taken from a single spot location.

The LRSCM was performed through a Laser Raman WD Almega XR spectrometer (manufactured by Thermo-Nicolet) equipped with a confocal optics and CCD detectors. A 50 x objective with 25 μm pinhole was used to focus the 12.5 Mw (50%) 532 Ar green laser beams on the sample and the acquisition time was 30 s for each of the total 18 sample points belonging to 4 thin-sections of the black phyllonitic rock. After the acquisition of spectra, baseline correction and curve fitting were done using the software OriginPro (v. 8, Origin Lab, 2007) and the data were used for further calculations.

3.5. Flow stress estimation by piezometry using recrystallised quartz grain size

Tectonic stresses result in creep of rocks causing a displacement of the dislocations that increases crystal defects. During creep, the dislocations in a grain accumulate and eventually become the subgrain boundary. The number of such subgrain boundaries increase with increasing flow stress. Hence the increase in flow stress (measured as differential stress) reduces sizes of the individual subgrains (White, 1977; Twiss and Moores, 2007). When a subgrain attains a different orientation, the number of such subgrain boundaries increase with increasing flow stress. Hence the increase in flow stress (measured as differential stress) reduces sizes of the individual subgrains (White, 1977; Twiss and Moores, 2007). When a subgrain attains a different crystallographic orientation than its parent grain, it becomes a recrystallised grain. The recrystallised grain size, which is a better parameter to estimate strain rate, can be correlated with the flow stress using the following equation (Ludwigson, 1971):

$$\sigma = K_e^n$$  \hspace{1cm} (3)

Where $\sigma$: flow stress (in MPa), equivalent to deviatoric stress; $K$: strength constant (in MPa), a material property denoted by a constant value; $e$: strain (unitless); $n$: strain hardening exponent (unitless), a material constant. A uniform plastic behaviour of the material has been presumed in Eqn. (3). This equation works for metals and alloys. The magnitude of $K$ for quartz is not known, to the knowledge of the authors.

Following this relationship, Twiss (1977) propose the following theoretical and global piezometer:

$$\sigma = Bd^{0.68}$$  \hspace{1cm} (4)

Here $\sigma$: differential stress in MPa; $B$: 5.5 MPa μm$^{-1}$ for quartz; $d$: recrystallised grain size given as the diameter of circle with equal area of the grain. The parameter B in Eqn. (4) is a constant in the empirical formula.

Stipp and Tullis (2003) propose another empirical piezometer based on the axial compression experiments on Black hill quartzite carried out in a Griggs apparatus using molten salt cell:

$$D = 10^{1.56 \pm 0.27} \times \sigma^{-1.26 \pm 0.13}$$  \hspace{1cm} (5)

Here $D$: recrystallised grain size in μm, given as the diameter of circle with equal area; $\sigma$: flow stress. For a large number of grains, it is better to use the median value of the grain size distribution, than the mean value (Ranalli, 1984). Stipp and Tullis (2003) check the applicability of this piezometer for dynamically crystallised rocks with 3–45 μm grain size.

However, Stipp et al. (2010) apply this piezometer on quartz mylonites with 3 μm - 3 mm grain-sizes. They plotted the BLG-SGR and SGR-GBM domain boundaries at ~35 μm and 120 μm, respectively. This scheme has been globally used by the subsequent workers (e.g. Hunter et al., 2018) as well as in the current study. Finding a more accurate flow law is underway (Lu and Jiang, 2019). Flow laws derived from lab experiments well suits naturally deformed mylonites (Lu and Jiang, 2019). On both the mono-mineralic and polymineralic rocks, the flow laws work (Ji and Xia, 2002). Previous workers also tried to formulate an equation for strain-rate calculations (e.g. Poirier, 1985; Tsenn and Carter, 1987). However, Hirth et al. (2001) provided a more accurate empirical equation to estimate the strain-rate of natural samples. Hence, the later equation has been used in the current study. This is explained in detail in the Appendix-2.

