Inheritance book in Springer

BOOK · JULY 2015

2 AUTHORS:

Soumyajit Mukherjee
Indian Institute of Technolo…
91 PUBLICATIONS 338 CITATIONS
SEE PROFILE

Achyuta Misra
Reliance Industries Limited
18 PUBLICATIONS 28 CITATIONS
SEE PROFILE

Available from: Soumyajit Mukherjee
Retrieved on: 05 September 2015
Achyuta Ayan Misra
Soumyajit Mukherjee

Tectonic Inheritance in Continental Rifts and Passive Margins
SpringerBriefs in Earth Sciences
Tectonic Inheritance in Continental Rifts and Passive Margins
Dedicated to Chris Talbot (retired Professor: Uppsala University) for growing our interest in tectonics
Acknowledgments

This study is partly supported by IIT Bombay’s research grant to AAM. IIT Bombay’s support from staffs, A.P. Venkateshwaran and many others, is acknowledged. Discussions with Sourav Sarkar, Souvik Sen, Ian Stewart and Guillauma Backe (British Petroleum), and Mainak Choudhuri, Sandipan Saha and Sudipta Sinha (Reliance Industries Ltd.) were particularly helpful in enriching the text. Gayathri Umashankar (Springer) is thanked for efficient handling of the book draft. Sandeep Gaikwad (Indian Institute of Technology Bombay) is thanked for preparing many of the diagrams.
Contents

1 Introduction ... 1
1.1 General Aspects. 6
1.2 Gaps in Knowledge 6

2 General Aspects 7

3 Influence of Pre-existing Anisotropies on Fault Propagation 9
3.1 Fracture Criteria. 9
3.2 Rock Deformation Experiments 14
3.3 Bearing on Rift Systems 17

4 Pre-existing Fabrics 21
4.1 General Discussion 21
4.2 Pervasive Fabrics 21
4.2.1 East African Rift System 24
4.2.2 Thailand Tertiary Rift System 27
4.2.3 South Atlantic Passive Margins 27
4.2.4 East and West Indian Passive Margins 31
4.3 Discrete Fabrics 34
4.3.1 East African Rift System (EARS) 41
4.3.2 The Brazilian Rifts 42
4.3.3 Tertiary Rifts of Thailand 42
4.3.4 North Atlantic Passive Margin 43
4.3.5 Eastern North American Rift System 45
4.3.6 Rhine Graben 50
4.3.7 East and West Indian Passive Margins 52

5 Role of Lithosphere Rheology on Rift Architecture 53
5.1 General Discussion 53
5.2 Lithospheric Strength 53
5.3 Temperature and Strain Rate 59
Abstract

Tectonic inheritance deals with the influence of pre-existing or pre-rift elements on the geometry, genesis and propagation of rift-related faults. Inheritance strongly controls the architecture of continental rifts and passive margins. Experimental results demonstrated the importance of layering and mineralogical anisotropy in extensional deformations. For low-to-intermediate angles of the anisotropy to the maximum compression direction, faults formed within anisotropic rocks parallel to the pre-existing weakness. For high angles, the faults breach the weak planes but follow them in segments. Rocks usually are anisotropic and respond to extension more easily than to compression. Shallow anisotropies at the brittle upper crust are either pervasive or discrete. While foliations and layers define ‘pervasive’ fabrics, widely spaced isolated zones of weakness such as faults and shear zones define the ‘discrete’ ones. Pervasive fabrics govern the overall trend of the rifts in passive margins. The discrete fabrics form oblique to rifts or as transfer zones between propagating rift segments. Rheology of the pre-rift lithosphere controls the architecture of rifts and passive margins predominantly for levels deeper than the upper crust. The parameters controlling the architecture of rifts and passive margins are strength, crustal and lithospheric thicknesses, thermal state and strain rate. The first three factors are soft-linked. For example, the strength of the lithosphere depends on its composition, thickness and temperature (van der Pluijm and Marshak 2004). The thickness of the lithosphere—thicker for mobile belts and thinner for cratons—depends on the thermal age (=age of last tectonothermal event). Lithospheric thickness thus influences its thermal state also. Generally, rifting in thicker lithosphere diminishes rift shoulder topographies, whereas rifting in colder and thinner lithosphere forms ~3–5 km elevated rift shoulders. Warmer lithosphere produces rifts narrower and faster than those within colder lithosphere. In this work, we bring together the concepts of the inheritance of pre-rift shallow (pervasive and discrete
fabrics) and deep (lithosphere rheology) elements. Citing examples from intra-continental and rifted passive margins, we show that the process of tectonic inheritance remains active throughout the rifting episode.

