Hyperspectral remote sensing and geological applications

D. Ramakrishnan* and Rishikesh Bharti
Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

This article reviews the potential of Hyperspectral Remote Sensing (HRS) technique in various geological applications ranging from lithological mapping to exploration of economic minerals of lesser crustal abundance. This work updates understanding on the subject starting from spectroscopy of minerals to its application in exploring mineral deposits and hydrocarbon reservoirs through different procedures such as atmospheric correction, noise reduction, retrieval of pure spectral endmembers and unmixing. Besides linear unmixing, nonlinear unmixing and parameters attributed to nonlinear behaviour of reflected light are also addressed. A few case studies are included to demonstrate the efficacy of this technique in different geological explorations. Finally, recent developments in this field like ultra spectral imaging from unmanned aerial vehicles and its consequences are pointed out.

Keywords: Geological applications, hyperspectral remote sensing, spectroscopy of minerals and rocks, spectral unmixing.

Introduction

Mineral exploration and geological mapping through conventional geological techniques are tedious, expensive and time-consuming. Mapping and targeting an economic deposit through traditional techniques involves extensive fieldwork, structural mapping, study of landforms, petrography, mineralogy and geochemical analyses. These techniques need a strong laboratory database to discern slight variation in composition of ore grades. With the advent of multispectral sensors (e.g. ASTER, Landsat) having bands in the Shortwave Infrared (SWIR) and Thermal Infra-Red (TIR) regions, lithological discrimination and mineral potential mapping were possible from space/airborne platforms. However, detailed understanding on precise mineral composition and relative abundance of constituents within Field of View (FOV) was not possible with these data due to coarse bandwidth and poor spectral contiguity. However, when spectroscopy, radiometry and imaging techniques were bundled as imaging spectroscopy, limitations of multispectral remote sensing were overcome. The hyperspectral sensors on the other hand, are capable of acquiring images in 100–200 contiguous spectral bands. This ability to acquire laboratory-like spectra from an air/spaceborne sensor is a major breakthrough in remote sensing. As a result, hyperspectral sensors provide a unique combination of both spatially and spectrally contiguous images that allow precise identification of minerals. Over the last two decades, mineral mapping and lithological discrimination using airborne hyperspectral sensors like AVIRIS, HYDICE, DAIS, HyMAP have been extensively attempted. However, launch of NASA’s EO-1 Hyperion sensor with 242 spectral bands in 0.4–2.5 µm range marked a new beginning in spaceborne mineral potential mapping.

In this article a comprehensive review of spectroscopy of minerals and rocks, importance of field spectroscopy, and challenges in analyses of hyperspectral data for geological exploration are discussed.

Reflectance and emission spectroscopy of minerals and rocks

Since Newton’s discovery of composite nature of white light in 1664, spectroscopy in all ranges of wavelength has been used to study properties of terrestrial and extra-terrestrial objects. When light interacts with a mineral or rock, certain wavelength regions of incident light are absorbed, some are reflected, and some are transmitted depending on the chemistry and crystal structure. Absorption of energy in minerals results from electronic and vibration processes of molecules. The vibrational processes involving stretching, bending and rotation offer information about functional groups. Molecular vibration-related spectral absorption is characteristic of functional groups and is useful in identifying minerals. Absorption features related to fundamental, overtone and combination manifest in the 1–30 µm region. Spectral absorption features of minerals (such as silicates, oxides, hydroxides, carbonates, sulphides, nitrates and borates) are well established (Figures 1–3) and identification of these minerals based on spectra is now possible. These studies on reflectance and emission spectroscopy of minerals lead to generation and archival of exhaustive spectral library.

*For correspondence. (e-mail: ramakrish@iitb.ac.in)
Subsequently, it was realized that spectral database generated using pure minerals and rocks in the laboratory has limited application potential for exploration due to inherent heterogeneity and associated spectral mixing. This led to the development of field spectroscopy, wherein field-related natural heterogeneities are addressed. With the advent of compact and sophisticated spectrometers and spectroradiometers, field spectroscopy is evolving as a robust technique in mineral exploration and geological mapping \cite{21-23} and is extensively used from initial reconnaissance to ore-grade evaluation through intermediate stages such as drilling, assay estimation and...
core logging. Field spectroscopy in the TIR region is relatively new and has tremendous application in lithological mapping and mineral exploration24,25.