Although not considered in this work, other factors like temperature and presence of fluid influence this process. While experimenting on the olivine aggregates with low water content, Drury (2005) presumes the recrystallised grain size to be independent of temperature. However, during lab experiments with polycrystalline halites, ter Heege et al. (2005) conclude that the temperature plays a significant role in palaeostress estimation and the temperature independent piezometers underestimate the flow stress. Lab experiments on quartzites by Stipp et al. (2006) do not find any influence of water on the flow stress estimations. However, these piezometers (eqns. (4) and (5)) have been widely used to study natural shear zones (e.g. Austin, 2011; Singleton et al., 2018), including phyllonites (e.g. Krabbendam et al., 2003; Menant et al., 2018).

3.6. How to estimate strain rate

There are different types of structural analysis to determine stress-strain relationships and associated deformation features in field. Mohr diagram (e.g., Mukherjee et al., 2019) can be one of them. The strain rate indicates the rate at which the material deforms. The parameter also gives an idea about the rate of strain accumulation (Prescott et al., 1979; Fossen, 2016).

There is a power law relation amongst flow stress, deformation temperature and strain rate for a quartz vein deforming through dislocation creep. Studying the quartzite samples from the Ruby Gap duplex, Australia, Hirth et al. (2001) present the following empirical equation to estimate strain rate in natural samples:

$$\dot{\varepsilon} = A \times f^m_{\text{H}_2\text{O}} \times \sigma^n \times e^{-(Q/RT)}$$  \hspace{1cm} (6)

Here $\dot{\varepsilon}$: strain rate (per second); $A$: a material parameter = 10–11.2 MPa-n s$^{-1}$ (for quartz); $f_{\text{H}_2\text{O}}$: water fugacity; $m$: water fugacity exponent = 1; $\sigma$: flow stress; $n$: stress exponent = 4; $Q$: activation energy = 135 kJ mol$^{-1}$; $R$: molar gas constant = 8.3145 J/mol-K; $T$: deformation temperature in Kelvin scale. Due to its very low impact on $\dot{\varepsilon}$ (Stipp, per. comm.; Francis, 2012), $f_{\text{H}_2\text{O}}$ not measured in the present study is justified. Eqn. (6) (has been widely used to deduce strain rates (e.g., Boutronnet et al., 2013). See Appendix-3: Table-1 for detail. Modification of the constituent terms in eqn (6) and its applicability on naturally deformed quartz bearing samples makes the equation the best choice in the current study. Mazzotti and Geydan (2018) use this equation to model crust and mantle rocks. Samples of quartz veins are used in this study for strain-rate estimation for the MBB-related shear. While conducting experimental studies on wet quartzite, Tokle et al. (2019) utilize the dynamic recrystallised grains for stress estimation. Besides finding the similarities between natural and
experimental deformation patterns, they also suggested two flow laws with different stress exponents: \( n = 4 \) and 3 for lower and higher stresses, respectively.

Takahashi et al (1998) provide the following empirical formula to calculate strain rate:

\[
D = \phi \log \frac{\rho}{T} + 1.08 \tag{7}
\]

Here, \( D \) = fractal dimension = slope of the least-square linear fit in the diameter-perimeter log-log graph of the grains, \( \phi = 9.34 \times 10^{-2} \), \( \rho = 6.44 \times 10^8 \, \text{K} \), \( T = \) temperature (in K). However, Mamtani and Greiling (2010) report that this method is not useful to calculate strain rate at high temperatures. Therefore, eqn (7) has not been used to calculate the strain rates in this study. The strain rate in a simple shear zone depends on the average slip rate and width of the strain accumulation zone (Boncio, 2008). Again, being a single spot study, this bias does not influence our results.

4. Results

4.1. Microstructural observations and clay minerals

Microstructural observations from phyllite (Figs. 3 and 4) show several deformation features, e.g.: (i) ductile shear (Fig. 3a and b) and brittle shear (Fig. 3d); (ii) contractional (Fig. 3a) and extensional features (Fig. 3a,c); (iii) brittle (Fig. 3c) and ductile (Fig. 4a,d) behaviour of quartz grains etc. Clay-separated XRD analyses indicate the presence of clinochlore (Mg-rich chlorite) and illite (Fig. 5).