Keywords Tectonic inheritance · Pre-existing anisotropies · Pervasive fabrics · Discrete fabrics · Lithosphere rheology · Rifting

Highlights

1. Tectonic inheritance of pre-existing anisotropies in rifting is universal.
2. Pervasive fabrics have a mode of influence different than discrete/isolated fabrics.
3. Lithosphere rheology is important in controlling the geometry, genesis and architecture of rifted basins.
References

Anderson EM (1951) The dynamics of faulting and dyke formation with special applications to Britain, 2nd edn. Oliver and Boyd, Edinburgh, p 206

Bosworth W, Streeker MR (1997) Stress field changes in the Afro–Arabian Rift system during the miocene to recent period. Tectonophysics 278:47–62

soumyajitm@gmail.com

References

soumyajitm@gmail.com

References
soumyajitm@gmail.com

References

References

soumyajitm@gmail.com

References

soumyajitm@gmail.com
Geological studies: Gulf of Suez, Northwestern Red Sea coasts: tectonic and sedimentary evolution of a neogene rift (tectonic and sedimentaty evolution of a Neogene rift, 10)
Montési LGI, Zuber MT (2003b) Spacing of faults at the scale of the lithosphere and localization instability: 2. application to the Central Indian Basin. J Geophys Res Solid Earth 108:B2

References 79
soumyajitm@gmail.com
Morley CK (1999b) How successful are analogue models in addressing the influence of pre-existing fabrics on rift structure? J Struct Geol 21:1267–1274
Mukherjee S (2007) Structures at meso and micro-scales in the Sutlej section of the higher himalayan shear zone in Himalaya. e-Terra, pp 1–27
Mukherjee S (2013a) Deformation microstructures in rocks. Springer, Berlin
Mukherjee S (Ed) (2015b) Petroleum geosciences: Indian Contexts. Springer

References

soumyajitm@gmail.com

Tavarnelli E, Butler RWH, Decandia FA et al (2004) Implications of fault reactivation and structural inheritance in the Cenozoic tectonic evolution of Italy. The geology of Italy, Special 1:209–222

soumyajitm@gmail.com

Wilson JT (1966) Did the Atlantic close and then re-open? Nature 211:676–681

Index

A
Accomodation Zone, 1, 3, 13, 19
Amazonia Craton, 22
Anaboriana-Manampotsy mobile belt, 36, 50
Anatananarivo craton, 36
Anderson’s theory, 7, 11
Angle of internal friction, 9, 11
Angola Craton, 22, 30
Anisotropy coefficient, 17
Antongil craton, 32, 36, 50
Aracuá mobile belt, 22, 30
Araripe rift, 41
Australian Proterozoic crust, 60

B
Basin and Range Province, 21, 58
Bastar craton, 32
Bemarivo mobile belt, 32, 36
Braziliano orogeny, 30
Brazilian passive margin, 6
Brazilian rifts, 41
Brittle ductile transition zone, 56
Brittle failure, 9

C
Caledonian, 22, 43
Cambay rift, 3
Cape Fold Belt mobile belt, 22
Chiang Mai basin, 43
Cleavage, 17
Cohesion, 9, 34
Cohesive strength, 9
Congo Craton, 22, 30
Core complex, 58
Coulomb failure criterion, 7, 9, 10, 64
Critical shear stress, 9

D
Damara mobile belt, 22
Deccan volcanic province, 32
Detachment, 2
Dharwar craton, 32, 48, 50
Discrete fabric, 21, 23, 64
Dom Feliciano mobile belt, 22, 30