From exploration perspective, mineral deposits that can be easily targeted using reflectance spectra include epithermal gold, low-, and high-sulphidation deposits; porphyries, kimberlites, iron oxide, copper, gold, skarns and uranium. Table 1 summarizes a list of pathway minerals that are active in the SWIR region, which can be easily identified by HRS technique26.
Field spectroscopy

Application of field spectroscopy in geo-exploration pre-dates airborne spectrometry, as it is essential to acquire accurate ground data on spectral reflectance/emission. Compared to the first ever Portable Field Reflectance Spectrometer (PFRS), present-day field spectroradiometers are far advanced in terms of spectral range, resolution and signal-to-noise ratio. Now, both reflectance and emission spectral measurements of in situ rocks can be made from 0.35 to 14.00 μm (Figure 4). Evolution of field spectroscopy over the past four decades can be well visualized from the works of Slater, Milton, and Milton et al.

From a geological perspective, field spectroscopy can be employed in two different modes. First, it can be used as a stand-alone method to decipher mineralogy and lithology at field/mine scale. Ramakrishnan et al. employed this method to delineate Pb–Cu–Zn mineralization and associated alteration zones. They used field spectra, spectral library and unmixing algorithms to identify ore zones and rock types in the field. Kurz adopted close-range hyperspectral imaging and lidar to map diagenetic carbonate and clastic carbonates in the field. Secondly, it can be used in ore grade assessment; mine face mapping and ore blending. Hyperspectral logging, popularly called as ‘HyLogging’ involves estimation of continuous assay/grade details based on spectral information collected from cores, run-off mine ores and mine faces.

When field spectroscopy is used in conjunction with air/spaceborne hyperspectral image cubes, scaling-up of spectral details becomes necessary. This includes measuring spectral properties of individual scene elements, modelling cumulative effects of scene elements, and vicarious calibration of air/spaceborne data to match spatial scale of field data. Critical issues affecting scaling of field spectral information to air/spaceborne measurements include reliability of spectral measurements, spatial sampling strategy, sensitivity of equipment and dynamic field conditions. Apart from the above parameters, texture, fabric and source–sensor geometry also have a strong influence on intensity of reflectance/emission spectra.

Spectral library and pre-processing of spectra

Generation of a well-characterized spectral repository and understanding spectral features of minerals and rocks is the most important aspect of HRS. The United States Geological Survey (USGS) spectral library contains reflectance spectra of minerals and rocks from ultraviolet (0.35 μm) to SWIR regions (2.5 μm). The John Hopkins University (JHU) spectral library includes reflectance spectra of minerals from 2 to 25 μm regions. The JHU spectral library has been generated using integrating spheres for measurement of directional hemispherical reflectance. The Jet Propulsion Laboratory (JPL) spectral library published reflectance spectra of 160 minerals, from 0.4 to 2.5 μm. Data for 135 of the minerals are presented at three different grain sizes, namely 125–500, 45–125 and <45 μm. ASTER spectral library is a compendium of data from JPL, JHU and USGS libraries in a standard data format. A library of thermal infrared emission spectra of minerals was prepared by Arizona State University (ASU) for planetary exploration purpose. A new spectral library, Emission and Reflectance Spectral Library (EARSL) of rock-forming minerals and common rocks has been compiled by the Council of Industrial Research Organisation (CSIRO), Australia. Reflectance Experiment Laboratory (RELab) spectral library of minerals and rocks includes bidirectional reflectance spectra of the Earth and other planetary materials. Since the above spectral database differs in terms of source–sensor geometry, sampling rate and spectral spread, normalization is necessary for any practical applications.
Imaging spectroscopy from air and space

Image pre-processing and spectral unmixing

HRS requires an elaborate sequence of data processing. The first step involves removal of atmospheric effects and transformation of remotely measured radiance to ground reflectance/emissivity values. Since 1980s, atmospheric correction algorithms have evolved from statistical/empirical-based approaches to recent radiative transfer (RT)-based approaches. Salient among the algorithms include Flat Field (FF)41, Internal Average Relative Reflectance (IARR)42, Empirical Line Calibration (ELC)43 and RT-based approaches44 such as Atmospheric REMoval (ATREM)45, High-accuracy Atmospheric Correction for Hyperspectral Data (HATCH)46, Atmospheric CORrection Now (ACORN)47, Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)48, Imaging Spectrometer Data Analysis System (ISDAS)49, and Atmospheric and Topographic Correction (ATCOR)50.