4.2. Quartz deformation thermometry

The sheared quartz veins were studied for this part. The quartz grain boundary mobility features (Repository Table 2; Figs. 6 and 7) represent approximately the following deformation temperatures (Hirth and Tullis, 1992; Stipp and Tullis, 2003): (i) The fragmentation induced grain size reduction (Fig. 6a) and the intra- and inter granular fractures (Fig. 6b,d) indicate cataclasis (< 300 °C). Note that during cataclastic flow, intra-granular fractures can also generate by minor plastic deformation (Evans, 1990); (ii) bulging in grain boundary (Fig. 6b), strain lamellae (Fig. 6c), sweeping extinction (Fig. 6d) and neocrystallisation along grain boundary (Fig. 7a and b) connote a Bulging Recrystallisation (BLG; 300–400 °C); and finally (iii) static recrystallisation indicated by polygonal quartz grains (Fig. 7c) and elongated quartz grains (Fig. 7d) imply a Subgrain Rotation (SGR; 400–500 °C). Note that samples from which Figs. 3 and 4 come have not been used in thermometric study here.

The deformation in the studied MBT zone started when it was in the ductile regime. It is presently exposed at the surface possibly due to slip along the MBT and subsequent erosions. Hence, the higher temperature older textures in the MBT zone rocks are likely to be overprinted by younger lower temperature deformation features (e.g. Wojtal and Mitra, 1988; Srivastava and Mitra, 1996; Bhattacharyya and Mitra, 2014). In this study, the lower temperature (cataclastic flow; < 300 °C) features discussed above (Section 4.2) indicate that during the later successive deformations, the temperature of deformation fell down to < 300 °C. According to Passchier and Trouw (2005), during deformation, structures overprint first by higher temperature signatures (up to the peak metamorphic condition). This is followed by the lower temperature features. They also suggest that the features preserved in thin-sections get ‘frozen in’ just before the temperature as well as strain rate go below a critical value during the final stages of the competing processes. In the studied thin sections, such features are indicated by the co-existence of elastic-plastic signatures (Figs. 6 and 7). As a result, signatures of deformations at lower and higher temperatures are present in the studied thin sections. However, presence of clays and pressure solutions indicate intense fluid activity. This might have induced hydrolytic weakening (Griggs, 1967; Snoke, 1998) of the studied rock. Hence, the quantifications made here are the maximum estimates.
4.3. Laser Raman Spectroscopy for carbonaceous materials (LRSCM)

After the decomposition of the laser Raman spectra of the carbonaceous materials present in the MBT zone Chandpur phyllites (Repository Figs. 1 and 2), parameters such as the band position, the peak width, the peak height and the area under the peak were calculated to determine the temperature of deformation (Figs. 8 and 9). The peak metamorphic temperature values calculated using eqn. (1) ranges 307–456 °C, with 374 °C as the mean value. Similarly, eqn. (2) gives a data set between 200 and 500 °C yielding a mean value of ~356 °C. Both the estimates involve ± 50 °C error.

4.4. Piezometry

Areas of recrystallised quartz grains were measured from the photomicrographs of two thin-sections of quartz veins present in the
phyllitic rock of the MBT zone. The software ‘J-microvision’ (v. 1.2.5 by Nicolas Roduit, 2007) was used. Total 200 grains of recrystallised quartz were measured from all the thin sections (e.g., Fig. 7c). According to the method followed by Stipp et al. (2010), the grouping of the grains were done based on their grain diameters, i.e., < 40 μm for Bulging Recrystallisation (BLG), 40–120 μm for Sub-grain Rotation (SGR), and > 120 μm for Grain Boundary Migration (GBM). Amongst those 154 grains come under the SGR deformation zone, 45 grains bending in some grain boundaries may be due to incomplete recovery or bulging recrystallisation at lower temperature (300–400 °C) during later deformational phases. Black country rock with quartz vein, crossed polarized light. (d) Elongated quartz grains and bent grain boundaries indicate ductile deformation of the quartz grains. These features along with brittle step-fractures (left) suggest a ductile-brittle phase. Black host rock with quartz vein, plane polarized light.