E
East African Rift System, 1, 6, 23, 24, 40
East Indian passive margin, 6, 31, 48
Eastern Ghats Mobile Belt, 31, 48
Eastern North American rift system, 43
Eburnian deformation, 24
Effective elastic thickness, 57, 67
Ethiopian rift, 3
Exhumation, 2

F
Fang basin, 43
Fracture prediction, 65

G
Gariep mobile belt, 22, 30
Grenville orogeny, 46
Griffith cracks, 11
Griffith failure criterion, 9, 10, 14
Gulf of Thailand, 3

H
Hercynian, 22
Hoek-Brown failure criterion, 14
Hydrocarbon, 65
Hyperextended rift, 1, 23

I
Iapetus Ocean, 46
Iberia-Newfoundland, 3
Icô basin, 41
Iguatu Basin, 41
Indochina craton, 26

© The Author(s) 2015
A.A. Misra and S. Mukherjee, Tectonic Inheritance in Continental Rifts and Passive Margins, SpringerBriefs in Earth Sciences,
DOI 10.1007/978-3-319-20576-2

soumyajitm@gmail.com
Intrinsic Necking Depth, see Necking depth

J
- Jatobá-Reconavo-Tukano rift, 41

K
- Kalahari Craton, 22
- Kaoko mobile belt, 22, 30
- Karoo rift, 40
- Kibaran mobile belt, 24
- Kibaran orogeny, 24

L
- Level of necking, see Necking depth
- Lower crust, 17

M
- Masora craton, 32, 36, 50
- Mode-I (tension) fracture, 9, 63
- Mode-II (shear) fracture, 9
- Moho, 54
- Mohr space, 10
- Mohr-Coulomb failure criterion, 9, 11, 14, 19
- More-Trøndelag Fault Zone/Complex, 43
- More-Voring basin, 43

N
- Narrow rift, 58
- Necking depth, 54
- North American Craton, 22
- North Atlantic passive margin, 43
- North Sea, 43

O
- Oblique rifts, 19
- Obliqueness of extension, 61

P
- Pan-African orogeny, 30
- Paranapanema Craton, 22
- Passive margin, 1
- Pattani basin, 3, 7
- Pervasive fabric, 21, 23, 64
- Phrae basin, 43
- Pore fluid pressure, 53
- Principal Deformation Zone, 61

R
- Relay ramp, 3
- Rheology, 53, 56
- Rhine Graben, 48, 50
- Ribeira mobile belt, 22, 30
- Riedel shear, 63
- Rio Alba Craton, 22
- Rio de la Plata Craton, 22
- Rio de Piexe basin, 41
- Rio Grande rift, 4
- Rukwa rift/basin, 40

S
- São Francisco Craton, 22, 29
- Saudi Arabian Red Sea, 53, 58
- Sediment fairway, 65
- Shan-Thai craton, 26
- Shear(ed) margin, 2, 6
- Sierra de la Ventana mobile belt, 22
- Singhbhum craton, 32
- Slickensides, 39
- South Atlantic passive margin, 29, 53
- Southern Granulite Terrain, 31, 52
- Strain rate, 57, 58
- Strength profile, 3
- Stretch factor, 54
- Stretching mode, 19
- Suture zone, 7

T
- Tanganyika craton, 24
- Tanganyika-Rukwa-Malawi segment, 40
- Tanzania Craton, 22
- Tensile strength, 9
- Tertiary rift basins in Thailand, 6, 42
- Thailand Tertiary rift system, 26
- Thai-Malay mobile belt, 26
- Thinning mode, 19
- Trans-Atlantic Mountains, 53, 58
- Transfer Zone, 1, 13, 19, 34
- Transfer zone, 3, 7
- Transform margin, see Shear margin
- Transtension, 8
- Trap definition, 65

U
- Ubendian mobile belt, 24
- Usagaran mobile belt, 24

V
- Viking graben, 43

W
- West Africa Craton, 22
- West Congo mobile belt, 22
- West Indian passive margin, 6, 31, 48
- Wide rift, 58
- Wilson Cycle, 1