Once corrected for atmospheric effects, the data need to be processed for dimensionality. Minimum Noise Fraction (MNF)51 algorithm is being widely used for noise reduction and dimensionality reduction. Besides MNF, techniques like Independent Component Analysis (ICA)52, Orthogonal Sub-Space Projection (OSP)53, and Convex Cone Analysis (CCA)54 are important. Due to coarse spatial resolution, heterogeneity of natural surfaces and multiple scattering effects, reflectance/emission spectrum measured by a hyperspectral sensor is always a spectral mixture55. A mixed pixel is a pixel which combines radiance values of multiple ground materials. On the contrary, a pure pixel represents radiance values of a single material. Such pure spectral signatures in an image are referred to as endmembers55. However, image endmembers are often a mixture of several library minerals. Hyperspectral unmixing involves two cascading steps. In the first stage, the image is classified based on image-derived endmembers and in the second stage, endmembers are resolved for mineralogy using spectral library. Since this procedure resolves each pixel in terms of mineral combinations mixed in various proportions, spectral unmixing is called as sub-pixel classification. The most popular model for spectral unmixing is linear mixing model (LMM)55,56.

The basic assumption of LMM (eq. (1)) is that every pixel in an image is a combination of one or more combinations of endmembers. Many endmember/pure pixel detection algorithms like N-Finder57 and Pixel Purity Index (PPI)58 are based on this concept. Other endmember retrieval algorithms include Automated Morphological Endmember Extraction (AMEE)59, Spatial–Spectral Endmember Extraction (SSEE) algorithm, Vertex Component Analysis (VCA)60, and Minimum Volume Transform and Convex Cone Analysis (MVTC60). Unmixing of image spectra as a linear combination of library/field spectra was attempted by several researchers for mineral identification and estimation of their abundance61–63.

\[
R_k = \sum_i^n E_{i,k} x_i + \varepsilon_k, \tag{1}
\]

where \(R\) is the reflectance of source at wavelength \(k\); \(E\) the reflectance of endmember \(i\) at wavelength \(k\); \(x\) the abundance of endmember \(i\) and \(\varepsilon\) is the error at wavelength \(k\).

Often efficiency of spectral unmixing is estimated by Root Mean Squared Error (RMSE) between test and modelled spectra.

\[
\text{RMSE} = \sqrt{\frac{\sum_{k}^{n} \varepsilon_k^2}{m}}. \tag{2}
\]

where RMSE is root mean square error of \(\varepsilon\); \(n\) the number of endmembers, and \(m\) is the number of wavelength channels in the discrete spectrum.

LMM is based on the assumption of single scattering of light. However, in most natural situations, reflection process involves multiple scattering and hence LMM is not effective. Therefore, nonlinear spectral unmixing model based on Radiative Transfer Equation (RTE) is necessary to understand influencing factors and effects associated with multiple scattering. Using fundamental principles of radiative transfer theory, Hapke and Wells64 derived an analytical equation for bidirectional reflectance function (BRF) of a medium composed of granular particles and applied it to planetary surfaces (e.g. Moon, Mars). These equations consist of several parameters which account for single and multiple scattering for an intimate mixture of minerals. This model is based on assumptions that (i) particle size is very large compared to wavelength of light measuring it; (ii) isotropic single and multiple scatterers represent the mixture, and (iii) angle of source and sensor are well defined from the vertical64. It is considered that radiance received at the detector is composed of singly scattered radiance \(I_s\) and multiple scattered radiance \(I_m\) for the given total irradiance \(I\). Hence \(I\) represents cumulative effect of single and multiple scattered components \(I = I_s + I_m\). Considering angle of light incidence \(\theta\) , emergence \(\epsilon(\theta)\), and azimuth angle \(\varphi\), Hapke65 calculated photometric function for bidirectional reflectance \(R(\varphi)\) using the relationship

\[
R_l(i, \epsilon, \varphi) = \frac{1}{\eta} = \frac{w}{4\pi} \frac{\mu_0}{\mu + \mu_0} \times \{1 + B(g)P(g, g') + H(\mu_0)H(\mu) - 1\} S(\theta). \tag{3}
\]