Fig. 6. (a) Breakage by brittle fracture, zone of small new grains, angular fragments of quartz etc. indicate a cataclastic flow condition (< 300 °C). Micro-faulting of the central yellow grain is noticeable. Quartz vein, plane polarized light. (b) Parallel sets of fractures show abating relation with a central fracture plane. Quartz vein, plane polarized light, width of view~ 3.5 mm. Various types of brittle fractures indicate that the quartz vein deformed in brittle regime at a temperature < 300 °C. Various types of brittle fractures indicate that the quartz vein deformed in brittle regime at a temperature < 300 °C. Bulging at triple junction and deformation lamellae (top black grain) indicate a bulging recrystallisation condition (300–400 °C). Formation of very fine new grains along boundaries is identified by light grey colour. Although highly sutured boundary indicates that the deformation took place at a higher temperature (> 500 °C). Quartz vein, plane polarised light. (c) Strain induced deformation lamellae, deformation banding, sweeping extinction along with sutured and serrated grain boundaries indicate bulging recrystallisation (300–400 °C). Quartz vein, plane polarised light. Arrow indicates clays. (d) Inter-fingered grain boundary, wavy extinction, recrystallisation along subgrain boundaries indicates BLG condition (300–400 °C). Quartz vein, plane polarised light. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. (a) Strain induced dynamic recrystallisation in quartz vein. Larger quartz grains. With undulose extinction form elongated subgrains. Recrystallisation (or, subgrain to recrystallisation transition) around elongated subgrains indicates BLG as the dominating recrystallising process (300–400 °C). Intra-granular microcrack (bottom left), aligned trails of inclusion (right centre) are also noticed as these indicate deformation at lower temperature (< 300 °C). Quartz vein, plane polarised light. (b) Elongated subgrains of quartz (central and upper part) along with very small recrystallised grains (abundant in the top right segment) surrounding them indicate a BLG to SGR transitional condition (~400 °C). Whereas recrystallisation along grain boundaries, sutured/bulged grain boundaries in porphyroclasts indicate BLG (300–400 °C). A parallel trail of inclusions in the central grain indicates healing of micro-cracks at lower temperature (< 300 °C). Quartz vein, plane polarised light. (c) Straightening of boundary and polygonisation of recrystallised quartz grains indicate abrupt recovery and static recrystallisation in a strain free condition (400–500 °C). It is also evident from the random orientation in the grains. Minor
belong to GBM recrystallisation, and only a single grain is of BLG recrystallisation (Fig. 11). The data (Repository Table 3) related to the area of the grains, diameter of equal area circles, and flow stresses (Fig. 10) have been calculated using both eqns. (4) and (5).

Flow stress values calculated according eqn. (4) show a maximum frequency in the 25–30 μm domain (55 values, 27.5% of total population). Whereas, the mean flow stress values calculated as per eqn. (5) show maximum frequency in the 15–20 μm domain (68 values, 34.0% of total population).

4.5. Strain rate estimation

The deformed quartz veins present in the MBT zone phyllite has been used here. A flow stress of 10.68–49.18 MPa was calculated from the given data set using eqn. (4). On the other hand, eqn. (5) gives 6.04 ± 1.05 to 35.88 ± 4.45 MPa for the same data set. From these values, a strain rate of $10^{-15}$ - $10^{-16}$ s$^{-1}$ has been calculated (Table 1) using Eqn. (6).

5. Discussions

5.1. Veins

Synkinematic quartz veins, generally present at the base of the thrust sheet, shows the signatures of the corresponding fault activity (e.g. Coli and Sani, 1990; Henderson and McCaig, 1996; Cox, 1998; Blenkinsop, 2008; Wilstchko et al., 2009) and indicate elevated pore-fluid pressure (e.g. Boulton et al., 2009). As the synkinematic quartz veins bear the signatures of younger dynamic recrystallisation deformations, these veins act as a very reliable tool to estimate the temperature, flow stress and strain rate related to the deformation phases (Haertel et al., 2013). Similarly, in the studied case the abundance of veins restricted at the base of the footwall block suggests their synkinematic nature. Additionally, the shear senses shown by the veins (Fig. 2c and d) matches with the foreland-vergent top-to-S shear sense of the MBT deduced from other kinematic indicators in the field in this work, and also by other researchers from different Himalayan sections (Yin, 2006), indicating that these veins are certainly not pre-Himalayan.

Further, nobody has reported conclusively any pre-Himalayan deformation from the MBT zone or from such regional main thrust zones from the Himalaya. The pre-/eo-Himalayan signatures such as angular unconformity, SW-verging folds in mega-scale, rootless tight to isoclinal folds with metamorphic banding along the axial plane foliation, sandstone dykes etc. (Garzanti et al., 1995 from Spiti, NW Himalaya; Wiesmayr and Grasemann, 2002 from NW Tethyan Himalaya; Jain et al., 2002 from the western Himalaya; Draganits et al., 2005 from Pin Valley, NW Himalaya) have not been reported from the study area. Paucity of Pre-Himalayan deformation signatures could be due to obliteration of such features, if any, by intense Himalayan deformation along such major thrusts in the Himalaya. In another example, Bhargava et al. (2011) document pre-Tethyan deformation based on field observations along the Dharagad Thrust in the Tons valley, Lesser Himalaya in Himachal Pradesh, India. Top-to-S/SW shear has been proved conclusively to be the Himalayan or collision induced deformation signature based on sigmoidal-/lensoidal foliations, S-C fabrics, asymmetric porphyroclasts, sheared quartz veins, mineral fish, intrafolial folds etc. (e.g., Brunel, 1986; Herren, 1987; Grasemann et al., 1999; Jain et al., 2002; Mukherjee and Koyi, 2010). Hence, the analyses made with the chosen vein samples reflect the MBT-related related-order deformations. Veins not giving shear sense have been avoided in this study (Repository Fig. 3). Cross-fractures and boudin necks (as in Fig. 3c) indicate the syntectonic nature of the veins (such as Fig. 3 of Beach and Jack, 1982), and we utilized them in the present analyses. The studied veins are not the products of hydro-fracturing since they lack the typical network of vein as in Fig. 7b of Bons et al. (2012). Further, these veins are not the post-tectonic fill ups, since the typical tooth-like individual geometries of grains (Fig. 1a of Bons et al., 2012) are never encountered. Due to lack of crystal preferred orientation/ growth direction of the grains inside the veins, the syntaxial/anataxial/ epitaxial nature (Okamoto and Sekine, 2011; Bons et al., 2012) of the studied veins cannot be deciphered, but is neither relevant in this study.
5.2. Clays and phyllonitization

Clay and phyllosilicate-rich shear zones have been reported from various geologic settings, such as clay-filled fractures, lithospheric detachments, accretionary prisms, subduction zones, continental shelves, fold-thrust belts and along several extensional and strike slip regimes (Warr and Cox, 2001 and references therein; Buatier et al. 2012; Lacroix et al., 2012). In fault zones, clay precipitates from fluids flowing fractures (Warr and Cox, 2001; Lacroix et al., 2012, 2013). The petrophysical properties of fault planes are affected by syn-deformational growth of clay minerals, viz., clinochlore and illite (Lacroix et al., 2013; Bose and Bhattacharya, 2013). There are three possible geneses of clay minerals in fault zones (Warr and Cox, 2001):

(i) anhydrous cataclasis and frictional melting,
(ii) hydrous chloritisation of mafic minerals, and
(iii) growth of swelling clay in the matrix.

Clays significantly decrease the shear strength of fault zones. For example—the shear strength of schists or slates are ~0.38 MPa, whereas it reduces drastically to 0–0.18 MPa for clay-filled shear planes at the Alpine Fault zone (Warr and Cox, 2001). It can happen dominantly by the two following ways (Warr and Cox, 2001; Buatier et al. 2012). (i) Due to micro-pores and considerable amount of void spaces in their crystal structures, clays can either absorb or release voluminous fluids, various cations, organic matters held in them during hydration-dehydration reactions and seismic events. This phenomenon greatly affects the fluid pressure of the fault zone. Increased fluid pressure in the fault zone decreases its strength. (ii) Compared to other rock forming minerals, clays deform more easily by dislocation glide along cleavages. Low frictional coefficient along such weak slip surfaces leads to aseismic creep.

The clay minerals present in the studied samples (clinochlore and illite) plausibly play similar roles in the deformation. But, providing further proof to that is beyond the scope of current study. However, presence of clays and intense shear indicate phyllonitisation (Knopf, 1931; review in White, 2010) of the Chandpur phyllites in the studied part of the MBT zone. Such low-grade phyllonites have been reported ubiquitously at the base of thrust sheets (e.g., Gray, 1995; Corfu and Heim, 2013; Bhattacharyya and Mitra, 2014) and experience a < 500 °C peak metamorphic temperature (Foster et al., 2009). These information match well with the current study, as the phyllonite is present at the base of MBT sheet and shows a peak metamorphic temperature of ~500 °C.