Here \(\mu_0\) and \(\mu\) are cosines of incidence \(\theta(\theta)\) and emergence \(\epsilon(\theta)\) angles; \(g\) the phase angle; \(w\) the wavelength.
(λ)-dependent single scattering albedo; B(g) the opposition effect function; P(g) the phase function and H(μ) is the multiple scattering function. Function for macroscopic roughness S(θ) is also referred to as topographic shadowing function\(^6\). Parameter θ is a mean topographic slope angle that provides a measure of surface macroscopic roughness of a pixel (shape and roughness of particles). If target spectra are from a terrain with small-scale roughness, then S(θ) is initialized to unity\(^6\). Shepard and Campbell\(^6\) suggested that the scale of the smallest facet is the dominant scale for surface shadowing. In case of larger grain sizes, θ parameter increases depending on geological properties\(^6\). It alters local incidence and emergence angles. Single scattering albedo (w) can be calculated from measured reflectance using eq. (4)

\[
w = \frac{4r_0}{(1 + r_0)^2},
\]

where \(r_0\) is the diffuse reflectance. The function of isotropic multiple scattering \(H(y)\) includes angle of incidence, emergence and single scattering albedo \(w\)

\[
H(y) = \frac{1 + 2y}{1 + 2\sqrt{1 - wy}},
\]

where \(y = \mu_0\) or \(\mu\). While deriving the solution for radiative transfer equation for an intimate mixture of minerals, effect of decreasing inter-particle spacing has to be taken into consideration. To account for such effects, Hapke et al.\(^6\) introduced another function in the reflectance equation, which is known as backscatter function \(B(g))\). It takes into account Shadow Hiding Opposition Effect (SHOE)\(^6\) as

\[
B(g) = \frac{B_0}{1 + \frac{\tan(g/2)}{h}}
\]

Parameter \(h\) in the above equation characterizes compaction of regolith and its particle size distribution. The angular width parameter \(h\) is constrained between 0 and 1. An empirical parameter \(B_0\) defines amplitude of opposition effect, with values constrained between 0 and 1. If particles are opaque, scattered light is from the surface and hence \(B_0\) will be equal to 1 (ref. 70). Henyey and Greenstein\(^7\) introduced a phase function by variation of parameters, \(-1 \leq g, g' \leq 1\), which ranges from backscattering through isotropic scattering to forward scattering. \(H-G\) function has a simple expansion in terms of Legendre polynomials. In order to generalize description of fine grain directional reflectance, Jacquemoud et al.\(^7\) have modified phase function \(P(g, g')\) as

\[
P(g, g') = 1 + b\cos(g) + \frac{c(3\cos^2(g) - 1)}{2} + b'\cos(g') + \frac{c'(3\cos^2(g') - 1)}{2}.
\]

The function \(P(g, g')\) includes four Legendre parameters linked with material properties and constrained at intervals \(b[-2, 2], c[-1, 1], b'[2, 2]\) and \(c'[-1, 1]\). Here \(b\) determines phase function form and \(c\) determines nature of scattering (\(c < 0\) corresponds to forward scattering and \(c > 0\) to backward scattering). \(\cos(g)\) and \(\cos(g')\) can be evaluated with values of \(i\), \(e\) and \(\psi\) using equations

\[
\cos(g) = \cos(i)\cos(e) + \sin(i)\sin(e)\cos(\psi)
\]

\[
\cos(g') = \cos(i)\cos(e) - \sin(i)\sin(e)\cos(\psi).
\]

Geological applications

Since the last two decades, HRS has been effectively used in several geological applications such as lithological mapping and exploration of non-metals\(^2,31,73-75\), precious and or economic minerals\(^76-80\), hydrocarbon deposits\(^81\) and also in quality control and grade assessments\(^31\). Development and successful implementation are detailed below.

Lithological mapping and exploration of industrial minerals

Though HRS in the VNIR–SWIR region is being used for lithologic mapping in various climatic\(^82\) and litho-tectonic terrane (granite\(^83\), ophiolites\(^84\), peridotites\(^85\) and kimberlite\(^86\)), there exists serious limitations as most of the rock-forming minerals are inactive in this region. Since spectral features in the SWIR region are mostly related to overtones and combinations of vibrations of Al–OH, Fe–OH, and Mg–OH, the VNIR–SWIR region is at the most useful for mapping alteration minerals, carbonates and regoliths\(^87\). Mineral spectral features in the TIR region are mostly attributed to fundamental vibrations (bends and stretches) of Si–O bonds. Thus, the TIR region spectrum is useful for characterizing spectral features of many rock-forming minerals such as quartz, feldspar, amphibole, olivine, mica and pyroxene\(^88\). Efficacy of the TIR region in lithological mapping has been demonstrated by Zhang and Pazner\(^8\), wherein lithology of Chocolate Mountains area, USA was mapped using ASTER TIR bands and Hyperion datasets. Merucci et al.\(^9\) also reported similar results while mapping the lithology of Solfatara crater, Italy using DAIS data. Vaughan et al.\(^9\) used TIR hyperspectral imager, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), to map lithology
of Steamboat Springs and Geiger Grade areas, Nevada, USA.