Table 1

<table>
<thead>
<tr>
<th>Nature of Deformation</th>
<th>Temperature (K)</th>
<th>Pressure (MPa) (experimental results)</th>
<th>Strain rate (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG-SGR transition</td>
<td>673</td>
<td>49.18 ± 4.45</td>
<td>1.23E⁻¹⁵</td>
</tr>
<tr>
<td>(grain size ~ 40 µm)</td>
<td></td>
<td></td>
<td>3.48E⁻¹⁶</td>
</tr>
<tr>
<td>SGR-GBM transition</td>
<td>773</td>
<td>23.32 ± 3.20</td>
<td>1.40E⁻¹⁵</td>
</tr>
<tr>
<td>(grain size ~ 120 µm)</td>
<td></td>
<td></td>
<td>2.43E⁻¹⁶</td>
</tr>
</tbody>
</table>

* Measured as per Twiss (1977).
* Measured as per Stipp and Tullis (2003).

Fig. 10. Experimental results plotted in a grain size vs. flow stress diagram. Division of BLG, SGR, GBM zones has been done according to Stipp et al. (2010).

Fig. 11. Frequency distribution of experimental data in various classes of flow-stress.

Clays significantly decrease the shear strength of fault zones. For example—the shear strength of schists or slates are ~0.38 MPa, whereas it reduces drastically to 0–0.18 MPa for clay-filled shear planes at the Alpine Fault zone (Warr and Cox, 2001). It can happen dominantly by the two following ways (Warr and Cox, 2001; Buatier et al. 2012). (i) Due to micro-pores and considerable amount of void spaces in their crystal structures, clays can either absorb or release voluminous fluids, various cations, organic matters held in them during hydration-dehydration reactions and seismic events. This phenomenon greatly affects the fluid pressure of the fault zone. Increased fluid pressure in the fault zone decreases its strength. (ii) Compared to other rock forming minerals, clays deform more easily by dislocation glide along cleavages. Low frictional coefficient along such weak slip surfaces leads to aseismic creep.

The clay minerals present in the studied samples (clinochlore and illite) plausibly play similar roles in the deformation. But, providing further proof to that is beyond the scope of current study. However, presence of clays and intense shear indicate phyllonitisation (Knopf, 1931; review in White, 2010) of the Chandpur phyllites in the studied part of the MBT zone. Such low-grade phyllonites have been reported ubiquitously at the base of thrust sheets (e.g., Gray, 1995; Corfu and Heim, 2013; Bhattacharyya and Mitra, 2014) and experience a < 500 °C peak metamorphic temperature (Foster et al., 2009). These information match well with the current study, as the phyllonite is present at the base of MBT sheet and shows a peak metamorphic temperature of ~500 °C.
5.3. Thermometry

In this study both the host phyllite and the quartz veins present in the common top-to-S shear (Fig. 2). The quartz microstructure thermometry indicates the deformation temperature, whereas the LRSCM thermometry done on the carbonate material present in the phyllites connotes peak metamorphic temperature. According to Stipp et al. (2002) and Passchier and Trouw (2005), for quartz the transitions: cataclastic flow to BLG, BLG to SGR, and SGR to GBM takes place ~ 300, 400, and 500 °C, respectively. Hence, the mean of peak metamorphic temperatures obtained by LRSCM, i.e., ~374 °C and ~356 °C show a good correlation with the thermometric data obtained by the quartz deformation thermometry.

The Pelling-Munsari thrust in the Sikkim Lesser Himalaya, which formed at a much higher structural level had only 360 °C recorded at its trailing edge and 410 °C at its at its trailing edge (Bhattacharyya and Mitra, 2014). However, a direct comparison between this known information in eastern Himalaya with what we derive in western Himalaya is implausible since several other tectonic parameters such as slip rate of major thrusts and exhumation rates of the mountain chain vary significantly along the Himalayan trend (review in Mukherjee, 2013). Céléri et al. (2009b) measure a peak metamorphic temperature < 300 °C from the LRSCM study of the nearby MBT hanging wall rocks of Outer-LHS in the Garhwal Himalaya. Studying the quartz-feldspar microstructures, Long et al. (2011) calculate a 250–310 °C deformation temperature for the Lesser Himalayan rocks in Bhutan. The LRSCM method revealed that the Nepalese Lesser Himalaya experienced 540–330 °C metamorphic temperature (Beyssac et al., 2004). Using the LRSCM technique, Mathew et al. (2013) estimated deformation temperature of 240–300 °C for the MBT zone rocks of the Arunachal Himalaya, India. A conclusive comparison between the known temperature data from LHS from different locations of the Himalaya with the present data would not be possible.

5.4. Piezometry

The flow stress depends on the sizes of the recrystallised quartz grains (Stipp and Tullis, 2003). After nucleation, the size of the recrystallised quartz grains remains unchanged and does not depend on temperature (Xia and PlattJ, 2018). Geologically active thrust zones, such as the study area in current study, experiences temporally variable differential stress/flow stress (10–500 MPa) during its evolution through multiple seismic-aseismic cycles (e.g., Hawemann et al., 2018). The 39.89–376.82 μm range of grain sizes measured in this study also indicates a variable flow stress condition in the study area.

The final steady state product of any incremental dynamic deformation is preserved in thin sections. Thus, this measurement of flow stress gives an idea about the final products only, and not the whole dynamic deformation procedure. The steady state recrystallised grain sizes increase presumably by later deformations, otherwise the measurement will underestimate the original value (Stipp and Tullis, 2003). To overcome this problem, Twiss (1977) points out that the recrystallised grain sizes can be preserved by three mechanisms, one of which is the constant tectonic plate-induced stress accompanied by slow cooling rate. We consider such a condition to prevail in the study region since the MBT activated (e.g., Burbank et al., 2003). Hence, Twiss’ idea would apply in the present study. Stipp et al. (2010)’s piezometer (Eqsns. (4) and (5) in Section 3.4) gives a satisfactory range of deformation temperature for the SGR range. But for high temperature ranges like the GBM, it underestimates the flow stress magnitude, which can be considered as the minimum stress estimate for these zones. Although numerous grains below the measured range were found, it was difficult to measure their areas properly for their sub-microscopic sizes. The numerous small BLG recrystallised grains present in the sample were not measured. From these points of views, the flow stress measured for the SGR recrystallisation deformation appears to be most reliable and is adopted in this study.

5.5. Strain rate estimation

The strain rates related to the transition zones amongst the BLG, the SGR and the GBM domains were empirically given by Stipp et al. (2010). Related temperature values can be found from Passchier and Trouw (2005). Using the experimentally derived flow stress data, the strain rate values were calculated for the SGR recrystallisation zone.

In this study, the flow stress magnitudes calculated from the equations of Twiss (1977) and Stipp and Tullis (2003) (eqns. (4) and (5) in Section 3.4) yield strain rates 10−11 to 10−16 s−1. In general, the strain rates in natural shear zones range 10−13 to 10−15 s−1 (Pfiffner and Ramsay, 1982; Ragan, 2009; review in Fagereng and Biggs, 2019). Strain rate in collisional orogens range 10−12 to 10−18 s−1 (Holz et al., 1976 and references therein). A different estimate from GPS studies provides a range of 10−13 to 10−11 s−1 (review in Lu and Jiang, 2019). Strain rates ~10−15 s−1 or lower matches well with the results of viscous sheet models for various continents (references in table 1 of Fagereng and Biggs, 2019). A low strain rate an indicate seismicity (Campbell et al., 2015; Christophersen et al., 2017). The current study deduces such a value, however one should note that the deduced strain rate need not be the present day strain rate along the MBT. GPS-derived strain rate from the MBT, Garhwal or the Mussourie region in particular in our study area is sparse. Only Khandelwal et al. (2014) report the present day annual variation of strain to be ±4 mm on horizontal component. Sharma and Lindholm (2012) modelled seismicity in MBT in the Dehradun region as Poisson earthquake distribution. Monalisa and Khwaja (2005) commented that the MBT in the NW Indian (and also in Pakistan) is overall seismic. On the other hand, the seismic zonation map of India shows a high to very high chance of earthquake in the north part of Uttarakhand state that includes our study area (see Fig. 5 of Verma and Bansal, 2013). More specifically, Fig. 1 of Joshi and Kumar (2010) shows earthquakes of M < 4 plots at some parts of MBT in the Uttarakhand state. The GPS data indicates that the present day strain rate in the Indian subcontinent is < 10−14 s−1 (Ader et al., 2012). Studying the zoning in garnets from Lesser Himalaya of central Nepal, Kohn et al. (2004) decipher that the strain rates along the local faults varies in the geological time range (103−109 years). From quartz dislocation creep, Francis (2012) documents 10−12−10−14 s−1 of strain rate near the Main Central Thrust (MCT) in the Sutlej valley, India. Hence, the strain rate values generated in this study matches with previous studies. It can also be inferred that, deformation (or, strain accumulation) along the MBT for some time period was less than the deformation (or, strain accumulation) along the MCT. Because of sparse data, it is implausible to comment whether strain rate varies systematically towards the foreland side of the Himalayan collisional orogen.
base of a thrust sheet and deforms at < 500 °C.