In case of evaporate deposits, the VNIR spectrum exhibits absorption features at 1.5, 1.74, 1.94, 2.03, 2.22 and 2.39 μm and can be easily mapped with Hyperion data78. Kurz et al.91 used HRS in the VNIR–SWIR region to discriminate different carbonate lithologies (limestone, karst and hydrothermal dolomites). Based on shift in carbonate absorption feature in the 2.3 μm region, they discriminated different types of limestone. Mapping of sulphate minerals (gypsum, jarosite) using spectral absorption in 1.4, 1.9 and 2.4–2.5 μm absorption bands is being extensively used among terrestrial and planetary remote sensing communities92,93.

Mapping hydrothermal alteration zones and associated metal deposits

Understanding composition and spatial distribution of alteration mineral assemblages is important in exploring different types of hydrothermal ore deposits. Hydrothermal alteration zones contain complex mixtures of primary mineral assemblages and new minerals formed through interaction of primary assemblage and hydrothermal fluids.

Volcanogenic Massive Sulphide (VMS) deposits: VMS ore deposits are formed due to volcanism-related hydrothermal activities in submarine environments. These deposits are the main source for Cu, Zn, Pb, Au and Ag ores. Alteration haloes developed by VMS deposits are conical in shape, zoned and can be mapped easily. Alteration mineral assemblages of VMS from core to fringe include, a silica alteration zone (comprising complete silica replacement of host rocks, and associated with ore minerals such as sphalerite, galena, chalcopyrite, and pyrite); a chlorite zone (consisting chlorite ± sericite ± silica); a sericite zone (consisting of sericite ± chlorite ± silica) and a silicification zone (comprising minerals related to silica–albite metasomatism).

Pilbara craton, Australia is one of the best VMS-type deposits and is extensively studied from the mineralization perspective94. Van Ruitenbeek et al.95 studied this deposit using airborne and field hyperspectral techniques for the distribution of white mica minerals (Figure 5). For this purpose, white mica mineral abundance and distribution maps were prepared using HRS technique and compared with published hydrothermal alteration maps. Based on the Al content, three different zones were identified, namely (i) Al-rich white mica zones, (ii) Al-poor white mica zones predominantly related to K alteration by more evolved hydrothermal fluids, and (iii) high to intermediate Al-content white mica zones related to intense alteration by laterally flowing and upwelling evolved fluids. This work demonstrated the potential of HRS in mapping the distribution of white mica minerals, characterization of hydrothermal systems and reconstruction of palaeo-fluid pathways. Similar application of hyperspectral technique in mapping VMS deposits is reported from different parts of the globe77.

Hydrothermal epigenetic deposits: This includes fractional granitoid associated (e.g. tin, tungsten, molybdenum), porphyry (e.g. copper, gold), iron oxide, copper, gold and carbonate-hosted strata bound (e.g. lead, zinc) and unconformity-related uranium deposits. Dominant alteration minerals associated with Sn–W mineralization are quartz, albite, muscovite, topaz, pyrite and clay minerals. They occur in greisenized and albited zones that range in thickness from a few millimetres to 10 cm. Hoefen et al.96 has used HyMap data over Daykundi area, Figure 5. Mapping of white mica minerals using HyMap, Pilbara craton, Australia (after Van Ruitenbeek et al.95).
Afghanistan (Figure 6) to explore huge Sn–W mineralization and associated alteration zones. Predominant alteration zones that could be mapped using HyMap and field spectroscopy include albitionization, silicification, limonitization, bleaching and dickitization. Alteration minerals closely associated with mineralization are chlorite, epidote, kaolin and iron-bearing carbonates. Dominant ore minerals include scheelite, wolframite, pyrite, chalcoprite, bornite and cassiterite.