III. Laser Raman spectroscopy of carbonaceous materials estimates ~356–374 (± 50) °C of peak metamorphic temperature. When compared with the previously obtained results from the Lesser Himalaya, this study plausibly indicates shear heating at the base of the MBT thrust sheet.

IV. Recrystallised quartz grain size-based piezometry estimates the flow stress range ~ 6–49 MPa indicating a temporally variable range of tectonic stress conditions through geological time.

V. Based on available data and experimental results, this study estimates a strain rate of the order 10\(^{-15}\) or 10\(^{-16}\) s\(^{-1}\), which is nearly matching with the strain rate values obtained from other Himalayan thrusts as well as natural shear zones.

**Declaration of competing interest**

No conflict of interest.

**Appendix 1**

The fundamentals of Laser Raman Spectroscopy have been described elsewhere (Beyssac et al., 2002, 2003; Bradley, 2007; Chipara et al., 2011 etc). The Laser Raman Spectroscopy of the carbonaceous materials generates characteristic peaks D1, D2 and G, plotted in a 2D graph the Raman shift (cm\(^{-1}\)) along the X-axis and absolute counts of intensity along the Y-axis. The positions and intensity of these D1, D2 and G peaks represent the order in the structure of the carbonaceous material and hence provides clue to estimate the peak metamorphic temperature (e.g., Nibourel et al., 2018).

**Appendix 2**

Poirier’s (1985) experiments on monophase and polyphaser aggregates give the following equation:

\[
\dot{\varepsilon} = A \exp\left(\frac{-Q}{RT}\right) \exp\left(\frac{m}{n}RT\right)
\]

Here \(\dot{\varepsilon}\): steady-state strain rate, \(A\): pre-exponential factor, \(\sigma\): differential flow stress, \(n\): stress exponent, \(Q\): apparent activation energy, \(R\): gas constant, \(T\): absolute temperature (K), \(d\): grain size, \(m\): grain size exponent.

Experimenting with olivine-pyroxene rich rocks, Tsenn and Carter (1987) present the following formula:

\[
\dot{\varepsilon} = A \exp\left(\frac{-Q}{RT}\right)\exp(\beta\varepsilon)
\]

Here \(\dot{\varepsilon}\): steady-state strain rate, \(Q\): apparent activation energy, \(R\): gas constant, \(T\): absolute temperature (K), \(\beta\): empirical constant, \(\sigma\): differential flow stress.

Neither eqn (1) nor eqn (2) incorporate various natural parameters (e.g. water fugacity), resulting in oversimplification of the models (Kirby and Kronenberg, 1987; Kohlstedt et al., 1995; Blenkinsop, 2007).

**Appendix 3. Table 1 (Submitted as a Repository File since it is of a slightly different format and is not coming in this place)**


**References**


Bhattacharya AR. (Internet reference) Himalayan deformation: implications for...


Kochstedt, D.L., Ewing, C., 1990. Crystallographic fabrics: a selective review of their applications to re-


microfabric evolution—An experiment carried out by nature. J. Struct. Geol. 69, 1–17.