Application of HRS on exploration of porphyry-type deposits in various geological settings is well established[77,80,97]. Ever since the first flight of 64-channel airborne spectral profiler over Porphyry Copper Deposit (PCD) of Grapevine Mountains (NGM), Nevada, utility of HRS on exploration of porphyry copper is well known[82]. PCDs are typically characterized by hydrothermal alteration zones with a core of potassic–biotitic, surrounded by phyllic, argillic and propylitic zones. Differentiation among these zones, particularly phyllic and potassic is an important criterion for targeting high economic deposits. These minerals are active in the SWIR region and can be easily deciphered. Central Iranian Volcano-Sedimentary Complex is one of the best sites for understanding PCD-related alteration. Characteristic alteration minerals identified using Hyperion data[77] include biotite, muscovite, illite, kaolinite, goethite, hematite, jarosite, pyrophylite and chlorite. Besides conventional alteration minerals (kaolinite, dickite, illite, sericite, chlorite and epidote) mapping ammonium–illite has been observed as an excellent tool for orogenic gold deposits[98]. Recent works have shown a relationship between gold mineralization at depth, hydrothermal fluid conduits and ammonium illite on the surface, thus stressing the importance of ammonium illite as a vital tool for different types of epigenetic gold[99].

Among minerals of epigenetic origin, exploring unconformity-related uranium is important due to increasing demand for energy. Diagnosable spectral absorption...
features of uranium minerals are confined to 0.40–0.54 μm, 2.1–2.5 μm and 9–14 μm. Typical hydrothermal alterations associated with this mineralization include alkali metasomatism, hematitization, chloritization, silicification and fluoritization, and most of the minerals associated with these alteration zones are active in the VNIR–SWIR regions. Studies relating to application of hyperspectral technique on exploration of these deposits include Gardner Range area, Australia.\(^{100}\)

Residual and secondary enrichment deposits: Deposits such as bauxite; lateritic–nickel–cobalt; supergene gold, copper and calcrete-hosted uranium fall under this category. HRS has been used effectively to identify secondary mineral components constituting regolith\(^{1,101,102}\). Kusuma et al.\(^{1}\) used field spectroscopic, geochemical, and Hyperion data to precisely map high aluminous bauxites in Konkan region of India. Spectral absorption depths and linear unmixing techniques were used to map different grades of bauxite. Minerals of gossans or iron hats (goethite, hematite, limonite, kaolinite and alunite) and associated supergene enrichment zones (argillitic/phosphate/sulphate) are active in the VNIR and SWIR regions and can be mapped using HRS technique\(^2,98\). Palaeochannels/playas containing groundwater-type calcretes are found to be one of the potential hosts for economic carnitite mineralization\(^{75,103,104}\).

Hydrocarbon exploration

Though present-generation hydrocarbon reservoirs are deep-seated, adequate fingerprints of their existence in depth can be inferred from manifestation such as seepages and micro-seepages\(^{105}\). In recent times, studying surface symptoms of microseepages is gaining importance as a prospective tool for oil and gas exploration. Such exploration adopts direct- and indirect-evidence detection. Direct detection involves mapping/identification of oil pools and alteration of minerals in soils and rocks due to seepages. Indirect detection aims at recognition of secondary effects of volatile hydrocarbons on plants/crops. In both cases, hyperspectral data collected from field/air/space can be of vital importance.

Some of the most promising spectral features and causative molecules include (a) 1.39–1.41 μm due to O–H overtone and C–H combinations; (b) 1.72–1.73 μm absorptions due to combination of CH\(_2\) and CH\(_3\) stretching, (c) CH\(_2\) vibration overtone at 1.75–1.76 μm, (d) combinations of CH\(_2\) asymmetric and symmetric axial deformations and CH\(_3\) symmetric deformation at 2.31 μm and (e) 2.35 μm, absorption due to combination of CH\(_3\) symmetric axial deformation and CH\(_3\) symmetric angular deformation\(^{106}\). Petrovic et al.\(^{107}\) presented an exhaustive account of hydrocarbon microseepage-related alteration in soil mineralogy of Lisbon valley, Utah, USA. Reduction of hematite to pyrite and advanced alteration of feldspar, higher concentration of Mo and bleaching of ferruginous sandstone are typical causes of hydrocarbon microseepages. Overall decrease of sulphate and increase of carbonate contents can also be attributed to hydrocarbon.\(^{108}\)

Similar to volatile hydrocarbons seeping from subsurface oil/gas reservoirs, coal-bearing areas also have their own spectral imprints (Figure 7). In the 0.3–2.6 μm region, distinct absorption at 1.4, 1.9 and 2.1–2.6 μm regions appears in low grade coals. Cloutis\(^{109}\) used reflectance spectra of different types of coal in the 1.8–4 μm region for retrieving both organic and inorganic components. From this work, it is evident (Table 2, Figure 8) that quantitative spectral–compositional relationships are possible, based on which coal properties such as aromaticity, total aliphatic, aromatic content, moisture content, volatile content, fixed carbon abundance, fuel ratio, carbon content, nitrogen abundance, H/C ratio and vitrinite reflectance can be identified.

![Figure 7. Spectral absorption features due to different organic compounds in different grades of coal.](image)

![Figure 8. Changes in spectral pattern of coal with progressive increase in inorganic content.](image)
SPECIAL SECTION: HYPERSONTRAL REMOTE SENSING

Table 2. Spectral absorption positions and physico-chemical properties of coals

<table>
<thead>
<tr>
<th>Coal property</th>
<th>Spectral correlation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromacity factor</td>
<td>3.41 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Aliphatic (CH + CH₃ + CH₂) content</td>
<td>3.41 μm-ABD</td>
</tr>
<tr>
<td>Aromatic C content</td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Moisture content</td>
<td>1.9 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>2.9 μm-ABD</td>
</tr>
<tr>
<td>Volatile content</td>
<td>2.31 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.41 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Fixed carbon content</td>
<td>3.41 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Fuel ratio</td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Carbon content</td>
<td>3.28 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.28/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Hydrogen content</td>
<td>3.41 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>2.9 + 3.41 μm-ABD</td>
</tr>
<tr>
<td>Nitrogen content</td>
<td>7.26 μm-ABD</td>
</tr>
<tr>
<td>Oxygen content</td>
<td>1.9 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>2.9 μm-ABD</td>
</tr>
<tr>
<td>H/C ratio</td>
<td>3.41 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Vitrinite mean reflectance</td>
<td>3.41 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
<tr>
<td>Calorific value</td>
<td>3.28 μm-ABD</td>
</tr>
<tr>
<td>Petrofactor</td>
<td>1.6 μm-ABD</td>
</tr>
<tr>
<td></td>
<td>3.41/3.28 μm-ABDR</td>
</tr>
</tbody>
</table>

*ABD, Absorption band depth; ABDR, absorption bands depth ratio; ARR, absolute reflectance ratio.

Recent developments and future directions

It is evident from the foregoing sections that hyperspectral imaging has evolved significantly over the last four decades and is being used extensively for mineral targeting/exploration. Advancements in sensor, platform and computing technologies during the last couple of years enabled transformation of HRS to Ultra Spectral Remote Sensing (USRS). Considering the success of Hyperion, seven spaceborne hyperspectral missions (EnMAP, HISUI, HypsIPI, PRISMA, HYPXIM, MSMI and HERO) are planned during 2015–2018. Recent progress in electronics has resulted in the development of micro-, and nano-hyperspectral imagers for small, hand-launched unmanned aerial vehicles. These systems facilitate data acquisition with spectral resolution ranging from 2 to 9 nm and spatial resolution of the order of a few centimetres. Such fine-resolution data alone can resolve spectral features of closely resembling minerals (e.g. ammonium illite and illite), which are otherwise difficult to discern with conventional hyperspectral imagers. These sensors can also play a pivotal role in upscaling spectral details from ground to satellite scales.

The above developments in achieving fine spatial spectral data would obviously add to data size and dimensionality. This in turn will affect computational efficiency and it is necessary to develop novel image-processing techniques. To address these constraints, it is necessary to design parallel and distributed systems for hyperspectral image analysis. Object-oriented spectral processing and target detection algorithms may be necessary to process ultra-spectral data for real-time compositional mapping/or grade discrimination. Advancements in sensor and computational techniques are expected to drive all components of HRS from calibration to mapping through steps in between. In brief, HRS will lead to USRS which will revolutionize geological exploration for several decades to come.

12. Adams, J. B., Interpretation of visible and near infrared diffuse reflectance spectra of pyroxenes and other rock forming minerals.

ACKNOWLEDGEMENTS. We acknowledge all earlier contributions on this subject. Efforts were taken to cite most of relevant works.